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A B S T R A C T   

The concept of doubling time has been increasingly used since the onset of the coronavirus disease 2019 (COVID- 
19) pandemic, but its characteristics are not well understood, especially as applied to infectious disease epide
miology. The present study aims to be a practical guide to monitoring the doubling time of infectious diseases. 
Via simulation exercise, we clarify the epidemiological characteristics of doubling time, allowing possible in
terpretations. We show that the commonly believed relationship between the doubling time and intrinsic growth 
rate in population ecology does not strictly apply to infectious diseases, and derive the correct relationship 
between the two. We examined the impact of varying (i) the growth rate, (ii) the starting point of counting 
cumulative number of cases, and (iii) the length of observation on statistical estimation of doubling time. It was 
difficult to recover values of growth rate from doubling time, especially when the growth rate was small. Starting 
time period is critical when the statistical estimation of doubling time occurs during the course of an epidemic. 
The length of observation was critical in determining the overall magnitude of doubling time, and when only the 
latest 1–2 weeks’ data were used, the resulting doubling time was very short, regardless of the intrinsic growth 
rate r. We suggest that doubling time estimates of infectious disease epidemics should at a minimum be 
accompanied by descriptions of (i) the starting time at which the cumulative count is initiated and (ii) the length 
of observation.   

1. Introduction 

Doubling time, the time it takes for a number of individuals to 
double, is classically used in the field of population ecology. Nowadays, 
doubling time is also used in the field of infectious disease epidemiology 
as a measurement of the spread of disease, representing the time 
required for the cumulative number of infections to double during the 
course of an epidemic (University of Cambridge, 2021; Vynnycky and 
White, 2010). Usually, doubling time is estimated using the time series 
data of (infected) individuals or from the growth rate of individuals, and 
the growth rate usually represents the rate at which individuals increase 
per unit time, i.e., a nearly opposing concept of doubling time (Gotelli, 
2008). As a more widely accepted measurement of transmissibility of 
infectious diseases, the basic reproduction number, which is interpreted 
as the average number of secondary cases produced by a single primary 
case in a fully susceptible population, is a well-defined dimensionless 
quantity. Nevertheless, the basic reproduction number requires us to 
know the length of the generation time in advance of the estimation, 
especially to attain a real-time assessment. The importance of estimating 
an alternative epidemiological metric to assess the transmissibility or 

the speed of growth of cases in the early stages of the COVID-19 
pandemic has been emphasized (Thompson et al., 2020). When the 
generation time has yet to be fully quantified, the speed of epidemic 
growth must be measured in real time (Dushoff and Park, 2021; 
Ridenhour et al., 2014), and doubling time, Td, is one of the available 
alternative metrics, and intrinsic growth rate, r, is another possible 
choice. 

In the field of ecology, the relationship between Td and r has been 
understood to be simple. Let C(t) be the population size at calendar time 
t, and C(0) be the initial value of the population. As for the concept of 
doubling, we have 

C(t) = C(0)2
t
Td , (1)  

and for the exponentially growing phase, we have. 

C(t) = C(0)exp(rt). (2) 

The right-hand sides of (1) and (2) are equated, and we then obtain 
the relationship. 
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Td =
ln2
r
, (3)  

which is well known in the field of ecology (Gotelli, 2008). Nevertheless, 
the Eq. (2) is not strictly the case for the cumulative number of infectious 
diseases, and the estimation of Td using (3) is not applicable (see 
Methods). 

The defining relationship between Td and r has not been well 
formulated, nor have statistical methods to measure doubling time. 
Doubling time is estimated using the cumulative number of cases over 
time, e.g., by using confirmed cases, and can therefore be used to detect 
rapid increases in the number of cases. In particular, it is attractive that 
Td can be measured even when intrinsic characteristics of an infectious 
disease, such as the generation time or incubation period, remain un
known (Pellis et al., 2021). For instance, during the epidemic of severe 
acute respiratory syndrome (SARS) from 2002 to 3, time-dependent 
changes in doubling time value were noted, and possible factors 
affecting doubling time have been discussed (Galvani et al., 2003). 
Doubling time has been also used for monitoring the epidemiological 
dynamics of coronavirus disease-2019 (COVID-19). In China, where 
COVID-19 was first widespread, the doubling time in the early stages of 
the epidemic was estimated to be 1.4–3.1 days by province (Muniz- 
Rodriguez et al., 2020). Following China, the epidemic was seen in Italy 
(Remuzzi and Remuzzi, 2020; World Health Organization, 2020), and 
the initial doubling time in Italy was estimated to be 3 days (Riccardo 
et al., 2020). Doubling time was also employed to measure the spread of 
the Omicron variant (B.1.1.529) in the United Kingdom during its early 
phases (UK Health Security Agency, 2021). In addition to monitoring the 
epidemiological dynamics, some studies have used doubling time to 
evaluate interventions against the epidemic (Khosrawipour et al., 2020; 
Liang et al., 2021). In sum, in situations where an epidemic grows 
rapidly, doubling time has been used to describe the rapidity of increase, 
and such an exercise has preceded an accurate statistical estimation of 
the basic (or effective) reproduction number; additionally, no technical 
discussion took place as to (i) when and how to start counting the cu
mulative number of cases, (ii) during which epidemic phases the mea
surement would be deemed useful, or (iii) how to interpret the estimate 
of doubling time. 

Doubling time has been increasingly used since the COVID-19 
epidemic began, but its characteristics are not well understood, espe
cially in its application to infectious disease epidemiology. As the 
measurement relies on the cumulative number of cases, it is vital to 
understand when and for how long the cumulative count should be 
taken. Moreover, even provided that a given doubling time is 3 days, we 
have not firmly understood how to interpret such a value. Considering 
that doubling time is easy to compute, this measurement will likely 
continue to be employed as part of epidemiological monitoring. It is vital 
to understand the epidemiological characteristics of doubling time in 
advance of such use. 

The present study aims to be a practical guide to monitoring the 
doubling time of infectious diseases. Via simulation exercise, we clarify 
the epidemiological characteristics of doubling time, allowing possible 
interpretations. 

2 Materials and methods 

In the following, we first describe the analytical relationship between 
Td and r through a trivial mathematical exercise. Subsequently, we 
describe the details of a simulation-based investigation. 

2.1. Modelling doubling time 

Here we describe the analytical relationship. Doubling time Td is 
estimated using the cumulative number of infected cases at time t, C(t), i. 
e., 

C(t) = C(0)2
t
Td , (4)  

where C(0) is the initial value. It should be noted that C(0) cannot be 
zero for C(t) > 0 for t > 0, and thus doubling time does not assume that 
cases are counted from the very beginning of an epidemic. 

Next, in the case of infectious diseases, not the cumulative number 
but the incidence of infection grows exponentially with the intrinsic 
growth rate r. The number of newly infected cases at time t, i(t), is 
expressed by 

i(t) = i(0)exp(rt). (5)  

where i(0) is the initial value. Taking the integral from time 0 to time t, 
we obtain the cumulative number of infected individuals, I(t): 

I(t) =
∫ t

0
i(s)ds =

i(0)
r

(exp(rt) − 1). (6) 

It should be noted that C(t) and I(t) cannot be immediately equated; 
there must be a clock zero to start counting C(t), the cumulative number 
of cases, say t0. At time t0, we have the relationship: 

C(0) = i(t0) = i(0)exp(rt0). (7) 

That is, the cumulative counting starts at t0 and C(0) is the same as 
the incidence at time t0, i(t0). In particular, we assume that C(0) was seen 
over t ∈ [t0-1, t0]. From the time t0, the cumulative number of cases at 
time t0+τ, following Eq. (4), is 

C(τ ) = C(0)2
τ
Td = i(0)exp(rt0)2

τ
Td . (8) 

It should be noted that τ is the time elapsed since the start of counting 
the cumulative number of cases. As for the cumulative number of cases 
following Eq. (6), we have 

I(t0) =
i(0)

r
(exp(rt0) − 1 ), (9)  

as the summation from time 0 to t0. What corresponds to the quantity in 
the right-hand side of Eq. (8) is the integral of i(t) from time t0-1 to t0+τ, 
thus, 

C(τ ) = I(t0 + τ ) − I(t0 − 1). (10) 

Notably, C(0) in Eq. (7) was dealt with as the discrete quantity, and 
therefore the integral from t0 to t0 + τwas calculated as the difference 
between I(t0 − 1) and I(t0 +τ ). From Eq. (10), we obtain 

i(0)exp(rt0)2
τ
Td =

i(0)
r

(
exp

(
r(t0+τ)

)
− 1

)
−

i(0)
r

(
exp

(
r(t0− 1)

)
− 1

)
, (11)  

which can be reduced to 

2
τ
Td =

exp(rτ) − exp( − r)
r

, (12) 

In the end, we obtain. 

Td =
τ

log2
(exp(rτ)− exp(− r) )

r ,
(13)  

which we suggest replacing the Eq. (3) in the case of infectious disease 
epidemiology. It should be noted that the Eq. (13) is not influenced by 
the initial value at time t0, and therefore the doubling time is still in
dependent of the empirically observed data; however, the Eq. (13) 
certainly contains τ, the time elapsed since starting to count cumulative 
number of cases. 

2.2. Computational exercise 

While the abovementioned Eq. (13) provides the analytical rela
tionship between Td and r, the finding is restricted to exponential growth 
phase, and moreover, we have not secured a stable interpretation of Td. 

A. Anzai and H. Nishiura                                                                                                                                                                                                                     



Journal of Theoretical Biology 554 (2022) 111278

3

What if the starting time to count cumulative number of cases is varied? 
What if the length of observation τ is very short? We tackle these points 
via numerical simulations. 

There have been several different methods for estimating the 
doubling time. The first is to use Eq. (3). As we discuss with Eq. (13), Eq. 
(3) may not be directly applicable to infectious disease. The second 
method is to use two data points: supposing that the cumulative number 
of cases at time t1 and time t2 were C(t1) and C(t2), respectively, the 
doubling time is calculated as 

Td = (t2 − t1)
ln2

ln C(t2)
C(t1)

.
(14) 

The Eq. (14) is preferred when the calculation must be kept simple 
(e.g., when using a spreadsheet program). Nevertheless, this method 
forces us to select two specific time points arbitrarily, and such choice 
leads to biased estimation when the number of cases remains small and 
stochasticity cannot be ignored. The third method is to fit Eq. (4), i.e., 
the equation of the cumulative number of cases, to the empirical data. 
This method uses an additional number of data points and can thereby 
avoid potential inflation of Td. Here we estimated doubling time Td from 
simulated epidemic data using Eq. (4), assuming that the variations in 
cases are captured by Gaussian distribution and employing a maximum 
likelihood method. In the present study, doubling time is defined as the 
time that the cumulative number of cases from the estimated start time 
doubles. The doubling time would always take a positive value, because 
the cumulative number of cases increases even when the growth rate is 
negative and the incidence is decreasing. 

2.2.1. Varying interpretations during exponential growth 
First, we explored how Td varies by varying (i) the growth rate, (ii) 

the starting point, and (iii) the time period used in the calculation on the 
doubling time (i.e., the length of observation τ) during the exponential 
growth phase. Consider an epidemic in which the number of new 
infected cases i(t) at time t is described by i(t) = i(0)ert . The initial value 
is not influential and is therefore set at i(0) = 1. Then, we varied 
rfrom − 0.1, − 0.01,0, 0.01 to0.1 per day, and the length of observation τ 
was also varied from 0 to 50 days. We examined how the estimate of Td 
differed when doubling time was calculated for each given growth rate 
for different periods of time, and when doubling time was calculated for 
the latest 7, 14, and 21 days. In the case of an infectious disease epidemic 
with a single peak, all datasets from day zero would be used to calculate 
the doubling time. However, in the case of COVID-19 with multiple 
epidemic waves, it has been practically the case that only the datasets of 
the latest few weeks were subject for analysis. The intrinsic growth rate 
was calculated from the doubling time using Eq. (13), and we examined 
how well the estimated doubling time reflected the growth of cases. 

2.2.2. Doubling time during the course of an epidemic 
Second, we conducted simulations using the susceptible-infectious- 

recovered/removed (SIR) model written by ordinary differential equa
tions: 

dS(t)
dt

= − βS(t)I(t),

dI(t)
dt

= βS(t)I(t) − γI(t),

dR(t)
dt

= γI(t), (15)  

where β is the transmission coefficient and γ is the rate of recovery. 
Using the numerical solution of the incidence from this model, we 
examined how the estimates of Td varied depending on how the starting 
point was taken during the course of epidemic (e.g., during the 
increasing phase, near the peak, or during the decreasing phase) and 
what period of the epidemic we used as the length of observation τ. 

When the SIR model was employed, we performed simulations with r =
0.1 and the mean generation time Tg = 5 days (assumed to be identical 
to the mean infectious period), thus in the SIR model written by three 
ordinary differential equations, R0 = 1 + rTg = 2. Similar to the 
simulation with the exponential growth, Td was estimated by varying (i) 
the starting point and (ii) the time period used in the calculation of the 
doubling time. 

3. Results 

Fig. 1 shows the effect of exponential growth rate on the statistical 
estimate of doubling time during the exponential growth phase. The 
simulation was conducted for a total of 50 days, and the doubling time 
was measured in four different ways, i.e., using data from time 0 to time 
50 (entire period), using the data for the latest 7 days (Day 44–50), the 
latest 14 days (Day 37–50), and the latest 21 days (Day 30–50). In the 
all-50-days case, Td was estimated to range from 4.4 to 12.5 days 
depending on the growth rate. Similarly, when the latest 7-day data 
were used, Td was estimated to range from 1.7 to 2.1 days; when the 
latest 14-day or 21-day data were used, Td was estimated to range from 
2.5 to 3.5 days and 3.1 to 5.5 days, respectively. That is, as the length of 
observation τ was shortened, the resulting doubling time was estimated 
to be shorter. Even when r was negative (i.e., in the decreasing phase), 
values of Td close to other growth rates were obtained. Especially when 
the latest 7-day or 14-day data only were used, the resulting doubling 
time values were close to each other and tended to be very short (i.e., on 
the order of a few days). 

Table 1 summarizes the estimate of doubling time during the expo
nential growth phase from a different angle from Fig. 1. In Table 1, the 
simulation was conducted for the total of 60 days, and thus, using the 
data for the latest 7 days, 14 days and 21 days represent Days 54–60, 
Days 47–60 and Days 40–60, respectively. Qualitatively, similar pat
terns to Fig. 1 were observed. In addition to Fig. 1, neither the estimate 
and the uncertainty bounds (i.e., 95 % confidence intervals) were very 
sensitive to the time at which estimation was conducted. That is, the 
results of estimation using 0–20 days, 0–40 days and 0–60 days were not 
very variable. When the length of observation was short (e.g., 7 days), 
the impact of variations in r was again minimal. 

Fig. 2 shows estimates of Td during the course of an epidemic. As was 
examined for the exponential growth model, we varied starting time to 
count the cumulative number of cases and the length of observation 

Fig. 1. Impact of varying growth rates and length of observation on 
doubling time. Estimates of doubling time by different exponential growth 
rates. The horizontal axis represents the length of observation used for esti
mation of doubling time. The simulation was conducted for 50 days, and the 
doubling time was measured in four different ways, i.e., using data from time 
0 to time 50 (all period), using the data for the latest 7 days (Day 44–50), the 
latest 14 days (Day 37–50), and the latest 21 days (Day 30–50). 
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during the course of epidemic as described by the SIR model. Doubling 
time during the increasing phase (from the beginning of the epidemic to 
the peak, i.e., Day 22 to 42) yielded the shortest estimate, and the value 
calculated after the peak (Day 49–75) yielded the longest Td. As the 

length of observation was shortened from 21 days to 7 days, Td became 
shorter. 

Table 2 shows the estimated doubling time during the course of an 
epidemic using the SIR model. Using the nonlinear epidemic model, 
Table 2 shows the impact of involving datasets during sub-exponential 
and decreasing phases on the estimate of Td, which can practically 
take place. The longer the time period used for estimation of Td, the 
longer the doubling time estimate Td would be. This is theoretically 
understandable because the highest growth rate is attained during the 
initial exponential growth phase, and the growth rate monotonically 
decreases subsequently. Using shorter lengths of observation, shorter 
estimates of Td were obtained. 

Table 3 shows the results of calculating the intrinsic (exponential) 
growth rate from the estimated doubling time using Eq. (13), exploring 
whether the growth rate can be recovered. The uncertainty bound of r 
informs the uncertainty of Td. This was examined only during the 
exponential growth phase (for the total of 75 days). Notably, the growth 
rate was not successfully recovered when the length of observation was 
short or when the growth rate was small. Especially in cases of negative 
growth rate it became too difficult to recover the growth rate from 
doubling time. When r > 0, a longer time period of observation was 
required to obtain a value close to the original exponential growth rate. 
Fig. 3 compares Eqs. (3) and (13), attempting to recover the estimate of 
the intrinsic growth rate (set at 0.01 per day) from doubling time. The 
estimated intrinsic growth rate using Eq. (13) was closer to the original 
value compared with those recovered from the widely used estimator 
(3). 

4 Discussion 

The present study characterized the doubling time of infectious 
diseases, frequently used as an epidemiological measurement to quan
tify the speed of epidemic growth. Through a short analytical exercise, 
we have shown that the commonly believed relationship in population 
ecology (i.e., Eq. (3)) is not strictly the case for infectious diseases, and 
instead Eq. (13) should be used to describe the relationship between Td 
and r. In addition, we examined the impact of varying (i) the growth 
rate, (ii) the starting point of counting the cumulative number of cases, 

Table 1 
Estimates of doubling time during exponential growth phase.  

Period used to 
estimate doubling 
time 

All observed 
days used (60 
days) 

Number of recent days used 
7 days 14 days 21 days  

Growth rate = − 0.01 
0 – 20  2.04 

(1.85, 
2.33) 

3.23 
(3.02, 
3.52) 

4.31 
(4.08, 
4.63) 

0 – 40 7.18 (6.89, 7.54) 2.04 
(1.85, 
2.32) 

3.22 
(3.02, 
3.52) 

4.32 
(4.09, 
4.63) 

0 – 60 9.88 (9.54, 10.30) 2.03 
(1.85, 
2.32) 

3.24 
(3.03, 
3.53) 

4.31 
(4.08, 
4.63)  

Growth rate = 0.01 
0 – 20  1.98 

(1.81, 
2.25) 

3.09 
(2.90, 
3.35) 

4.08 
(3.88, 
4.34) 

0 – 40 6.55 (6.34, 6.82) 1.98 
(1.81, 
2.25) 

3.09 
(2.91, 
3.35) 

4.08 
(3.88, 
4.34) 

0 – 60 8.74 (8.51, 9.01) 1.99 
(1.81, 
2.25) 

3.10 
(2.91, 
3.35) 

4.08 
(3.88, 
4.34)  

Growth rate = 0.1 
0 – 20  1.76 

(1.63, 
1.94) 

2.55 
(2.44, 
2.69) 

3.15 
(3.06, 
3.26) 

0 – 40 4.27 (4.22, 4.32) 1.76 
(1.63, 
1.94) 

2.55 
(2.45, 
2.69) 

3.15 
(3.06, 
3.26) 

0 – 60 4.91 (4.88, 4.93) 1.76 
(1.63, 
1.94) 

2.55 
(2.45, 
2.69) 

3.15 
(3.06, 
3.26) 

Numbers in parenthesis represent 95% confidence intervals as computed via the 
profile likelihood method. During the maximum likelihood estimation, daily 
cases were assumed to follow Gaussian distribution. 

Fig. 2. Impact of varying period of observation and length 
of observation on doubling time during the course of an 
epidemic. The doubling time Td was estimated during the 
course of an epidemic, simulated by the SIR model, varying the 
period of observation and the length of observation. Doubling 
times were estimated in six different time periods, including 
those at the start of the exponential phase, near the epidemic 
peak, and after the peak of the epidemic. The peak incidence 
was observed on Day 42.   
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and (iii) the length of observation τ on the statistical estimate of Td. The 
growth rate did not easily recover from Td, especially when r was small 
(e.g., negative). The starting time period is critical when the statistical 
estimation of Td is undertaken during the course of an epidemic. The 
length of observation τ was critical in determining the overall magnitude 
of Td, and when only the data from the latest 1–2 weeks were used, the 
resulting Td appeared to be very short, regardless of the intrinsic growth 
rate r. Without accounting for these findings, our simulations indicated 

that it was fairly difficult to objectively interpret empirically estimated 
values of Td in the epidemiology of infectious diseases. Compared with 
Td, the intrinsic growth rate may be regarded as a less biased metric to 
describe the increase and decrease in the incidence. 

To our knowledge, the present study is the first to have derived the 
relationship between Td and r in epidemic data and to have clarified that 
Td estimated from an identical r value may yield a completely different 
value if the empirical settings of observation are varied. These findings 
stem from the fact that doubling time is not calculated in a single unique 
way. If these issues persist, it is very difficult for an epidemiologist to 
judge whether a Td estimate of 2–3 days is an alarming signal of 
epidemic growth. 

To resolve this issue, we propose some friendly guidance for esti
mating Td. Three tips from our exercise can contribute to it: First, 
whenever doubling time is presented, the starting time at which the 
cumulative count is initiated must be described (and the interpretation 
should take particular care on this point). It must also be remembered 
that the use of data from the latest 1–2 weeks alone tends to yield very 
short Td estimates, as shown in Figs. 1 and 2. Second, the optimal length 
of time to assess Td should be discussed in relation to the intrinsic 
transmission dynamics (or the natural history) of an infectious disease. 
Table 1 indicates that Td could be extended, if the entire epidemic curve 
is used and the length of observation is extended. Third, it is very 
difficult to translate the doubling time value to the intrinsic growth rate, 
especially when the growth rate is small. Of course, the large intrinsic 
growth rate still has a potential to be recovered from the doubling time, 
as shown in Table 3, and therefore the estimation of r from Td would be 
still sound when the actual growth of cases is fairly fast. In summary, we 
suggest that any Td estimates of an infectious disease epidemic should at 
a minimum be accompanied by descriptions of the time at which the 
cumulative count is initiated and the length of observation. 

Whereas we have shown that calculating doubling time can result in 
considerably different values by varying empirical estimation settings, 
Td is very easy to calculate for monitoring infectious disease epidemics, 
especially when the natural history of the disease, including the gener
ation time, is yet to be known. However, because of this easy-to- 
calculate feature, it is necessary to clearly specify the settings when 
using doubling time. Perhaps these points raised can be better under
stood if we imagine measuring the growth of cases by exponential 
growth rate (rather than Td): we would have to specify (i) for what time 
we have used the data and (ii) how long the exponential growth rate was 
assumed to continue. The same applies to Td. Of course, it is still useful to 
continuously monitor the same geographic area with a rapid increase in 
cases with a Td of 2–3 days (as with COVID-19) to measure the increase 
using reasonable calculations. However, once the increase in the number 
of cases slows down, the use of Td becomes complicated: Td estimates 

Table 2 
Doubling time by the time period and length of observation during the course of 
an epidemic based on SIR epidemic model.  

Period used to 
estimate doubling 
time 

All observed 
days used 

Number of recent days used 
7 days 14 days 21 days 

0 – 25 3.04 (3.02, 
3.06) 

1.55 
(1.46, 
1.67) 

2.09 
(2.03, 
2.15) 

2.40 
(2.37, 
2.44) 

0 – 30 3.13 (3.12, 
3.15) 

1.58 
(1.48, 
1.71) 

2.11 
(2.05, 
2.18) 

2.43 
(2.39, 
2.47) 

0 – 35 3.23 (3.22, 
3.25) 

1.64 
(1.53, 
1.79) 

2.18 
(2.11, 
2.27) 

2.49 
(2.45, 
2.54) 

0 – 40 3.37 (3.35, 
3.40) 

1.77 
(1.63, 
1.97) 

2.33 
(2.24, 
2.46) 

2.63 
(2.57, 
2.70) 

0 – 45 3.57 (3.54, 
3.61) 

1.97 
(1.79, 
2.26) 

2.62 
(2.48, 
2.82) 

2.89 
(2.80, 
3.02) 

0 – 50 3.82 (3.78, 
3.88) 

2.19 
(1.96, 
2.56) 

3.06 
(2.85, 
3.36) 

3.34 
(3.18, 
3.55) 

0 – 55 4.12 (4.05, 
4.19) 

2.32 
(2.06, 
2.74) 

3.54 
(3.25, 
3.97) 

3.98 
(3.74, 
4.31) 

0 – 60 4.43 (4.36, 
4.53) 

2.37 
(2.11, 
2.81) 

3.87 
(3.54, 
4.39) 

4.72 
(4.39, 
5.22) 

0 – 65  2.38 
(2.11, 
2.83) 

4.02 
(3.67, 
4.58) 

5.34 
(4.92, 
5.96) 

0 – 70  2.38 
(2.11, 
2.82) 

4.06 
(3.70, 
4.63) 

5.66 
(5.20, 
6.34) 

Numbers in parenthesis represent 95% confidence intervals as computed via the 
profile likelihood method. During the maximum likelihood estimation, daily 
cases were assumed to follow Gaussian distribution. 

Table 3 
Recovery of exponential growth rate by the time period and length of observa
tion during the course of an epidemic using Eq. (13).  

Period used to 
estimate 
doubling time 

Exponential growth rate (/day) 
¡0.1 ¡0.01 0 0.01 0.1 0.15 

Most recent 7 
days (69–75)  

0.000991  0.0922  0.102  0.113  0.193  0.243 

Most recent 14 
days (62–75)  

− 0.0356  0.0429  0.052  0.0612  0.141  0.186 

Most recent 21 
days (55–75)  

− 0.0475  0.0278  0.035  0.0438  0.124  0.17 

0–25  − 0.052  0.0209  0.0291  0.0372  0.117  0.164 
0–30  − 0.0548  0.0161  0.0244  0.0331  0.113  0.161 
0–35  − 0.0568  0.0131  0.0214  0.0297  0.11  0.158 
0–40  − 0.0582  0.0106  0.0189  0.0273  0.108  0.156 
0–45  − 0.059  0.00885  0.0169  0.0253  0.107  0.155 
0–50  − 0.0598  0.00729  0.0155  0.0238  0.106  0.154 
0–55  − 0.0603  0.00606  0.0141  0.0225  0.105  0.154 
0–60  − 0.0607  0.00495  0.0131  0.0213  0.104  0.154 
0–65  − 0.061  0.00408  0.0121  0.0204  0.104  0.153 
0–70  − 0.0612  0.00329  0.0113  0.0197  0.103  0.153 
0–75  − 0.0614  0.00257  0.0107  0.0189  0.103  0.153  

Fig. 3. Recovery of intrinsic growth rate from doubling time. The intrinsic 
growth rate r was calculated using two types of methods (Eqs. (3) and (13) in 
the main text, represented by unfilled and filled bars) using doubling time. The 
growth rate was assumed to be 0.01 per day (horizontal dashed line). 
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based on long-term data may not adequately represent the epidemio
logical situation, and therefore only the latest data may be used, but the 
use of the latest 1–2 weeks’ data alone tends to result in smaller Td es
timates than those based on longer observation. 

There are number of technical limitations that should be discussed. 
First, our study rests on a simulation study with limited parameter space, 
and it should be noted that the extent of bias depends on intrinsic 
transmission dynamics. Second, we have not been able to explicitly 
account for heterogeneity in measuring the doubling time. Alternative 
metrics other than a single growth rate or a single doubling time would 
be merited when the incidence is structured (e.g., by age group). Third, 
doubling time depends on cases, and when enormous growth is 
observed, the empirical data are influenced by ascertainment bias; e.g., 
once an epidemic is recognized, ascertainment of cases abruptly im
proves and the growth rate may be estimated as very large (i.e., doubling 
time is estimated as very short) because of this improved ascertainment 
over time. Without additional data, ascertainment bias cannot be 
addressed. 

5 Conclusions 

The present study characterized the doubling time of infectious 
diseases, frequently used as an epidemiological measurement to quan
tify the speed of epidemic growth. Cautions must be exercised when 
handling empirical data and providing estimate of a representative 
epidemiological metric. Eq. (13) should be used to describe the rela
tionship between Td and r for infectious diseases. Doubling time should 
be interpreted with caution, especially when estimated using data from 
the most recent few weeks. We suggest that Td estimates of infectious 
disease epidemic should be accompanied at a minimum by descriptions 
of the starting time at which cumulative count is initiated and the length 
of observation. 
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