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Here we provide an integrative review of basic control circuits, and introduce techniques
by which their regulation can be quantitatively measured using human neuroimaging.
We illustrate the utility of the control systems approach using four human neuroimaging
threat detection studies (N = 226), to which we applied circuit-wide analyses in order
to identify the key mechanism underlying individual variation. In so doing, we build
upon the canonical prefrontal-limbic control system to integrate circuit-wide influence
from the inferior frontal gyrus (IFG). These were incorporated into a computational
control systems model constrained by neuroanatomy and designed to replicate
our experimental data. In this model, the IFG acts as an informational set point,
gating signals between the primary prefrontal-limbic negative feedback loop and its
cortical information-gathering loop. Along the cortical route, if the sensory cortex
provides sufficient information to make a threat assessment, the signal passes to the
ventromedial prefrontal cortex (vmPFC), whose threat-detection threshold subsequently
modulates amygdala outputs. However, if signal outputs from the sensory cortex do not
provide sufficient information during the first pass, the signal loops back to the sensory
cortex, with each cycle providing increasingly fine-grained processing of sensory data.
Simulations replicate IFG (chaotic) dynamics experimentally observed at both ends at
the threat-detection spectrum. As such, they identify distinct types of IFG disconnection
from the circuit, with associated clinical outcomes. If IFG thresholds are too high, the IFG
and sensory cortex cycle for too long; in the meantime the coarse-grained (excitatory)
pathway will dominate, biasing ambiguous stimuli as false positives. On the other hand,
if cortical IFG thresholds are too low, the inhibitory pathway will suppress the amygdala
without cycling back to the sensory cortex for much-needed fine-grained sensory
cortical data, biasing ambiguous stimuli as false negatives. Thus, the control systems
model provides a consistent mechanism for IFG regulation, capable of producing
results consistent with our data for the full spectrum of threat-detection: from fearful
to optimal to reckless. More generally, it illustrates how quantitative characterization
of circuit dynamics can be used to unify a fundamental dimension across psychiatric
affective symptoms, with implications for populations that range from anxiety disorders
to addiction.
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ALLOSTATIC REGULATION

The Distinction between Injury and
Disease
In the race to derive neuroimaging-based biomarkers for
psychiatric disease, the principal challenge is not sensitivity but
specificity. Most neuroimaging studies of psychiatric populations
tend to implicate the same regions associated with emotion
and affect (amygdala, insula, prefrontal cortex, hippocampus,
anterior cingulate) described below as the prefrontal-limbic
control circuit. Region-of-interest-based conceptualization of
brain disorders has its historical origins in neurology, with
its injury-based emphasis on lesions. Yet conceptually, the
neuroimaging field might consider whether in fact psychiatric
illnesses may share as much or more in common with non-brain-
based diseases—such as diabetes, Cushing’s disease, heart disease
and Grave’s disease—as with brain trauma.

Injuries have singular onsets, with anatomically defined
damaged loci. In contrast, diseases are inherently dynamic:
resulting from dysregulation of the negative feedback loops that,
in a healthy individual, function to maintain allostasis in the
face of chaotic environmental inputs. These negative feedback
loops are necessary because biological processes typically only
are able to function within a narrow window of upper and
lower limits for water, sodium, glucose, temperature, etc.
Because the environment often includes perturbations that
exceed those thresholds, the body maintains homeostasis by
negative feedback loops that correct the system towards baseline.
For example, an acute bolus of glucose, unopposed, would
lead to a hyperglycemic coma. Therefore, the metabolic control
circuit responds by secreting the hormone insulin, sending
the system into postprandial reactive hypoglycemia. Because
hypoglycemia is just as dangerous to the body as hyperglycemia,
the metabolic control circuit then secretes a different hormone,
glucagon, which releases glucose back into the bloodstream. In
a healthy person, the negative feedback loop as whole functions
as a damped oscillator, with multiple excitatory (e.g., glucose,
glucagon, cortisol) and inhibitory (insulin) responses acting in
series to maintain glucose within acceptable limits. In a person
with diabetes, however, the same perturbation is inadequately
controlled—leading to extreme oscillations between hyper and
hypoglycemia (Figure 1).

The analogy to diabetes has several features with potential
implications for psychiatry. First, the same control circuit can
be dysregulated in more than one way, with distinct etiologies,
and resulting in divergent clinical features. Type 1 diabetes
is feed-forward problem: when glucose rises, insulin is not
produced. Type 2 diabetes is a feedback problem: when insulin
rises, glucose is not suppressed. Yet while the same components
of the negative feedback loop that regulates blood sugar,
glucose and insulin, are implicated in both, untreated Type
1 and Type 2 diabetics have distinct—and, in some cases,
opposite—clinical features. The former are underweight, begin
to show symptoms early in life, and have trouble regulating
glucose because of an autoimmune disease that attacks the
pancreas and therefore impairs insulin production. The latter
are overweight, begin to show symptoms later in life, and

FIGURE 1 | Physiological negative feedback loops show outputs with
characteristic dynamic signatures; dysregulation of the circuit causes
a shift in dynamics that can be characterized by
autocorrelation—either stronger or weaker, depending upon the type
of dysregulation. To illustrate a shift towards autocorrelation that is stronger
than optimal, here we show three age and gender-matched subjects’ glucose
time-series using an implantable MedTronic device, sampled every 5 min over
6.25 days. The glucose time-series produced by the Type 1 diabetic patients
are more auto-correlated (self-similar, fractal) than those of the healthy control,
in this case reflecting impaired negative feedback as glucose boluses trigger
excitatory responses that are only weakly suppressed by insufficient insulin. As
shown, detection sensitivity for differences in glucose amplitude varied
dramatically during the day, as well as between days; thus, acquisition of
random mean values over short periods of time (as typical for functional
magnetic resonance imaging (fMRI) experiment, 10 min with TR = 2000 ms
yields ∼300 samples, which is roughly equivalent to 1 day of glucose
measurements) would yield highly variable accuracy. However, even over this
same period, patients showed markedly less complexity in their time-series
than the healthy control. Using the Hurst exponent, in which maximum
complexity is achieved at H = 0.5 with >H corresponding to stronger
auto-correlation, our healthy control showed H = 0.68, with patients showing
H = 0.82 and H = 0.83, respectively. A similar shift towards autocorrelation is
seen in heart rate variability of heart disease patients, for whom the vagus
nerve only weakly suppresses sympathetic excitatory responses. In contrast
to the two above examples, in which circuit dysregulation is caused by
changes in feedback strength, our neurobiological results suggest different,
more complex, types of control circuit dysregulation caused by changes in
gating and anatomical connectivity that affect feedback lag. These result in
time-series with autocorrelations that are weaker than optimal, as shown in
Figures 4, 6.

have trouble regulating glucose because of a high-glycemic diet
that chronically overtaxes, and over time desensitizes, insulin
response. By extension, most psychiatric diseases may implicate
the same prefrontal-limbic regions, yet differences in the type of
dysregulation within the circuit may lead to markedly different
clinical characteristics.

The second feature is that dysregulation is not most sensitively
characterized by amplitudes but by dynamics, and therefore is
most clearly seen in response to perturbation. A Type 1 diabetic
patient, a Type 2 diabetic patient, an individual with pre-
diabetes, and a healthy control can all show—under the right
circumstances (for example, before or right after eating)
completely indistinguishable glucose and insulin amplitudes.
Instead, the dysregulation is most sensitively measured as
the dynamic response of the system as a whole as it attempts
to regulate to baseline in response to positive or negative
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perturbation1. This feature is relevant for psychiatry because
nearly all neuroimaging studies focus upon either amplitude
(contrast-based general linear model) or resting-state analyses.
Neither is ideally suited for probing dysregulation, since the
former is not optimized for characterization of dynamics, while
the latter lacks perturbation. Thus, if psychiatric disease is—like
other physiological diseases—dysregulatory, then standard
neuroimaging approaches may be complemented by considering
techniques (from engineering, physics and physiology) that
were specifically designed to detect abnormalities in negative
feedback loops. As a field, we may benefit from expanding our
conceptualization of what it is that neuroimaging ought to be
measuring.

The third feature is that first onset of clinical symptoms
typically do not mark the beginnings of dysregulation, but
rather the end-stage of a chronic degenerative process. Because
dysregulation leads to larger excursions following perturbation,
and those larger excursions in turn put greater stress on
the control system to maintain allostasis, disease processes
often trigger a vicious cycle that further degenerates over
time. This feature implies that small degrees of dysregulation
can be detected pre-symptomatically (as per the use of the
glucose tolerance test to diagnose pre-diabetes), that they should
be detected pre-symptomatically (to more easily correct a
trajectory that is likely to become self-reinforcing), and that
knowledge of dynamics at any given time can provide some
degree of prediction with regard to future states. Schizophrenia
(Lieberman et al., 1996; Marshall et al., 2005), major depressive
disorder (Burcusa and Iacono, 2007), addiction (Dewit, 1996),
and bipolar disorder (Joyce et al., 2016) are all psychiatric
illnesses considered to show priming effects (each additional
episode increases risk for future episodes); therefore, a better
understanding of dysregulation during the prodrome may not
only yield better treatment options, but may also provide
needed insight into the timing and duration of periodic
relapse.

The Prefrontal-Limbic System as a Control
Circuit
Physiological control circuits that maintain homeostasis do so by
means of negative feedback loops (Figure 2). Negative feedback
loops contain three basic conceptual elements: (1) excitatory
components, which increase circuit outputs; (2) inhibitory
components, which suppress circuit outputs; and (3) feedback,
which allows circuit outputs to act as future circuit inputs.
They may also include gains (which increase or decrease
signal strength), lags (which affect signal propagation time),
and filters (which let through some signal frequencies while

1Thus, diabetes is typically diagnosed using a glucose tolerance test, in which
glucose values are measured 1–2 h following administration of a 75 g glucose
bolus. In fact, the glucose tolerance test’s sensitivity and specificity as a
diagnostic for metabolic dysregulation could be improved dramatically by
measuring a continuous time-series of the system’s response and recovery
from the bolus. For example, Graves disease produces dangerous levels of
hyperglycemia, nearly double the amplitude of the glucose spike measured in
diabetics. However, because Graves patients show full recovery by the 1–2 h
mark employed by the glucose tolerance test, they thereby miss detection.

blocking others). Formally, activation from excitatory and
inhibitory components converge upon a comparator2, which
compares one or more inputs, and applies a function to
the result. Feedback provides ‘‘memory’’ within the circuit,
which rather than resetting for every iteration of the cycle
through the negative feedback loop, builds cumulatively upon
previous values. Thus outputs of a feedback loop are not
solely the product of circuit inputs, but also the product
of previous circuit outputs; this feature introduces important
nonlinearities that can have nontrivial effects over time
(Figure 3).

The brain’s primary neural substrate for emotion regulation
is the prefrontal-limbic system (Ledoux, 1996). In this model,
derived primarily from rodent studies of Pavlovian threat
conditioning, sensory stimuli are received as inputs and filtered
for novelty via the sensory thalamus. Thalamic outputs are
then routed along two pathways. The ‘‘low road’’ proceeds to
the amygdala, which rapidly mounts an excitatory response.
This is the most direct pathway, but in optimizing over
speed, utilizes only low-resolution sensory data to make a
preliminary determination of threat (Ohman, 2005; Ohman
et al., 2007; Pessoa and Adolphs, 2010). In parallel, the
‘‘high road’’ proceeds to the sensory cortex, which acquires
high-resolution sensory information. This sensory information
is relayed to the prefrontal cortex and hippocampus, which
together pattern-match (Leutgeb et al., 2007; Bakker et al.,
2008; Nakashiba et al., 2012) sensory information to determine
threat vs. safety. These (excitatory) cortical signals, in turn,
relay to the lateral and basolateral amygdala. The boundary
between these two amygdala sub-regions acts as a comparator
with excitatory and inhibitory inputs, which together modulate
amgydala outputs. These include outputs from the basolateral
amygdala signal to the nucleus accumbens, and thus to the
reward circuit, as well as outputs from the central medial
amygdala signal to the hypothalamus, which then feeds into two
other control circuits: the autonomic nervous system and the
endocrine hypothalamic-pituitary-adrenal (HPA) axis. Both of
these peripheral systems also feed back to the brain, creating
nested control systems.

While there is general consensus that the prefrontal cortex
contributes to arousal inhibition, different human studies have
implicated different sub-regions, including the dorsolateral
prefrontal cortex (DLPFC; Goldin et al., 2008), ventromedial
prefrontal cortex (vmPFC; Roy et al., 2012), and inferior
frontal gyrus (IFG; Aron et al., 2003; Hampshire et al.,
2010). This disparity has several likely causes. First, rodent
brains (upon which most of the basic neuroscience circuits
were first defined) and human brains (upon which most
of the psychiatric research has been conducted) are less
clearly homologous in the prefrontal cortex than in other
regions, which makes translation across species difficult.

2For example, in the action potential the semi-permeable lipid bilayer
membrane across an axon functions as the comparator. Inputs from each
side of the membrane, manipulated by voltage-gated ion channels and/or
diffusion, are compared across the membrane. The difference (the membrane
‘‘potential’’) leads to a response output.
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FIGURE 2 | Schematic control system, tuned for fMRI data. (A) A schematic control system is structured as a negative feedback loop, with both excitatory and
inhibitory components. Circuit-wide dynamics change as a function of lag and connection strength (“connectivity”) between nodes, resulting from variation in
synaptic plasticity and/or neurotransmitter/receptor density. (B) Outputs from the model produce waveforms comparable to canonical hemodynamic response
function typical for fMRI (here, shown for impulse stimulus).

Second, even amongst humans, our methods for describing the
same anatomical region across neuroimaging studies remain
imperfect, given the computational challenges of accurately
normalizing across brains. Finally, neuroimaging studies on
emotion are heterogeneous, which might implicate different
regions in the PFC depending upon the precise nature of the task
and its demands.

Beyond Human Brain Mapping: Quantifying
“Regulation” Locally vs. Globally
To date, functional magnetic resonance imaging (fMRI) is
generally used for human neuroimaging in essentially two ways:
to infer brain activation maps (areas of differential hemodynamic
response) and to infer brain connectivity between dyads
(regions that are co-activated). Activation maps are inferred
by statistical comparisons between experimental conditions
or populations, revealing task-activated neuroanatomical areas
(Poline and Brett, 2012). Newer connectivity-based techniques
rely upon time-course cross-correlations between two voxels
or anatomically-defined regions to infer connection strength
(Stephan and Friston, 2010). This is true of resting-state study
designs, which remove the subtraction element of fMRI analysis,
but maintain dependence on identifying regions of interest
(Greicius et al., 2003), as well as graph theoretic measures that
quantify global connectivity features via correlation matrices
(Bassett and Bullmore, 2006). What both activation and
connectivity critically miss, however, is the dynamic concept
of feedback—an essential feature of all control circuits, and
therefore regulation.

If we can conceptualize healthy emotion regulation as
a well-regulated control circuit, and pathological emotion
regulation as a dysregulated control circuit, then we need

to be able to define quantitatively what we mean by ‘‘well
regulated’’ and ‘‘dysregulated’’. Note again that all disorders
of dysregulation, like diabetes, manifest clinical values that are
neither necessarily higher nor lower value than healthy values

FIGURE 3 | Feedback lag affects dynamic (entropic) signatures of
circuit outputs. An adaptive prefrontal-limbic control circuit must be
sufficiently supple to respond to the environment, yet sufficiently constrained
to efficient return back to baseline. Optimization over these two properties
gives rise to general dynamic signatures, which are evident not only with
frequency-based methods (such as power spectrum scale invariance, PSSI),
but those based upon autocorrelation: Hurst exponents (Hurst Exp) and
detrended fluctuation analysis (DFA, which is used with non-stationary
time-series). Assuming excitatory and inhibitory components are equal, with
minimal lag in feedback, time-series dynamics are balanced (pink noise, β = 1,
Hurst Exp = (1 + β)/2 = 1) between maximum complexity/chaos (white noise,
β = 0, Hurst Exp = (1 + β)/2 = 0.5) and order. As the lag for feedback
lengthens, it affects system output dynamics by reducing the amount of
“memory” (auto-correlation) in the system; at very long lags, it is no longer
operating as a closed circuit.
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at any given time. Rather, just as with hyper and hypoglycemia,
they exhibit a dynamic of uncontrolled oscillations that lead to
heightened and lowered values at different times3.

There are two fundamental approaches towards quantifying
system-wide regulation dynamics: local and global. In the
most simplistic local approach, we identify the dynamics of
the system as a whole as a function of the dynamics of its
individual parts. For example, in Figure 2, by identifying the
strength (gain) of each wire connecting the nodes, we could
thus weight the excitatory relative to inhibitory components,
and express them as a ratio. This approach has been used
in the power spectrum density and principal dynamic modes
(Chon et al., 2006; Zhong et al., 2006, 2007) techniques in
Heart Rate Variability (HRV) (1996), quantifying autonomic
regulation as the ratio of excitatory (sympathetic) over inhibitory
(parasympathetic) components. Analogously for neuroimaging,
excitatory and inhibitory connection strength between nodes can
be defined using connectivity techniques such as dynamic causal
modeling (Stephan and Friston, 2010) and Granger causality
(Roebroeck et al., 2005); in theory, ratios between them could
be used to quantify regulation. However, excitatory/inhibitory
ratios omit the self-referentiality and lag aspects of feedback,
both critical components of control systems and their nonlinear
dynamics.

In contrast, the global approach characterizes the dynamics
of the system as whole rather than as a function of its individual
parts. In the last few years, our group (Rădulescu and Mujica-
Parodi, 2008, 2014; Tolkunov et al., 2010; Rubin et al., 2013;
Cha et al., 2016) and others (He et al., 2010; Lai et al., 2010)
have begun to use nonlinear complexity methods (such as power
spectrum scale invariance (PSSI), detrended fluctuation analysis
(DFA), Hurst exponents, Lyaponov exponents, and Shannon
entropy), in conjunction with fMRI, to probe intact negative
feedback loops in the brain. These methods, first applied to
physiology in the context of the autonomic nervous system
(Kurths et al., 1995; Ho et al., 1997; Mäkikallio et al., 1997;
Mujica-Parodi et al., 2005; Hu et al., 2009), exploit the fact

3These dynamics limit reliance upon not only amplitude-based (general
linear model-type) analyses but also what is commonly known as ‘‘coupling’’
(cross-correlations) to identify regulation. This point can seem counter-
intuitive because ‘‘regulation’’ and ‘‘dysregulation,’’ as referenced in the
psychology and neuroimaging literature, have typically been understood as
linear, in which two regions are involved in regulation (one excitatory and
one inhibitory) are either directly or inversely coupled, in response to an
experimental design that includes a task vs. control subtraction. However,
if excitatory limbic and inhibitory prefrontal signals define a control circuit,
then their activation should be strongly coupled with some small but finite
lag. As shown by Figure 4, whether excitatory and inhibitory activation levels
are directly or inversely correlated, depends upon whether one measures
the beginning of the process (in which the excitatory component is elevated
but the inhibitory level is not), the middle of the process (in which both
excitatory and inhibitory components are elevated), or the end of the process
(in which the excitatory component has been suppressed but the inhibitory
component is still elevated). Since fMRI analyses are typically optimized for
the activation levels rather than temporal features, one is likely to find both
direct and inverse correlations between excitatory and inhibitory regions
in the neuroimaging literature. These are not necessarily contradictory, but
rather may be measuring the same circuit at different points of its regulation.

FIGURE 4 | Correlations (coupling) used in fMRI connectivity analyses
are not capable of assessing regulation. Here, a negative feedback loop
with excitatory (a) and inhibitory (b) components produces time-series that
appear to be either positively or negatively correlated, depending upon the
stage of the dynamic process being assessed.

that negative feedback loops provide unique dynamic signatures,
which are disrupted when the system deviates from efficient
homeostatic regulation (Gisiger, 2001; Rădulescu and Mujica-
Parodi, 2014).

Using modeling and simulations, we have previously shown
(Rădulescu and Mujica-Parodi, 2014) that the outputs of
brain-like negative feedback loops create a balance of frequencies
that follow a power law; i.e., are scale-invariant, following
S(f ) ∝ f−β . As a control system increases feedback, the circuit’s
output at any given time is increasingly influenced by the same
circuit’s output at previous times—the timing of which is a
function of feedback lag, as well as the number of previous
cycles. This increased ‘‘memory’’ within the system increases
autocorrelation within the time-series, and therefore reinforces
the lower-end of the frequency spectrum. When excitatory and
inhibitory components are perfectly balanced, with sufficient lag
to permit a response but with feedback that triggers fast enough
to suppress it, the power-law shows a distribution of frequencies
known as 1/f β , β = 1 or pink noise. Pink noise describes a
frequency distribution poised at the midpoint between chaos
(β = 0; equal power over all frequencies: white noise) and order
(β > 2; zero power over all frequencies except for one: black
noise). As time-series shift away from pink noise towards black
noise, negative feedback loops become more than optimally
constrained, and thus are unable to efficiently respond to their
environments. As time-series shift away from pink noise towards
white noise, negative feedback loops are less than optimally
constrained, and thus are unable to efficiently recover from
perturbation. Optimal negative feedback loops are balanced at
what is sometimes described within physical systems (Bak et al.,
1987) as a meta-stable ‘‘critical point.’’ Within biological systems
this meta-stable state is metabolically efficient, requiring the
least amount of energy both to respond to perturbation as
well as to return to baseline. This metabolic advantage suggests
that evolution may underlie pink noise dynamics ubiquitous in
biological and ecological systems (for review, see Gisiger, 2001).
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Complexity methods are unique in that they are capable of
describing system-wide behavior of (nonlinear) feedback loops.
As such, they excel as diagnostic tools because results provide
information about the locus and type of dysregulation (Rădulescu
and Mujica-Parodi, 2014). Their primary disadvantage is that
they yield minimal information about a system’s structure,
and cannot provide simulations that predict future trajectories.
One might think that the local approach is preferred, simply
because—at first glance—it seems to provide more information
about the system. And—at first glance—this is true, since the
global approach is agnostic towards the individual components
of the system, which exist essentially as a black box. However, in
any complex system in which all of the individual components
and their dynamics are not fully known, local approaches
generally fail by virtue of incomplete or incorrect specification
of the underlying neural systems. Because they rely upon the
system’s architecture, they are vulnerable to underestimating that
structure, or to getting it wrong. Primarily for this reason, global
approaches—which assume less—have been found to provide a
more accurate diagnostic for autonomic dysregulation (Kurths
et al., 1995; Voss et al., 1995; Ho et al., 1997; Mäkikallio et al.,
1997, 1998, 2002; Hu et al., 2009). Therefore, our strategy will
be to start with a global approach to identify, in an agnostic
manner unbiased by a priori knowledge of the brain, key nodes
of the prefrontal-limbic system and its dynamics, and then move
to a local approach in order to target more precise questions
regarding the system structure and dynamics.

Our brief introduction to control system dysregulation in
Type 1/Type 2 diabetes was designed to illustrate how different
types of dysregulation—of the same (in this case, metabolic)
control circuit—might lead to markedly distinct clinical features.
By analogy, we thus hypothesize that different psychiatric
disorders might implicate the same prefrontal-limbic circuit, yet
be dysregulated in different ways. Identifying those differences
would be a first step towards a neurobiological model capable
of explaining the clinical heterogeneity and dynamic trajectories
of psychiatric signs and symptoms. In the next section, we
extend this paradigm to the most basic evolutionary function
of prefrontal-limbic regulation, threat-detection, and map its
variation across a spectrum of human subjects across four studies
(total N = 226), in order to identify a consistent picture of
circuit regulation across acquisition modalities, tasks and analytic
strategies.

THE SPECTRUM OF THREAT-DETECTION:
FROM HYPER- TO HYPO-RESPONSIVE

Historically, psychiatry disorders have been defined by statistical
clustering of symptoms (DSM-5; American Psychiatric
Association, 2013). More recent approaches, promoted by
the United States National Institute of Mental Health (Research
Domain Criteria, or RDoC), favor a dimensional approach
across biologically defined criteria. Complicating matters is
the fact that some psychiatric illnesses, such as schizophrenia,
include significant clinical variation across multiple (emotional,
cognitive and perceptual) domains. To avoid the need to
consider interactions between domains, we therefore focus

here upon a single prefrontal-limbic control circuit-based
dimension, threat-detection, and assay the full range of threat-
detection using control systems based approaches toward human
neuroimaging. The spectrum ranged from most responsive to
potential threat (which we hypothesize roughly aligns with
psychiatry’s nomenclature of ‘‘clinical anxiety’’) to least
responsive to potential threat (which we hypothesize roughly
aligns with psychiatry’s nomenclature of ‘‘sensation-seeking’’).
Because of the spectrum’s unidimensionality, it has the added
advantage of providing more direct translation to genetic
(rodent) studies (Stead et al., 2006; Davis et al., 2008; Simmons
et al., 2012; Flagel et al., 2014) than do most psychiatric disorders,
thereby contributing to our understanding of the underlying
neurocircuitry.

Trait Anxiety Study
In our first study, we tested N = 60 healthy individuals,
and characterized their levels of trait anxiety using the State-
Trait Anxiety Inventory (Spielberger, 2010). Subjects were
presented with facial stimuli, both threat-related (angry and
fearful-faces) and benign (neutral and happy faces), while
being scanned with fMRI. Subjects also received ambulatory
cardiac monitoring for 24 h. All 60 subjects’ fMRI scans were
initially analyzed using activation maps (Mujica-Parodi et al.,
2009a). We further analyzed a subset (N = 50) of artifact-free
neuroimaging data using PSSI4, as well as obtaining autonomic
regulation levels via principal dynamic modes (Tolkunov et al.,
2010). Both low and high-trait anxious subjects showed strong
amygdala activation to overly threatening stimuli; the differences
occurred with respect to stimuli that were ostensibly benign.
When presented with neutral faces, low-trait-anxious brains
recognized the stimuli as ‘‘safe’’ and suppressed their amygdala
responses accordingly. In contrast, high-trait anxious brains
showed the same amygdala response whether faces were
neutral or fearful/angry. This pattern suggests that anxiety
might not be a disorder of threat sensitivity, but rather of
threat specificity. Functional MRI time-series for subjects who
were the least trait-anxious showed PSSI β ≈ 1 (pink-noise
dynamics), which we described above as the signature of a
negative feedback loop tuned optimally between excitatory and
inhibitory components (Rădulescu and Mujica-Parodi, 2014).
In contrast, fMRI time-series for subjects who were most
trait-anxious scale showed PSSI β ≈ 0 (white-noise dynamics),
the signature of a node unconstrained by other parts of the
system (Rădulescu and Mujica-Parodi, 2014), Figure 3. These
dynamics were distributed throughout the entire prefrontal-

4The power spectrum scale invariance (PSSI) measure used in our earliest
articles analyzed the first derivative of the time-series, which can be
shown analytically to shift the slope of the raw time-series by a constant:
(βderivative = βraw + 2. These early articles also used the equation S(f ) ∝ f β ,
with the consequence that (β-values reported for human brain time-series
were negative, unnecessarily complicating interpretation of their statistics. To
permit straightforward comparison between all data sets, as well as to allow
for interpretation of results using physical conventions for white/pink/brown
noise, all results presented here are normalized to the raw (non-derivative)
measure used in our later articles, and use the S(f ) ∝ f−β equation so that
reported β values are positive.
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limbic circuit—as expected, since they are connected as part of
a closed circuit—but with the trait anxious showing strongest
dysregulation in the pars triangularis/Brodmann area 45, a subset
of the IFG.

Skydiver Study
Our first study showed that the brains of the ‘‘trait anxious’’
perceive non-threatening cues as threatening, and that
dysregulation of prefrontal-limbic outputs has downstream
autonomic consequences. For our second study (Mujica-Parodi
et al., 2014), we probed the opposite end of the spectrum:
those who perceived threatening cues as non-threatening. In
order to characterize these subjects along the threat-response
spectrum, we measured their subjective and physiological
(cardiovascular, endocrine) responses to physical danger:
first-time tandem skydives at 3.96 km with one full minute of
free-fall. In many ways, skydiving provides an ideal experimental
threat, as it is not only tests the body’s response to actual
danger, but also has a highly standardized time-course that
permits time-locked reproducibility across baseline/test sessions
and subjects, and an ethical means of recruitment5. On the
baseline day, hospitalized subjects received continuously
cardiovascular monitoring using a holter ECG, were regularly
assayed for cortisol, and at the end of the day received an
MRI. On the test day, which occurred 1–2 weeks later, subjects
repeated precisely the standardized protocol used during the
baseline day, except that they jumped out of a plane and
did not receive another MRI. Since our trait anxiety study
suggested that the prefrontal-limbic system’s distinction
between threat and safety was most clinically relevant, for the
second study’s fMRI period we tasked subject’s brains with
making the same distinction but changed the stimuli. This
time, instead of affect-valent faces, subjects viewed a 16 s
countdown that cued either an aversive (loud) or benign (soft)
sound.

While the typical psychiatric construct of ‘‘sensation-
seeking’’ (Zuckerman et al., 1972) distinguishes between those
who do and do not seek out risky activities, our study
was—by design—guided not by any diagnostic category but
rather the spectrum of threat detection. All of our subjects
independently chose to participate in a genuinely risky activity;
what distinguished them, then, was the degree to which
they recognized the risk, as measured by their subjective,
endocrine and cardiovascular fear responses. As with the
trait anxious, those who were more threat responsive showed
greater amygdala activation. Importantly, relying solely upon
amygdala activation, we might have erroneously concluded that
individuals who showed less fear in response to the jump
were more optimal prefrontal-limbic regulators than individuals
who showed more fear. Yet the system-wide PSSI results told
a fundamentally different story. This time, individuals who
showed fear in response to the jump had β values closer to

5For ethical reasons, we recruited subjects only from those who had
independently contacted the skydiving school to schedule their first-time
skydives. Therefore, we did not recruit subjects to skydive, but rather to
permit us to collect measurements before, during, and after their skydives.

pink noise, the signature for a balanced—and therefore more
efficient—control circuit. Instead, it was the individuals who
remained impervious to the jump who showed β values closer
to white noise—indicating weaker feedback throughout the
circuit. PSSI identified here the same prefrontal-limbic regions
that were previously implicated in the trait anxiety study;
moreover, the area of most significantly disrupted dynamics was
again localized specifically to the IFG, which correlated with
cortical (structural) thinning of the same area. Behaviorally,
more balanced IFG regulation was associated with greater
accuracy in discerning ambiguous threat. In a behavioral task,
skydivers who did not subjectively or physiologically recognize
the skydive as threatening also showed higher thresholds in
detecting morphed angry faces, consistent with results obtained
using facial stimuli in our previous study. Together, our results
made clear that the IFG must play a key role in processing
ambiguous threat. However, what role that might be was
unclear.

Clinical Anxiety Study
Now having identified key nodes in the circuit via the global
approach, we honed in on the circuit’s structure with the local
approach, in order to understand the underlying basis for the
PSSI dynamics. This time, we tested a population—Generalized
Anxiety Disorder—for which responsiveness to potential threat
we hypothesized to be a defining clinical feature. To this end, we
used a fear generalization task (Greenberg et al., 2013a) in which
subjects’ brains evaluated the salience of ambiguous stimuli,
using stimuli perceptually similar to an abstract cue (rectangle)
conditioned to indicate potential threat.

Healthy individuals showed activation of their vmPFC that
were weakest in response to the most ‘‘threatening’’ cue
(the conditioned stimulus), strongest in response to the most
‘‘safe’’ cue (the stimulus most perceptually dissimilar from
the conditioned stimulus), with a linear gradient between the
two poles (Greenberg et al., 2013b). The more anxious the
subject, the more poorly the subject’s vmPFC discriminated
between threat and safety cues, as shown by a decrease in
the slope of the linear fit between the threat-to-safety poles.
That the vmPFC activates in inverse proportion to perception
of threat suggests that the vmPFC functions as the inhibitory
component of the prefrontal-limbic circuit. Dynamic causal
modeling of nodes (vmPFC, IFG, amygdala) identified via
activation confirmed the connection from vmPFC to amygdala
as inhibitory6.

Our measure of global circuit-wide feedback control, PSSI,
once again identified the strongest difference between GAD
and controls as dysregulation of the IFG. As with our study
of trait anxiety, patients with Generalized Anxiety Disorder
showed IFGs with PSSI β-values closer to white noise than
healthy controls, with associated weaker autocorrelation within
time-series of that area. These results, in response to the
fear generalization task, were then independently confirmed in

6What dynamic causal modeling (at the hemodynamic scale) interprets as
grossly inhibitory, actually reflects excitatory projections to the amygdala
enervating inhibitory neurons.

Frontiers in Systems Neuroscience | www.frontiersin.org 7 April 2017 | Volume 11 | Article 18

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Mujica-Parodi et al. From Anxious to Reckless

TABLE 1 | Summary of experimental results for entire threat response spectrum.

Hypo-Responders Optimal Responders Hyper-Responders

Neural: amygdala activation ↓ to aversive cues2 (aversive noise) ↑ to aversive cues, ↓ to benign cues1,2

(aversive faces, aversive noise)
↑ to benign cues1,2 (aversive faces,
aversive noise)

Neural: vmPFC activation ↑ to aversive cues ↓ to aversive cues, ↑ to benign cues3 (fear
conditioning)

↓ to benign cues3 (fear conditioning)

Neural: IFG regulation β ≈ 02 β ≈ 11,2,3,4 (aversive faces, aversive noise,
fear conditioning, naturalistic stressor)

β ≈ 01,3,4 (aversive faces, aversive noise,
fear conditioning, naturalistic stressor)

Neural: IFG volume ↓
2 (cortical thickness) ↑

2,3 (cortical thickness) ↑
3 (cortical thickness)

Neural: IFG outputs to vmPFC ↑ ↑
3 (tractography, DCM) ↓

3 (tractography, DCM)
Behavioral threat detection >correct threshold2 (aversive faces) correct threshold2,3 (aversive faces, fear

conditioning)
<correct threshold3 (fear conditioning)

Autonomic nervous system ↓ to imminent danger2 (skydive) ↓ baseline1, ↑ to imminent danger2 (24 h
ECG, skydive)

↑ baseline1 (24 h ECG)

Endocrine HPA axis ↓ to imminent danger2 (skydive) ↑ to imminent danger2 (skydive) ↑ baseline (24 h)

1Trait Anxiety Study (N = 60, N = 50), 2Skydiving Study (N = 30), 3Clinical Anxiety Study—Fear Conditioning (N = 57), Naturalistic Stressor (N = 79). Shaded cells represent

hypothesized (untested) results.

N = 65 subjects (43 subjects of whom participated in both
studies) diagnosed with Generalized Anxiety Disorder (N = 45)
as well as healthy controls (N = 20), who this time viewed
naturalistic stimuli7. Remarkably, PSSI values yet again linked
anxiety with dysregulation of the same IFG cluster (centered at
MNI [−52, 20, 6] for Generalization task, MNI [−48, 22, 4]
for naturalistic task), showing that our results were sufficiently
robust to generalize across task design, and might apply in more
‘‘real-world’’ contexts.

A shift towards white noise suggests that the region, in
patients, is less constrained by other parts of the meso-
circuit; weaker autocorrelation indicates less ‘‘memory’’ within
the time-series, a general feature of diminished feedback
(Figure 3)8. We found that both functional (dynamic causal
modeling) and structural (diffusion probabilistic tractography)
connectivity support this hypothesis. Dynamic causal modeling
demonstrated that subjects with more chaotic IFG dynamics
showed weaker excitatory outputs from the IFG to the
vmPFC. Likewise, brains whose IFG dynamics were most
chaotic also had the weakest uncinate fasciculus (UF), a
swath of long-range fiber bundles connecting the IFG and
vmPFC with the amygdala. Given that the UF is the last
white matter tract to develop (Lebel et al., 2008), we
then investigated variation in network integration between
the vmPFC and IFC in childhood temperament. Further
neuroimaging of youngsters (N = 44, ages 3–5 years) using
near-infrared spectroscopy revealed that children with less
network integration within the prefrontal cortex had less

7Pilot episode of Lost, American Broadcasting Company television drama
series.
8It is important to note that if optimal regulation can be characterized by
pink-noise dynamics, dysregulation does not always mean that time-series are
more chaotic, since de-optimization can occur in either direction (i.e., either
too chaotic or too ordered). For example, in epilepsy, seizure foci are shifted
towards β = 1, as dense arrays of short-range connections (which may reflect
compensatory sprouting in response to neuronal damage) locally constrain
dynamics (Nedic et al., 2015). Figure 1 provides another example in which the
particular type of dysregulation (Type 1 diabetes), in this case caused by weak
inhibition, produces time-courses that are too stiff rather than too chaotic.

emotional control, a risk factor for later psychopathology (Fekete
et al., 2014).

MAKING SENSE OF THE ENTIRE
SPECTRUM: LESSONS LEARNED AND
FUTURE DIRECTIONS

Amending the Control Circuit to Include a
Feedback Loop for Information Threshold
Taken together, our data converge to five preliminary
conclusions, as summarized below and in Table 1.

First, the amygdala and vmPFC provide dominant excitatory
and inhibitory components, respectively, of the prefrontal-limbic
circuit in assessing ambiguous threat, a relationship supported
not only by reciprocal activation of the respective nodes across
a gradient of threat detection but also by dynamic causal
modeling.

Second, behavioral and neurobiological thresholds shift
across the spectrum, with hyper-responders (e.g., trait and
clinically anxious individuals) showing lower thresholds for
detection of ambiguous threat and hypo-responders (e.g.,
‘‘reckless’’ sensation-seekers) showing higher thresholds for
detection of ambiguous threat.

Third, our computational modeling shows that optimally
tuned negative feedback loops produce PSSI values in the pink
noise range, and that shifts in PSSI values to white noise reflect
dominant excitatory (chaotic) perturbations and/or diminished
feedback within the system, with feedback affected by connection
strength and lag.

Fourth, PSSI of fMRI time-series show that the IFG shows
optimally tuned prefrontal-limbic ‘‘pink noise’’ regulation at the
center of the threat detection spectrum, with both ends of the
spectrum (hyper and hypo-responders) showing PSSI closer to
white noise.

Fifth, our neuroimaging structural (volumetric, diffusion
probabilistic tractography) and functional (dynamic causal
modeling) connectivity data support fundamentally different
sources of impaired circuit feedback at each end of the
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spectrum. Reckless individuals showed structural atrophy
(cortical thinning) of the IFG, suggesting attenuation of the IFG’s
function. Anxious individuals showed intact IFG volumes, but
weakened output from this region to the vmPFC, suggesting
that the IFG functions but fails to inform the rest of the
circuit.

Confidence in the reliability of the five preliminary
conclusions listed above is suggested by their robustness
across multiple studies. Specifically, they remain consistent
across clinical classifiers (measures designed to assess trait
anxiety across the healthy population, adult and developmental,
as well as measures designed to assess clinical anxiety). They
remain consistent across experimental designs, tasks and stimuli
(aversive faces, aversive noise, fear conditioning to electric shock,
and naturalistic stimuli). Finally, they integrate measured neural
structural features (volumetric analyses and tractography), as well
as downstream outputs to physiological (autonomic, endocrine)
control circuits.

Since the only behavior that the two ends of the spectrum
(hyper and hypo-responders) have in common is inaccurate
threat assessment, we start from the working hypothesis that
IFG regulation plays a key role in that inaccuracy, albeit in
different ways that lead to opposite clinical features. In so
doing, we adapt the canonical prefrontal-limbic circuit, in which
the ‘‘low road’’ conveys lower-resolution information via a
more direct route from the sensory organ to the thalamus,
and then to the amygdala, while the ‘‘high road’’ conveys
higher-resolution information via a more indirect route to
the amygdala: first from the sensory organ to the thalamus,
then to the sensory cortex, which provides additional sensory
information, before looping back to modulate the amygdala as
required. According to our revised model, the amygdala remains
the primary excitatory component of the prefrontal-limbic
control circuit, as our data confirm that the more a subject’s
amygdala activates, the more responsive he is to ambiguous
threat. Our fear-generalization data amend the LeDoux model
to suggest that, of many candidate regions in the prefrontal
cortex (orbitofrontal cortex, medial prefrontal cortex, DLPFC,
rostral anterior cingulate cortex, ventrolateral prefrontal cortex)
that have been implicated in inhibiting the amygdala, the only
area that clearly tracked a safety (maximum activation) to
threat (minimum activation) gradient was the vmPFC, whose
connection to the amygdala was shown by dynamic causal
modeling to be inhibitory.

Where our results most significantly diverge from the
LeDoux model is in suggesting that the vmPFC’s inhibitory
function receives crucial inputs from the IFG. The IFG’s role,
both in our studies of threat detection (Mujica-Parodi et al.,
2009a, 2014; Cha et al., 2016) as well as unrelated studies of
meaning and perceptual ambiguity (Bozic et al., 2010; Rodd
et al., 2012), imply that the IFG does not directly inhibit the
amygdala, but rather may act as a set point for the amount
of sensory information required to inform the vmPFC as to
stimulus meaning (Roy et al., 2012). This function should be
most evident when the potential for threat is ambiguous, an
important feature of evolutionary environments in which true
threats (e.g., predation) are almost always probabilistic and/or

hidden. Neuroanatomically, the IFG is well positioned to mediate
between the sensory cortex and the ventral prefrontal cortex
for affective decision-making. It is connected with the sensory
cortex, including the visual cortex, via an extensive associative
white matter bundle (e.g., inferior fronto-occipital fasciculus)9.
Implicated in affective cognition (Philippi et al., 2009), it is
also connected to the primary emotion circuit (e.g., amygdala
and ventral PFC) via the UF. Indeed, in our study, integrity of
this white matter tract correlated with IFG time-series dynamics
suggesting its participation in the larger control circuit (Cha et al.,
2014, 2016). The IFG’s role as a convergence gate within the
Information Loop is consistent with that of similar loops in the
brain, such as the Hippocampal-VTA Loop (Lisman and Grace,
2005).

To determine if our revised circuit would result in key
outcomes established by our four neuroimaging studies, we
constructed a computational control systems model in MatLab
Simulink v2016b (MathWorks, Natick, MA, USA), which
interprets the structure shown in Figure 5 as a system of coupled
differential equations. To modulate stimulus ambiguity, the
signal (design matrix for our generalization task) was combined
with different proportions of white noise. Raw sensory input
to the thalamus contained all relevant frequencies, with sensory
processing modeled as a band-pass filter, in which frequency
cutoffs define the degree to which the complete signal is
preserved. Therefore, we modeled the ‘‘low road’’ pathway to the
amygdala, in which speed is optimized over accuracy, using a
low-pass filter. The cortical ‘‘high road’’ starts with a wider range
of frequencies, then further widens its filter to admit additional
(higher) frequencies with every additional cycle through the
visual processing stream. Both the ‘‘low road’’ and the ‘‘high
road’’ include independent thresholds for threat amplitude,
in the amygdala and vmPFC respectively, and converge on
the comparator in the lateral amygdala, to either enhance or
suppress central medial amygdala outputs. These outputs then
feed forward to the reward circuit, hypothalamus, HPA-axis,
and autonomic nervous system, and feed back to the lateral
geniculate nucleus of the thalamus. Our circuit amends the
canonical prefrontal-limbic system by adding an informational
threshold in the IFG, which assesses its inputs in terms of whether
required levels of sensory information are present in order to
make a decision (operationally, this is done by using a Fast
Fourier Transform (FFT) to quantify power amplitude for the
signal). If the IFG identifies sufficient information, it outputs
to the vmPFC, which in turn makes a threat determination
of the data via its threat threshold. However, if the IFG
informational threshold is not met, the data route back to the
thalamus and sensory cortex for additional sensory processing,
and continues to loop between the three areas (the Information
Loop) until sufficient signal-to-noise ratios (SNR) are achieved.
The model was constructed at the local field potential scale,

9Human data informatics from the MGH-USC Human Connectome
Project show that the strongest connection from the left BA45/pars
triangularis is to the right BA45/pars triangularis, which in turn connects
to occipital regions (http://www.humanconnectomeproject.org/informatics/
relationship-viewer/).
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FIGURE 5 | Information-theoretic prefrontal-limbic control systems model. Without relying upon a priori regions of interest, fMRI complexity analyses of four
independent experiments converge to identify several key components implicated in the assessment of ambiguous (visual) threat: the amygdala, visual cortex, inferior
frontal gyrus (IFG), and ventromedial prefrontal cortex (vmPFC). Our model integrates these within a control circuit constrained by known neuroanatomical
connections. We hypothesize that the IFG gates the proposed Information Loop (dotted line), in order to determine whether there is sufficient signal-to-noise ratio
(SNR) to make a provisional decision. Our data suggest that this loop appears to be disrupted for both hyper and hypo-responders. When the IFG’s Information
Threshold (InfoT) is too high, the Information Loop cycles too many times, thereby failing to activate the vmPFC and thus allowing the subcortical route to dominate
(anxious). On the other hand, when the IFG’s InfoT is too low, the Information Loop goes through too few cycles, thereby failing to process sensory data fully, and
thus suppressing the amygdala outputs prematurely (reckless).

in which dynamics represent populations of neurons firing.
Synaptic transmission lag between brain regions was based upon
a study of visual recognition in primates, suggesting signal delays
of ∼40 ms between regions (Tovee et al., 1994). To permit
comparison of model outputs to fMRI data, neuronal signals
were converted to the hemodynamic scale measured by fMRI
via a balloon model for neurovascular coupling (Buxton et al.,
2004).

As shown in Figure 6, the model produces both activation
(amygdala and vmPFC) and regulation (PSSI of IFG) results
equivalent to those obtained across the spectrum of threat-
detection, with effects most prominent when stimuli are
maximally ambiguous between signal and noise. Of note, the
Information Loop provides the brain with a mechanism by which
it can process data in a Bayesian manner, by determining how
much SNR is required in order to make provisional decisions in
the face of incomplete information.

In starting with an analogy to Type 1/Type 2 diabetes,
we made the point that the same control circuit can be

dysregulated in more than one way, resulting in marked clinical
differences. Based upon our neuroimaging results, our fifth
preliminary conclusion suggested that in reckless individuals,
the prefrontal-limbic circuit may be bypassing an impaired IFG,
while in anxious individuals, the prefrontal-limbic circuit may
be getting caught in the IFG loop and failing to exit. In fact,
an important consequence of modulating the IFG set-point,
is that setting it either too high or too low will result in the
IFG providing less engagement with the rest of the circuit
than is needed, but for different reasons. If the IFG threshold
is too high, and requires so much sensory information that
the IFG, thalamus, and sensory cortex exchange information
between one another for too many cycles, in the meantime
the coarse-grained excitatory pathway will dominate, with a
greater likelihood for false positives in responding to ambiguous
threat (as seen with anxiety). On the other hand, if the IFG
threshold is too low, and requires too little information, the
inhibitory pathway will suppress the amygdala without cycling
back to the thalamus and sensory cortex for much-needed
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FIGURE 6 | Simulations for our computational model, shown in Figure 5, cohere with convergent experimental results across the threat-detection
spectrum, for threat stimuli at varying levels of signal/noise (SNR). (A) For ambiguous threat, activation for amygdala and vmPFC increase and decrease,
respectively, across the reckless to anxious spectrum. (B) The IFG shows pink noise dynamics at the center of the spectrum, with shifts towards white noise
dynamics at both ends of the spectrum. Importantly, our simulations demonstrate that the effect is not seen for either very low SNR (0.1–0.2) or very high SNR
(1.3–2), but becomes evident only when the brain is challenged with ambiguous data (SNR = 0.05–0.07).

fine-grained sensory cortical data, with a greater likelihood
for false negatives in responding to ambiguous threat (as
seen with recklessness). Thus, the revised information-theoretic
model can provide a data-driven description by which IFG
regulation can produce the full spectrum of threat-detection:
from anxious to optimal to reckless. As such, it provides
a unifying neurobiological framework for understanding the
relationship between populations, such as patients with anxiety
disorders and ‘‘sensation-seekers’’ at risk for addiction, which are
normally viewed as unrelated.

Traditional ways of thinking about anxiety and sensation
seeking use ‘‘approach vs. avoidance’’ paradigms in response to
novelty. In contrast, our focus is on how the brain interprets
novelty and the inherent uncertainties that come with it,
because we find that it better explains our data across the
entire spectrum of hyper to hypo-responders. For example, the
approach vs. avoidance paradigm cannot distinguish between
the skydivers in our sample who jumped with recognition of
the risks (optimal) vs. those who did not (reckless), in spite
of the fact that these two cohorts deal with danger in ways
that are likely to lead to very different outcomes. Moreover,
while the standard assumption is that sensation-seekers seek out
risks because they take exceptional pleasure in them, our sample
of skydivers the individuals that self-identified as ‘‘sensation-
seekers’’ (Zuckerman and Link, 1968) did not show stronger
euphoric responses to the jump; either by subjective or endocrine
(endorphin) criteria (Mujica-Parodi et al., 2014). As suggested
by self-report, behavioral, neuroimaging and cortisol responses,
they simply detected less risk and consequently experienced
less fear. Finally, our construct is wholly neurobiological rather
than questionnaire based. This has several advantages from
the perspective of scientific rigor: it approaches mechanism

rather than relying upon phenomenology, it permits more
straightforward translational definition across species, and
avoids many of the potential confounds inherent in self-
assessment.

Future Directions
Modeling and simulation provide evidence that a given
paradigm is capable of producing observed data; however, to
determine if the paradigm is the best solution as compared
to other candidate solutions, it is necessary to conduct
additional experimental research with cross-spectrum sampling.
Our most significant limitation was that we developed our
model as a process, as each new study forced us to refine
and amend our hypotheses. Thus, while our studies are
complementary, and therefore suggest a coherent story when
combined as a whole, we lack a single study that used identical
methods across the entire spectrum, thereby permitting direct
comparison. Given lessons that we have learned, we can propose
several candidate features and tools for such a comprehensive
study.

Because we are interested in probing control circuit
regulation, which governs both responsiveness to new stimuli as
well as allostatic return to baseline, we start from the assumption
that our neuroimaging will benefit from perturbation, and
therefore some kind of stimuli. Our previous studies suggest
that the circuit activates in response to ambiguous threat, and is
sufficiently robust to be invariant to a specific set of stimuli or
design. Our skydiving behavioral task (DeDora et al., 2011) had
the advantage of dissociating response to meaning vs. perceptual
ambiguity, while our generalization fMRI task had the advantage
of using stimuli (geometric shapes) whose meaning (through
conditioning) and perception (through percentage similarity)
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permit precise control in obtaining crisp gradients (amygdala
and vmPFC in activation, IFG in regulation) in brain response.
These might be fruitfully combined to provide one task capable
of identifying behavioral responses to incomplete information,
while permitting analysis the underlying neurobiology as
the prefrontal-limbic circuit cycles during the information-
acquisition phase. To assess global regulation of the circuit,
using nonlinear complexity measures such as PSSI, one should
aim for long (>10 min) tasks without preferred frequencies
(Rubin et al., 2013). In addition, we have shown that fMRI
acquisition parameters can be optimized specifically for dynamic
fidelity (DeDora et al., 2016), thereby increasing the detection
sensitivity and accuracy for both PSSI and control circuit
analyses.

To avoid cognitive blocking, we might ambitiously consider
even more targeted ways to probe the prefrontal-limbic circuit
without conscious perception. We have previously shown
that humans, like other animals, produce and detect alarm
pheromones, defined as chemosensory cues that unconsciously
signal potential threat to others of the same species. In
an fMRI study and its replication (Mujica-Parodi et al.,
2009b), we showed that sterile odorless sweat obtained from
another subject while he/she underwent an emotional, but not
physical, stressor—when inhaled reliably activates the amygdala.
A follow-up behavioral study (Mujica-Parodi et al., 2009b),
and its replication (Rubin et al., 2012), showed that when
asked to distinguish between friend and foe for faces with
ambiguous facial expressions, morphed between neutral and
angry expressions, the alarm pheromone increased subjects’
threat-detection accuracy by 43%. Importantly, the pheromone
reduced not only false negatives but also false positives. This
behavioral effect was reflected by changes in subjects’ EEG
event-related potentials: specifically, the late positive potential
(LPP). The LPP measures neural response in the visual cortex
(Hajcak et al., 2009). While the LPP is typically conceived of as
related to ‘‘attention’’, given the neurobiological and behavioral
overlap between attention and emotional salience (Sander et al.,
2003; John et al., 2016), as well as the LPP’s sluggish timing
(160 ms post stimulus), it may be that the LPP is detecting
the slower cortical route of the prefrontal-limbic control circuit,
with recruitment of additional sensory (in this case, visual)
information. While in response to exercise sweat (placebo), the
LPP activated only in response to more threatening faces, fear
sweat reliably triggered the LPP to all stimuli, which would
thereby increase sensory processing for those that were more
ambiguous (Rubin et al., 2012). As such, it may be the case
that alarm pheromones improve cortical evaluation of potential
danger by actively triggering the Information Loop between the

IFG and sensory cortex. Moreover, if degree of cycling within
the proposed Information Loop can be quantified by measuring
LPP time-to-extinction following a stimulus event, it would open
the door to more precise investigation of the timing of threat
evaluation and its associated circuit dynamics. Further multi-
modal neuroimaging along the threat-detection spectrum, in
response to dynamic modulation of stimulus SNR, and following
pharmacological manipulation of dopamine levels (potentially
shifting IFG thresholds for SNR; Spitzer, 1997; Spitzer and
Walter, 2003; Seamans and Yang, 2004; Krummenacher et al.,
2010), would provide valuable directions for experimental testing
of our model, and the dissociation of interactions between
different loops (e.g., IFG-thalamic reticular nucleus, IFG-vmPFC,
amygdala-visual cortex, and amygdala-thalamus (mediodorsal,
midline, pulvinar)-IFG).

Our use of control systems to probe the threat-detection
spectrum illustrates how clinical neuroscience may benefit
from defining ‘‘dysregulation’’ within the context of closed-
circuit feedback loops, which necessarily require characterization
with nonlinear methods. As neuroimaging develops analytic
approaches that move beyond the conceptual limits of activation
or connectivity, clinical neuroscience will benefit by acquiring
more powerful tools capable of probing how breakdown in
homeostatic regulation may dissociate distinct mechanisms of
disease.
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