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Objective. Diffuse large B-cell lymphoma (DLBCL) is a highly aggressive malignant tumor, accounting for 30-40% of non-
Hodgkin’s lymphoma. Our aim was to construct novel prognostic models of candidate genes based on clinical features. Methods.
RNA-seq and clinical data of DLBCL were retrieved from TCGA database. Coexpression modules were constructed by
WGCNA. Then, we investigated the interactions between modules and clinical features. By overall survival analysis, prognostic
candidate genes from modules of interest were identified. A coexpression network of prognostic candidate genes was then
constructed through WGCNA. GEPIA was used to analyze the expression of a candidate gene between DLBCL and normal
samples. Results. 19 coexpression modules were constructed by 12813 genes from 52 DLBCL samples. The number of genes in
modules ranged from 34 to 5457. We found that the purple module was significantly related with histological type (p value =
le-04). Overall survival analysis revealed that MAFA-AS1, hsa-mir-338, and hsa-mir-891a were related with prognosis of
DLBCL (p value = 0.027, 0.039, and 0.022, respectively). A coexpression network was constructed for the three prognostic genes.
MAFA-AS] was interacted with 36 genes, hsa-mir-891a was interacted with 11 genes, while no gene showed interaction with
hsa-mir-338. Using GEPIA, we found that MAFA-AS1 showed low expression in DLBCL samples (p < 0.01). Conclusion. We
constructed a coexpression module related with histological type and identified three candidate genes (MAFA-ASI, hsa-mir-
338, and hsa-mir-891a) that possessed potential value as prognostic biomarkers and therapeutic targets of DLBCL.

1. Introduction

DLBCL is a highly aggressive malignant tumor originat-
ing from mature B-cells, accounting for 30-40% of non-
Hodgkin’s lymphoma [1, 2]. Patients with DLBCL usually
have a poor prognosis due to ineffective primary and
second-line therapy or recurrence after stem cell transplanta-
tion [3]. Therefore, easily applicable prognostic parameters
are necessary for clinicians, especially since new molecular
markers have not yet entered clinical routines [4]. The Inter-
national Prognostic Index (IPI) is the most common tool for
risk stratification in DLBCL. However, due to improved

treatment options, pathobiology, and life expectancy of
patients with DLBCL, IPI has been challenged [5]. Therefore,
it is necessary to propose novel prognostic models based on
clinical features and prognostic biomarkers.

As a molecular heterogeneous disease composed of dif-
ferent histopathologic and genetic subtypes, genetics of
DLBCL has clinical implications for patient risk prediction
and treatment [6]. Molecular traits are increasingly being
used to guide DLBCL drug development, predict patients’
clinical outcomes, and make treatment plans [7]. Therefore,
the collection and evaluation of molecular features in clini-
cal samples are critical to improve the prognosis of patients
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with DLBCL. Genomic studies have revealed a large num-
ber of mutant genes in DLBCL; their clinical significance
remains unclear.

As a powerful method for transcriptomics analysis, RNA
sequencing (RNA-seq) has been widely used to explore gene
function and biological patterns, as well as to find candidate
drug targets and to identify biomarkers for predicting dis-
ease risk and prognosis [8, 9]. The Cancer Genome Atlas
(TCGA) has produced RNA-seq data, which provides an
unprecedented opportunity for cancer biology. Weighted
gene coexpression network analysis (WGCNA) is a system-
atic biological method, which is widely used to generate gene
coexpression networks [10]. Instead of linking thousands of
genes to physiological characteristics, it focuses more on the
relationship between several modules and features [11]. It
provides a specific measure for clinical prediction of DLBCL
diagnosis and developing new treatment strategies [12].
Therefore, WGCNA can explore hidden biological patterns.
The method has been used to analyze many kinds of dis-
eases, such as breast cancer, uveal melanoma, gastric cancer,
and colon cancer [13-16]. However, there is no study on
clinical modules of DLBCL using the WGCNA method.

In the present study, coexpression modules were con-
structed by WGCNA. After investigating the correlations
between modules and clinical features, a module of interest
was identified for functional enrichment analysis. We found
three candidate genes (MAFA-AS1, hsa-mir-891a, and hsa-
mir-338) that were related with prognosis of DLBCL by over-
all survival analysis. And MAFA-ASI had low expression in
DLBCL by GEPIA.

2. Materials and Methods

2.1. Data Processing. RNA-seq and clinical data of lymphoid
neoplasm diffuse large B-cell lymphoma patients were down-
loaded from TCGA data repository (https://cancergenome
.nih.gov/). The gene expression level was normalized as frag-
ments per kilobase of transcript per million mapped reads
(FPKM) using Robust Multiarray Average (RMA) algorithm.
The miRNA expression level was measured as RPM. Clinical
information included clinical TNM stage, histologic grade,
age, gender, and survival information. As genes with little
variation in expression usually represent noise, the most var-
iant genes were filtered. Gene variables were measured by
median absolute deviation (MAD).

2.2. Construction of Gene Coexpression Network. Gene coex-
pression network was constructed using WGCNA package in
R [17]. Power values were screened out by the WGCNA algo-
rithm. Firstly, gene expression similarity matrix S = (s;;) was
constructed via calculating the absolute value of Pearson cor-
relation coefficient between two genes. The formula was
listed as below:

1+ cor(xi,xj)
Sij = f

, (1)
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TaBLE 1: Clinical features of DLBCL patients.

Clinical features Total (n=47) Alive (n=38) Dead (n=9)
éﬁf{g’;ean 563 (23-82)  56.8 (23-82)  54.1 (27-73)
Gender
Male 22 17 5
Female 25 21
Stage
I 7 6 1
I 17 15 2
111 5 1
v 12 9 3
6 2
Race
Asian 18 14 4
White 28 24 4
Black or African
American ! 0 !

where x; and x; were vectors of expression value for gene i
and j and s;; represented the Pearson correlation coefficient
of gene i and gene j.

Next, gene expression similarity matrix was transformed

into adjacency matrix a;;. The formula was a; = |sij|ﬁ . To fur-
ther identify functional modules in the coexpression net-
work, the adjacent matrix was transformed into a
topological overlap matrix (TOM), and the corresponding

dissimilarity (1-TOM) was calculated.

ZM#I’J“!’#“W’ ta; (2)

. b
min (3,4 ¥,a,) +1-a;

tom;; =

where a was the weighted adjacency matrix given by a; =

|sl-j|’6 and 3 =5 was the soft threshold power.

where D expressed the degree of dissimilarity gene expres-
sion in different samples.

Scale independence and average connectivity analysis of
modules with different power values was performed by gradi-
ent test (power value ranging from 1 to 20). Appropriate
power value was determined when the scale independence
value was equal to 0.9. The WGCNA algorithm was then
used to construct the coexpression network and extract the
gene information in the most relevant module. The candidate
network was selected according to the coexpression weight
>2.5.
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FIGURE 1: Analysis of network topology for various soft-thresholding powers: (a) the scale-free fit index as a function of the soft-thresholding

power. The x-axis represents the soft-thresholding power and the y-axis represents the scale-free fit index; (b) the mean connectivity as a
function of the soft-thresholding power. The x-axis stands for the soft-thresholding power and the y-axis stands for the mean connectivity.
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F1Gurk 2: Cluster dendrogram obtained by average linkage hierarchical clustering. The color below the dendrogram demonstrates the module
assignment determined by the dynamic tree cut. 19 coexpression modules were depicted in different colors. The number of genes in

coexpression modules ranged from 34 to 5457.

2.3. Correlations between MEs and External Clinical Data.
The correlations between modules and clinical features were
analyzed using WGCNA. Module eigengene (ME) can sum-
marize the gene expression profiles, and the formula was as
follows:

ME! = princomp (xl(-;])) , (4)

where g represents the gth module.

We calculated the correlations between MEs and external
clinical data as the module membership (MM). p < 0.05 was
statistically significant. The genes in the most relevant mod-
ule were chosen as candidate genes, as follows:

MM/ = cor (x;, ME]), (5)

i =

where ME! means the identification of the ith gene in the gth
module.
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FIGURE 3: Module-trait relationships. Each row represents a module eigengene, and column represents a trait. Each cell contains the
corresponding correlation and p value. The table is color-coded by correlation based on the color legend.

We calculated the correlations between MEs and exter-
nal clinical data. A p value < 0.05 was statistically significant.
The genes in the most relevant module were chosen as can-
didate genes.

2.4. Functional Enrichment Analysis. To explore the potential
biological themes and pathways of genes from modules of
interest, the clusterProfiler package in R was used to annotate
and visualize Gene Ontology (GO) terms (including biologi-
cal processes, molecular functions, and cellular components)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways [18]. A p value < 0.05 was considered significant
pathways.

2.5. Prognostic Analysis of Candidate Module Genes. Then,
we further assessed the prognostic value of candidate genes

by overall survival analysis. Log-rank tests were used to select
prognosis-related genes from candidate genes. Survival pack-
age was used to carry out log-rank tests and survminer pack-
age was used to plot Kaplan-Meier survival curves.

2.6. Candidate Gene Coexpression Network Construction.
WGCNA can evaluate coexpression information of genes.
Through survival analysis, we obtained the core genes related
with prognosis. Moreover, we constructed a coexpression
network of prognosis-related genes through WGCNA.

2.7. Candidate Gene Risk Assessment. The online database
Gene Expression Profiling Interactive Analysis (GEPIA)
(http://gepia.cancer-pku.cn/index.html) was used to analyze
the gene expression between cancer and normal samples
[19]. As an interactive web, GEPIA can analyze the RNA-
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TaBLE 2: GO enrichment analysis results of genes in the purple module.
Term ID Ontology Description p-adjust Count
GO0:0048167 BP Regulation of synaptic plasticity 0.00573 7
G0:0021782 BP Glial cell development 0.01269 5
GO0:0022010 BP Central nervous system myelination 0.01269 3
GO0:0032291 BP Axon ensheathment in central nervous system 0.01269 3
GO:0042063 BP Gliogenesis 0.01776 7
GO0:0010975 BP Regulation of neuron projection development 0.01776 9
GO:0010001 BP Glial cell differentiation 0.01902 6
GO:0085029 BP Extracellular matrix assembly 0.02101 3
GO:0048708 BP Astrocyte differentiation 0.02214 4
GO:0050804 BP Modulation of chemical synaptic transmission 0.02299 8
GO:0099177 BP Regulation of transsynaptic signaling 0.02299 8
G0:0060291 BP Long-term synaptic potentiation 0.02542 4
GO0:0014002 BP Astrocyte development 0.02736 3
GO:0110110 BP Positive regulation of animal organ morphogenesis 0.02776 4
GO:0001505 BP Regulation of neurotransmitter levels 0.03131 7
GO:0014003 BP Oligodendrocyte development 0.03886 3
GO:0001657 BP Ureteric bud development 0.03886 4
GO0:0072163 BP Mesonephric epithelium development 0.03886 4
GO:0072164 BP Mesonephric tubule development 0.03886 4
GO:0001504 BP Neurotransmitter uptake 0.04008 3
GO:0001823 BP Mesonephros development 0.04097 4
GO0:0050768 BP Negative regulation of neurogenesis 0.04282 6
GO:0006953 BP Acute-phase response 0.04605 3
GO0:0016264 BP Gap junction assembly 0.04605 2
GO0:0071281 BP Cellular response to iron ion 0.04605 2
G0:0014013 BP Regulation of gliogenesis 0.04823 4
GO:0051961 BP Negative regulation of nervous system development 0.04823 6
GO0:0042552 BP Myelination 0.04823 4
GO0:0007272 BP Ensheathment of neurons 0.04823 4
G0:0008366 BP Axon ensheathment 0.04823 4
GO0:0043209 CcC Myelin sheath 0.00032 7
GO:0014069 CC Postsynaptic density 0.00777 7
GO:0032279 CcC Asymmetric synapse 0.00777 7
GO:0099572 CC Postsynaptic specialization 0.00777 7
GO:0098984 CC Neuron to neuron synapse 0.00777 7
GO:0097449 CC Astrocyte projection 0.02459 2
GO:0043083 CcC Synaptic cleft 0.02892 2
GO:0098793 CC Presynapse 0.03602 7
GO0:0031012 CC Extracellular matrix 0.03602 7
GO:0033267 CC Axon part 0.03871 6
GO:0030426 CcC Growth cone 0.04208 4
GO:0030427 CcC Site of polarized growth 0.04208 4
GO:0097386 CC Glial cell projection 0.04208 2
GO:0150034 CcC Distal axon 0.04208 5
GO:0034364 CC High-density lipoprotein particle 0.04689 2
GO:0048306 MF Calcium-dependent protein binding 0.01134 4
G0:0005539 MF Glycosaminoglycan binding 0.01134 6
G0:0048018 MF Receptor ligand activity 0.01134 8
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TasLE 2: Continued.

Term ID Ontology Description p-adjust Count

GO:0008201 MF Heparin binding 0.01134 5

GO0:0004857 MF Enzyme inhibitor activity 0.01134 7

GO:0005381 MF Iron ion transmembrane transporter activity 0.02116 2

GO:1901681 MF Sulfur compound binding 0.04249 5

BP: biological processes; CC: cellular components; MF: molecular functions.

seq expression including TCGA datasets and Genotype-
Tissue Expression (GTEx) datasets [20]. Using GEPIA, we
analyzed candidate genes related with prognosis between
cancer and normal samples from TCGA.

2.8. Reverse-Transcription Quantitative PCR (RT-qPCR).
Total RNA was extracted from plasma of 11 patients with
DLBCL and 11 healthy participates using Trizol. To examine
hsa-miR-338-3p, hsa-mir-338-5p, and hsa-miR-891a-5p
expression, cDNA was synthesized with the miScript Reverse
Transcription Kit (Qiagen, Hilden, Germany). RT-qPCR was
performed using the miScript SYBR Green PCR Kit (Qia-
gen). fB-Actin served as an internal control. The relative
expression levels of miRNAs were calculated with the 2744
method. The specific primers for hsa-miR-338-3p, hsa-mir-
338-5p, and hsa-miR-891a-5p were as follows: hsa-miR-338-
3p, 5'-AACCGGTCCAGCATCAGTGATT-3' (forward), 5'-
GTGCAGGGTCCGAGGT-3' (reverse); hsa-mir-338-5p, 5'-
CAATATCCTGGTGCTGAGTG-3' (forward), 5'-GTGCA
GGGTCCGAGGT-3' (reverse); and hsa-miR-891a-5p, 5'-G
TGCTCGCTTCGGCAGCACATA-3' (forward), 5'-GTGCA
GGGTCCGAGGT-3' (reverse).

3. Results

3.1. Gene Coexpression Network of DLBCL. Clinical and level-
3 RNA-seq data of 51 DLBCL samples were retrieved from
TCGA. The clinical features of the DLBCL samples are listed
in Table 1. After module detection, 12813 most variant genes
were selected for further analysis according to MAD value
when the value of soft thresholding power 3 was 12, and
the connectivity between genes met a scale-free network dis-
tribution (Figure 1). 19 modules were identified by hierarchi-
cal clustering and the dynamic branch cutting (Figure 2).
Each module was assigned a unique color as an identifier.
The number of genes in modules ranged from 34 to 5457.
The grey module represented a gene set that was not assigned
to any of the modules.

3.2. Identification of the Purple Module as the Module Most
Relevant to Clinical Traits. To explore the molecular mecha-
nisms behind the trait, we identified genes associated with a
certain clinical trait. In the present study, the clinical param-
eters of DLBCL patients, including age, clinical stage, gender,
recrudescence stage, and histological type were involved in the
module-trait relationship analysis. As shown in Figure 3,
the purple module was closely related with histological type
(p value = 1e-04) and the cyan module was associated with

age (p value = 0.02). Therefore, the purple module was
selected as module of interest for subsequent analysis.

3.3. Functional Enrichment Analysis of Genes in the Purple
Module. To explore potential pathways of the purple module,
GO and KEGG enrichment analyses were performed on the
genes from the purple module. 52 GO-enriched terms were
shown Table 2. The top ten GO terms included regulation
of neuron projection development, gliogenesis, regulation
of synaptic plasticity, myelin sheath, glial cell differentiation,
glial cell development, calcium-dependent protein binding,
extracellular matrix assembly, axon ensheathment in central
nervous system, and central nervous system myelination
(Figure 4(a)). In the KEGG analysis, 10 pathways were
enriched by genes in the purple module, including synaptic
vesicle cycle, Ras signaling pathway, GABAergic synapse,
morphine addiction, cell adhesion molecules (CAMs),
PI3K-Akt signaling pathway, retrograde endocannabinoid
signaling, gastric cancer, histidine metabolism, and renin-
angiotensin system (Table 3, Figure 4(b)).

3.4. MAFA-ASI, hsa-mir-338, and hsa-Mir-891a as
Candidate Genes Related with Prognosis of DLBCL. The pur-
ple module was closely related with histological type. There-
fore, genes in the module were of great significance to
evaluate the potential value. Among the 100 genes, 3 genes
(MAFA-AS1, hsa-mir-338, and hsa-mir-891a) were associated
with prognosis of DLBCL (Table 4). As shown in Figure 5,
highly expressed MAFA-AS1 and hsa-mir-338 had shorter
survival time than their low expression (p value = 0.027 and
0.039, respectively). And low expression of hsa-mir-891a had
poorer clinical outcomes than its high expression (p value =
0.022).

3.5. Candidate Gene Coexpression Network Construction. We
constructed a coexpression network for genes with prognos-
tic significance by WGCNA. As shown in Figure 6, MAFA-
AS1 was interacted with 36 genes, hsa-mir-891a was inter-
acted with 11 genes, while no gene showed interaction with
hsa-mir-338.

3.6. Candidate Gene Risk Assessment. Using GEPIA datasets,
we found that MAFA-AS1 showed low expression in DLBCL
samples (p < 0.01, Figure 7).

3.7. Validation of Candidate Prognostic miRNAs. Consistent
with our bioinformatics results, RT-qPCR results showed
that hsa-miR-338-3p (p<0.01) and hsa-miR-891a-5p
(p < 0.001) were upregulated in DLBCL (Figure 8). Further-
more, we further validated the candidate prognostic miRNAs
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FIGURE 4: Functional enrichment analysis results of genes in the purple module: (a) the top ten GO terms of genes in the purple module; (b)
KEGG pathways of genes in the purple module.
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TaBLE 3: KEGG pathway enrichment analysis results of genes in the purple module.
ID Description p-adjust Count
hsa04721 Synaptic vesicle cycle 0.01171 2
hsa04014 Ras signaling pathway 0.01222 3
hsa04727 GABAergic synapse 0.01507 2
hsa05032 Morphine addiction 0.01572 2
hsa04514 Cell adhesion molecules (CAMs) 0.03700 2
hsa04151 PI3K-AKkt signaling pathway 0.03718 3
hsa04723 Retrograde endocannabinoid signaling 0.03890 2
hsa05226 Gastric cancer 0.03938 2
hsa00340 Histidine metabolism 0.04811 1
hsa04614 Renin-angiotensin system 0.04811 1

TaBLE 4: Three candidate genes related with prognosis of DLBCL.

Gene Hazard ratio 95% CI p value

MAFA-AS1 3.794 0.96-14.995 0.026604
hsa-mir-338 4.185 1.127-15.54 0.039354
hsa-mir-891a 0.205 0.055-0.772 0.021503

in independent datasets. Similarly, the results showed that
hsa-miR-338 (Figure 9(a)) and hsa-miR-891a (Figure 9(b))
were highly expressed in DLBCL. High expression of hsa-
miR-338 (Figure 9(c); p=0.039) and hsa-miR-891a
(Figure 9(d); p=0.048) was significantly associated with
worse prognosis of DLBCL patients.

4. Discussion

As a heterogeneous disease, DLBCL can be classified into
activated B-cell, germinal center B-cell, and primary medi-
astinal B-cell subtypes based on gene expression profiling
[21]. Though about 70% of DLBCL patients have survival
time longer than five years when treated with immuno-
chemotherapy involving rituximab plus cyclophosphamide,
doxorubicin, vincristine, and prednisolone (R-CHOP) [22],
however, the remaining patients are still dying of this malig-
nant tumor. In addition, the short- and long-term toxicity of
chemotherapy, including secondary malignancies and leuke-
mia, adversely affects the long-term prognosis of patients.
Therefore, it is necessary to study new therapeutic targets in
DLBCL.

RNA-seq is a next-generation sequencing technology for
genome-wide quantitative gene expression, which has some
advantages over microarrays in characterizing transcrip-
tomes [23, 24]. However, few studies have investigated the
network characteristics of coexpression networks based on
RNA-seq. In the present study, RNA-seq and clinical data
of DLBCL were retrieved from TCGA. 19 coexpression mod-
ules were built by the 12813 most variant genes from 51
DLBCL samples using WGCNA. WGCNA has been proved
to be an effective method for detecting coexpression modules
and hub genes in many aspects [25]. The interaction between
genes in different coexpression modules can be found.

Although a large number of biomarkers have been identified
and validated, few studies have considered correlations
between genes. Genes with similar expression patterns can
encode proteins with similar functional properties that can
form complexes or can function in similar pathways. There-
fore, we made full use of the WGCNA algorithm to detect key
genes associated with sample traits in coexpressed gene net-
works [26]. The purple module was closely related with his-
tology type (p value = le-04). And the cyan module was
closely related with age. The incidence of DLBCL is positively
correlated with age, about two-thirds of DLBCL patients are
over 65 years old worldwide [27]. Research has found that
age at diagnosis has a relationship with the molecular fea-
tures of DLBCL [28].

We found that the genes in the purple module were
involved in multiple pathways such as Ras signaling pathway,
PI3K/AKT signaling pathway, and cell adhesion molecules.
The Ras signaling pathway plays an important role in cancer
biology, which regulates cell growth and proliferation. Acti-
vating mutations in Ras can result in abnormal activation
of its downstream target MEK1/2 [29]. MEK has become a
potential target for the treatment of DLBCL. The PI3K/AKT
signaling pathway is activated in DLBCL, which plays a key
role in controlling the proliferation and survival of DLBCL
cells [30]. Activation of this pathway in DLBCL can cause
gene mutations, loss of PTEN, or constitutive activation of
upstream regulatory pathways [31]. Cell adhesion molecules
function in complex biological processes like cancer progres-
sion, inflammation, angiogenesis, and metastasis [32-34].

miRNAs are involved in several biological processes by
regulating gene expression at the posttranscriptional level,
such as cell proliferation and apoptosis [35, 36]. For example,
downregulated microRNA-155 promotes cell cycle arrest and
apoptosis in DLBCL [37]. And miR-10a suppresses cell pro-
liferation and promotes cell apoptosis via targeting BCL6 in
DLBCL [38]. The main reason for the poor results of DLBCL
chemotherapy is that DLBCL cells are resistant to chemo-
therapeutic drugs [39]. It has been confirmed that miRNAs
are closely associated with cancer chemosensitivity. To inves-
tigate the prognosis value of the genes in the purple module,
we made overall survival analysis and results revealed that
three miRNAs were closely related with survival. Highly
expressed MAFA-AS1 and hsa-mir-338 had shorter survival
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FIGURE 5: Overall survival analysis of three candidate genes: (a) MAFA-ASI; (b) hsa-mir-891a; (c) hsa-mir-338.

time than their low expression (p value = 0.027 and 0.039,
respectively). And low expression of hsa-mir-891a had
poorer clinical outcomes than its high expression (p value =
0.022). So far, there is no study concerning MAFA-AS1 and
hsa-mir-891a. As for hsa-mir-338, it has been reported that
hsa-mir-338-3p inhibits invasion and migration of colorectal
cancer cells by suppressing smooth expression [40]. Aber-
rantly expressed hsa-mir-338-3p increases the risk of esoph-
ageal cancer [41]. In addition, hsa-mir-338 can be a
prognostic biomarker for oral squamous cell carcinoma
[42]. Then, we constructed a coexpression network for the
three genes by WGCNA. MAFA-AS1 was interacted with
36 genes, hsa-mir-891a was interacted with 11 genes, while
no gene showed interaction with hsa-mir-338. Using GEPIA
datasets, we found that MAFA-AS1 showed low expression
in DLBCL samples (p < 0.01).

Taken together, three candidate genes (MAFA-AS1, hsa-
mir-338, and hsa-mir-891a) from the purple module could

be considered prognostic biomarkers for DLBCL. Compared
to IPI, the new prognostic model had some advantages. For
example, the three candidate genes could be detected using
immunohistochemistry, which is convenient to screen
patients with DLBCL and predict their prognosis. Moreover,
based on clinical features and candidate genes, it can help
improve treatment options, pathobiology, and life expec-
tancy of patients with DLBCL. However, several limitations
of our study need to be pointed out. The heterogeneity of
the treatment protocols is inevitable, which can bias out-
comes. Furthermore, the number of samples is limited; there-
fore, the prognostic role of the three candidate genes requires
to be verified in a larger sample of DLBCL.

5. Conclusion

In our study, RNA-seq and clinical data of DLBCL were
retrieved from TCGA. 19 coexpression modules were built
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by WGCNA. And we found that the purple module was
closely associated with histological type. Further analysis sug-
gested that three candidate genes (MAFA-AS1, hsa-mir-338,
and hsa-mir-891a) were significantly related with clinical
outcomes. Therefore, our findings revealed a coexpression
module related with histological type and identified three
candidate genes (MAFA-ASI, hsa-mir-338, and hsa-mir-
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891a) that possessed potential value as prognostic bio-
markers or potential therapeutic targets of DLBCL.
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