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Abstract: Cytochrome P450s (CYPs), heme-containing monooxygenases, play important roles in a
wide variety of metabolic processes important for development as well as biotic/trophic interactions
in most living organisms. Functions of some CYP enzymes are similar across organisms, but some
are organism-specific; they are involved in the biosynthesis of structural components, signaling
networks, secondary metabolisms, and xenobiotic/drug detoxification. Fungi possess more diverse
CYP families than plants, animals, or bacteria. Various fungal CYPs are involved in not only
ergosterol synthesis and virulence but also in the production of a wide array of secondary metabolites,
which exert toxic effects on humans and other animals. Although few studies have investigated the
functions of fungal CYPs, a recent systematic functional analysis of CYP genes in the plant pathogen
Fusarium graminearum identified several novel CYPs specifically involved in virulence, asexual and
sexual development, and degradation of xenobiotics. This review provides fundamental information
on fungal CYPs and a new platform for further metabolomic and biochemical studies of CYPs in
toxigenic fungi.
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Key Contribution: Fungal CYPs are involved in diverse biological processes, including production
of primary and secondary metabolites, detoxification, and virulence. Systematic functional genomic
study of F. graminearum has revealed some clues to the novel functions of CYPs in toxigenic fungi.

1. Introduction

Cytochrome P450s (CYPs), which are heme-containing proteins, represent one of the largest
protein families; they are present in all biological kingdoms [1,2]. CYPs commonly act as terminal
monooxygenases in a range of biochemical reactions including hydroxylation, dealkylation, epoxidation,
deamination, desulfuration, dehalogenation, sulfoxidation, and N-oxide reduction, by catalyzing the
transfer of molecular oxygen to various cellular substrates [3–5]. This diversity of catalytic capabilities
and the ability to manipulate them means that CYPs have been under the spotlight for biotechnological
applications, such as biosynthesis of useful chemical compounds [6].

Organisms vary in the number of CYP genes they possess. The reference human genome contains
57 CYP genes and 58 pseudogenes, which are distributed into 18 families [7]. The function of human
CYPs has been extensively studied since 1960, particularly with respect to xenobiotic and drug
metabolism [8]. Insect genomes contain various numbers of CYPs, for example, 76–91 in Drosophila
spp. (fruit flies), 87 in Bombyx mori (silkworm), and 46 in Apis mellifera (honey bee). In insects, CYPs are
involved in the production of defence toxins and pheromones [9,10]. CYP-mediated detoxification of
plant compounds, as well as insecticides, has also been reported [11]. Plant genomes tend to contain
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many more CYP genes than animal genomes, e.g., 334 in Oryza sativa (rice), 245 in Arabidopsis thaliana
(thale cress), and 318 in Zea mays (corn), possibly because plants produce a wide variety of secondary
metabolites [9]. Plant CYPs are mainly involved in biosynthesis of protective toxins and repellent
molecules, as well as various signalling molecules [12].

The number of CYP genes in fungal species varies depending on their lifestyle. Whereas yeast-like
fungi possess relatively few CYPs (three in Saccharomyces cerevisiae, six in Cryptococcus neoformans,
and 10 in Candida albicans), filamentous fungi tend to possess more CYP genes. Plant pathogenic
fungi tend to possess larger numbers of CYP genes; for example, Magnaporthe oryzae and
Cryphonectria parasitica harbor 107 and 121 CYPs, respectively [13,14]. Fungal CYPs are involved
in diverse biological processes, including production of primary and secondary metabolites and
denitrification. However, compared to plants and animals, few fungal CYPs have been functionally
characterized. Investigation of fungal CYPs will improve our understanding of fungal biology and
metabolism, and may offer opportunities to exploit their catalytic functions.

In this review, we provide an overview of the fungal metabolic systems in which CYPs play
roles, such as primary and secondary metabolism, degradation of xenobiotics, and other fungal traits.
We also present a phenome-based functional analysis of whole CYP genes in the plant pathogenic
fungus Fusarium graminearum, which illuminates the functional diversity and potential applications of
fungal CYPs.

2. Fungal CYPs

Fungi represent a large kingdom of lower eukaryotic organisms, which are ubiquitous in ecological
niches such as soil, living plants and animals, and decaying organic materials [15]. To rapidly
adapt to environmental stresses and new niches, fungi have evolved extraordinary cellular defense
systems, including CYP-mediated mechanisms for detoxification of exogenous toxic compounds.
In particular, filamentous fungi have an outstanding ability to degrade a variety of toxic substances
(e.g., environmental pollutants, xenobiotics, and plant-derived toxins) [16–19], and some filamentous
fungi are well known for production of characteristic toxins via CYPs. Recent genetic evidence
suggests that CYP enzyme reactions are closely involved in fungal developmental processes and
pathogenesis [20,21].

CYP nomenclature is mainly based on amino acid sequence identity; 40% identity or greater
places CYPs in the same family and greater than 55% identity places CYPs in the same subfamily [7].
As mentioned above, CYPs are key enzymes in many fungal processes, and classifiable into multigene
families, CYP51–CYP69, CYP501–CYP699, and CYP5001–CYP6999 [15,22,23] (Table 1). CYP51, CYP56,
CYP61, and many other known fungal CYPs are involved in biosynthesis of primary and secondary
metabolites, as well as detoxification/degradation of xenobiotics. Many studies have predicted the
functions of CYPs of individual fungi using bioinformatics tools [24–28]. Fungal CYPs are grouped
in 15 clades based on their phylogenetic relationships [14]. Clade 8 is composed of the most family
members including CYP59, CYP60, and CYP65 (Table 1). Recently, 14,896 CYPs were identified from
157 fungal and oomycete species [29]. However, the precise biological functions of most fungal CYPs
remain undefined. For example, the CYPome of the white rot fungus Phanerochaete chrysosporium
comprises ~150 CYPs, mostly arranged in gene clusters. In this fungus, except for the structurally and
functionally conserved fungal CYP families, CYP51, CYP61, and CYP53, the roles of the other CYPs
are still largely unknown and await functional characterization [30,31].
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Table 1. Cytochrome P450 monooxygenases in fungi.

Clade 1 Family Class 2 Organism Function Reference

1 CYP51 E, group I, IV
S. cerevisiae, C. albicans, C. kefyr, C. glabrata, C. guilliermondii, C. parapsilosis,
C. tropicalis, C. krusei, Ustilago maydis, Schizosaccharomyces pombe,
Kluyveromyces marxianus, Penicillium italicum, Fusarium graminearum

Demethylation of eburicol/lanosterol at 14α position [21,23,32–42]

2 CYP52 E, group II C. maltose, C. tropicalis, C. apicola n-alkane and fatty acid assimilation [3,42–50]

2 CYP53 E, group I Aspergillus niger, Beauveria bassiana, Cochliobolus lunatus, P. chrysosporium,
Rhombophryne minuta Degradation or detoxification benzoate and its derivatives [51–56]

2 CYP54 E, group I Neurospora crassa Cycloheximide inducible, but function is unknown [57]

3 CYP55 E, group I F. oxysporum, Cylindrocarpon tonkinensis, A. oryzae, Trichosporon cutaneum Denitrification process [58–63]

4 CYP56 E, group IV S. cerevisiae, C. albicans Formation of dityrosine [64–66]

6 CYP57 E, group I Nectria haematococca Pisatin detoxification [67–69]

6 CYP58 E, group I F. sporotrichioides, F. graminearum Trichothecene biosynthesis (TRI4) [70,71]

7 CYP58 B A. flavus, A. parasiticus Aflatoxin biosynthesis [72–74]

8 CYP59 E, group I A. nidulans Sterigmatocystin biosynthesis (stcS/verA) [75,76]

8 CYP60 E, group I A. parasiticus, A. nidulans o-methylsterigmatocystin to aflatoxin (ord1),
sterigmatocystin biosynthesis (stcF and stcL) [76,77]

8 CYP61 E, group I S. cerevisiae, C. glabrata Sterol D22-desaturase in ergosterol biosynthesis (erg5) [22,78]

8 CYP62 E, group I A. nidulans Sterigmatocystin biosynthesis (stcB) [76]

8 CYP63 E, group I P. chrysosporium Unknown function [79]

8 CYP64 E, group I A. flavus Conversion of o-methylsterigmatocystin to aflatoxin (ord1) [80]

8 CYP65 E, group I F. sporotrichioides Trichothecene biosynthesis (TRI11) [71]

9 CYP66 E, group IV Agaricus bisporus Developmental regulation of mushroom [81]

10
CYP68,
CYP69,
CYP503

E, group I F. fujikuroi Gibberellin biosynthesis [82,83]

10 CYP504 E, group I A. nidulans Catalyzing phenylacetate 2-hydroxylation [84–86]

14 CYP505 E, group IV F. oxysporum ω-1 toω-3 carbon hydroxylation of fatty acids [86,87]

15 CYP505 E, group IV F. verticillioides Fumonisin biosynthesis [88,89]

15 CYP526 E, group IV F. sporotrichioides Trichothecene biosynthesis [71]
1 The fungal CYP families fall into 15 clades based on their phylogenetic relationships [14]; 2 This classification of CYPs is based on the number of components in the system [90].
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3. CYPs Related to Secondary Metabolite Biosynthesis

Fungi produce a variety of secondary metabolites. In limited environmental niches, some fungi
utilize secondary metabolites as weapons to compete against other organisms including bacteria, plants,
animals, and even other fungi, and some toxins of pathogenic fungi function as important virulence
factors in host-microbe interactions [91–94]. The functions of many fungal secondary metabolites
remain obscure or unknown, but are predicted to play roles in interactions with other organisms.
Secondary metabolites carry out a broad range of useful antibiotic, immunosuppressant, and mycotoxic
activities [95–97]. Mycotoxins are toxic secondary metabolites produced by fungi, usually found in
contaminated crops, and have severe effects on both humans and animals (Table 2). Structures of
major mycotoxins are shown in Figure 1. Many fungal CYPs are known to be involved in mycotoxin
biosynthesis [15,98].

Table 2. Mycotoxins produced by Cytochrome P450 (CYP)-mediated reactions.

Mycotoxin Organism Characteristics Reference

Aflatoxin A. flavus, A. parasiticus, etc. Carcinogenic compounds posing a potential risk to livestock
and human health [99]

Ak-toxin Alternaria alternata Host-selective toxin, virulence factor to infect Japanese pear [100]

Af-toxin A. alternata Host-selective toxin, virulence factor to infect strawberry [101]

Botridial Botrytis cinerea Induction of chlorosis and cell collapse in plant [102–104]

Depudecin A. brassicicola An inhibitor of histone deacetylase (HDAC) [105]

Dothistromin Dothistromaseptosporum A broad-spectrum toxin that generates oxygen radicals by
reductive oxygen activation [106]

Ergot alkaloid Claviceps, Penicillium,
and Aspergillus spp.

A complex family of indole derivatives with diverse
structures and biological activities [107,108]

Fumonisin F. verticillioides Induction of several animal diseases, including
leukoencephalomalacia, pulmonary edema, and cancer [109]

Hc-toxin Cochliobolus carbonum An inhibitor of histone deacetylases (HDACs) in many
organisms, including plants, insects, and mammals [110,111]

Ochratoxin Aspergillus, and Penicillium spp. Possible carcinogenic [112]

Paxilline P. paxilli A potassium channel blocker [113,114]

PR-toxin P. roqueforti Liver toxicity and abortions in cows [115]

Sterigmatocystin A. nidulans, A. versicolor A toxic metabolite structurally closely related to the aflatoxins [75,76]

Trichothecene F. sporotrichioides, F. graminearum Inhibition of protein synthesis and highly cytotoxic to
many eukaryotes [71,95,116]
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3.1. Aflatoxins and Sterigmatocystin

Aflatoxins B1 (AFB1), B2 (AFB2), G1 (AFG1), and G2 (AFG2) and sterigmatocystin are polyketides
derived from the same secondary metabolite biosynthetic pathway [118]. They are produced by several
fungi, primarily by Aspergillus spp., which grow in soil, decaying vegetation, hay, and grain [119].
Although sterigmatocystin, the precursor of aflatoxin B1, has lower toxicity than other aflatoxins, both
mycotoxins are potent carcinogens that cause liver cancer in mammals [120]. Among the 26 genes located
in the aflatoxin biosynthetic gene cluster, aflG, aflQ, aflU, and aflV encode CYPs [76,99]. aflG is involved in
the monooxygenase step that converts averantin to hydroxyaverantin, a precursor of aflatoxins [121].
aflQ encodes an oxidoreductase that is responsible for conversion of dihydro-O-methylsterigmatocystin
to AFB1 and AFG1 and of O-methylsterigmatocystin to AFB2 and AFG2 [122,123]. aflV is involved
in the reaction from averufin to 1′-hydroxyversicolorone, the first step in dihydrobisfuran formation
during aflatoxin biosynthesis [74]. The pathway involvement of aflU remains unclear [99].

3.2. Fumonisins

Fumonisins are polyketide mycotoxins that cause severe animal diseases, including
leukoencephalomalacia in horses, pulmonary edema in swine, and kidney and liver cancers in mice [124].
In addition, the consumption of fumonisin-contaminated maize induces high incidences of esophageal
cancer in humans [125]. These mycotoxins are mainly produced by the maize pathogen F. verticillioides
and several other Fusarium spp. [109]. At least 8 genes involved in biosynthesis of this toxin have been
identified, one of which, FUM6, encodes a CYP [88]. In the fumonisin backbone, C-14 and C-15 are
probably the direct substrate for Fum6-catalyzed hydroxylation [109,126].

3.3. Host-Selective Toxins

Host-specific toxins (also known as host-selective toxins; HSTs), which are produced by a number
of plant pathogenic fungi, are a class of low-molecular-mass secondary metabolites [127]. They are
called HSTs because these toxins are critical determinants of pathogenicity in specific plant–disease
interactions [127]. The genera Alternaria and Cochliobolus are well known to produce HSTs [128].
A. alternata, a pathogenic fungus on a number of plants, produces several structurally diverse HSTs;
AF-, AK-, ACT-, and AAL-toxins are produced by the strawberry, Japanese pear, tangerine, and tomato
pathotypes of A. alternata, respectively [129]. In the Japanese pear pathotype, AKT7 encodes a CYP
that suppresses AK-toxin production [100]. There are 13 ALT genes involved in the biosynthesis of
AAL-toxin, and ALT2, a homolog of FUM6, also encodes a CYP [129].

The cyclic tetrapeptide HC-toxin is an inhibitor of histone deacetylases in several organisms,
including plants and animals [130]. It is also a well-known host-selective toxin produced by C. carbonum
that selectively affects maize lines of genotype hm1/hm1 [127]. One of the genes for HC-toxin
biosynthesis encodes a CYP, which is involved in generation of the epoxide group [111].

3.4. Dothistromin

Dothistromin (DOTH), a polyketide-derived mycotoxin produced by D. septosporum, has broad-
spectrum toxicity to plants, animals, and microbial cells via generation of oxygen radicals [131].
D. septosporum is an important forest pathogen that causes red band needle blight disease of pine
trees [132], and DOTH is a virulence factor that affects the severity of disease, even though it is not
required to cause disease [133]. The structure of DOTH is similar to that of versicolorin B, a precursor
of aflatoxin, and the two DOTH biosynthetic CYP genes, CypX and AvnA, are orthologs of aflV and
aflG, respectively. AvnA catalyzes the conversion of averantin to hydroxyaverantin in the early part of
the DOTH biosynthetic pathway [106].
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3.5. Botridial

B. cinerea is the causal agent of gray mold disease in more than 200 crop species worldwide [134].
B. cinerea, which has a necrotrophic lifestyle, secretes diverse cell wall–degrading enzymes and
toxins to kill host cells [135]. Botridial is the best-studied toxin produced by this fungus, and CYP
BcBot1 is responsible for hydroxylation of the C-15 carbon of 10-hydroxyprobotryane during botridial
biosynthesis [103].

3.6. Ochratoxin A

Ochratoxin A (OTA) is a naturally occurring mycotoxin produced by a few of Aspergillus
and Penicillium spp., e.g., Aspergillus ochraceus, A. carbonarius, A. westerdijkiae, A. steynii and
Penicillium verrucosum, P. nordicum, and P. thymicola, on improperly stored food products [112,136].
OTA is the most toxic and frequently found among several forms of ochratoxins. The International
Agency for Research on Cancer (IARC) has classified OTA as a possible human carcinogen, based on
demonstrated carcinogenicity in animal studies [137]. Unlike other well-characterized mycotoxins,
ochratoxin biosynthetic pathway has not yet been unraveled in detail. In addition to polyketide
synthases (PKSs) and non-ribosomal peptide synthases (NRPSs), several key genes required for
biosynthesis of OTA including putative CYPs were identified in a few Aspergillus species. Moreover,
conserved OTA biosynthetic genes have been recently identified using a comparative genome analysis
in several Aspergillus and Penicillium species [138].

4. Xenobiotic-Metabolizing CYPs

The environment contains a great number of substances and their mixtures, and more than
135 million organic and inorganic chemicals have been registered in the CAS RegistrySM collection
to date [139]. Chemical compounds found within an organism or ecosystem that are not produced
by that organism or ecosystem are called xenobiotics. Many xenobiotics are usually synthesized for
industrial and agricultural purposes, i.e., aromatics, pesticides, and hydrocarbons; some of them
are harmful to living organisms. Organisms have evolved efficient systems to prevent absorption
of xenobiotics, to eliminate them, and to repair or adapt to damage caused by xenobiotics. Among
xenobiotic-metabolizing enzymes, CYPs are the most abundant and versatile [140,141].

Studies of mammalian xenobiotic-metabolizing CYPs have led to the discovery and
characterization of the xenobiotic metabolism pathways [8,140,141]. In humans, drug-metabolizing
CYPs mostly presenting in the liver are responsible for oxidative metabolism of xenobiotics [140].
Many insect CYPs also play roles in detoxification of xenobiotics. Insect CYPs are inducible in response
to botanical insecticides and/or plant secondary metabolites [11,142,143]. Also, some plant CYPs
involved in the detoxification of xenobiotics such as herbicides [9]. In fungi, the wood-rotting
basidiomycetes, particularly the white rot fungus P. chrysosporium and the brown rot fungus
Postia placenta, are the most well-known fungi involved in the biodegradation of various xenobiotic
compounds [144,145]. In particular, in P. chrysosporium 33 CYP families are involved in the
hydroxylation of polycyclic aromatic hydrocarbons, and the genes belonging to the CYP63 family are
predicted to be involved in degradation of various xenobiotics [144].

One of the best-characterized fungal CYPs is a pisatin demethylase (PDA, CYP57A1), which was
first identified in N. haematococca [146]. PDA is the enzyme responsible for detoxifying pisatin, one of
the isoflavonoid phytoalexins produced by Pisum sativum L. (garden pea). N. haematococca isolates
with pisatin demethylating activity are tolerant to pisatin and highly virulent on pea, suggesting that
PDA is a host-specific virulence factor in this fungus. F. oxysporum f. sp. pisi, another pea pathogen,
possesses orthologs of PDA that play a major role in pisatin detoxification [147].
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5. CYPs Required for Fungal Development and Virulence

One particularly well-studied fungal CYPs is CYP51, which mediates primary metabolism of
ergosterol biosynthesis [148]. Ergosterol is a fungal-specific membrane sterol required for regulation
of membrane fluidity and permeability [148,149]. It is essential for fungal growth and therefore is a
primary target of antifungal compounds. Therefore, CYP51 has been exploited as a disease control
target of fungal pathogens [139,150]. Sterol 14α-demethylase, a member of the CYP51 family, is the
main target for therapeutic azole antifungal drugs and agricultural azole fungicides. Although the
precise biochemical mechanism remains unclear, CYP51 orthologs are responsible for sensitivity to
different azole fungicides, as these compounds specifically bind and inhibit sterol 14α-demethylase
paralogs. Most fungi, including A. nidulans, A. fumigatus, C. albicans, C. neoformans, as well as
F. graminearum, possess one or multiple CYP51 genes [139,151,152].

Oxylipins are oxygenated metabolites of linoleic or oleic acids that have hormone-like functions
in sexual and asexual reproduction in many fungi [153]. The precocious sexual inducer (psi)
factor-producing oxygenases (Ppos), natural fusion proteins of a heme peroxygenase at N-terminus
and a P450 domain at C-terminus, are required for the production of oxylipins in Aspergillus spp.,
and CYP52-mediated oxygenation of hydrocarbons or fatty acids is important for lipid metabolism
and pathogenesis in the human pathogen C. albicans. However, their exact biochemical mechanisms
remain unclear.

Along with CYP51, which encodes sterol 14α-demethylase, CYP56 of S. cerevisiae and C. albicans
are necessary for production of N, N′-bisformyl dityrosine, a component of the outer spore wall [65].
However, a homolog of CYP56 in C. albicans was found not to be essential for cell viability under
culture conditions [66].

Fungal denitrification is the major pathway of nitrogen cycle in nature. CYP55, which encodes
nitric oxide reductase (P450nor), is considered essential for most fungal denitrifying systems [154].
The multifunctional detoxifying enzyme CYP55 catalyzes the co-denitrification reaction and
additionally exhibits NADH-peroxidase activity. Homologs of the CYP55 gene (P450nor) are
distributed in many fungal genomes.

Significant regulation of CYPs has been observed during host-pathogen interactions via
gene/transcriptome profiling analyses of several fungi, e.g., F. graminearum, Curvularia lunata,
and Heterobasidion annosum, although the mechanisms are not yet known [155–157]. Recently,
a pathogenicity-related CYP gene has been identified in Verticillium dahliae via transfer DNA (T-DNA)
random insertional mutagenesis [158].

6. CYPs of F. graminearum

Several fungal CYPs have been known to play critical roles in primary and secondary metabolism
and degradation of xenobiotics [159]. Besides, some CYPs in pathogenic fungi has emerged as
important enzymes in virulence [155]. However, the involvement of CYPs in fungal development and
other functions, such as virulence or xenobiotic detoxification, has rarely been elucidated, and there
has been no systematic approach to the investigation of CYPs in filamentous fungi, including plant
pathogens. The plant pathogenic fungus F. graminearum is an economically important pathogen that
causes Fusarium head blight in major cereal crops such as wheat, barley, and rice, and Fusarium ear
and stalk rot in maize worldwide [160]. In addition to yield losses, the fungus contaminates grains
with mycotoxins such as trichothecenes (nivalenol (NIV) and deoxynivalenol (DON)) and zearalenone
(ZEA), which pose serious threats to human and animal health [95]. F. graminearum is a good model
organism, as its genome has been sequenced and targeted genetic modification is relatively easy [161].
The genome of F. graminearum is predicted to contain 119 putative CYP genes, which constitute 0.9% of
the total predicted genes (Figure 2) [13].
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To date, only nine F. graminearum CYPs have been functionally characterized. Three CYP
genes are paralogs of CYP51, which encodes an ergosterol biosynthetic enzyme [21,139]. Four CYPs
(TRI1, TRI4, TRI13, and TRI11) are involved in trichothecene biosynthesis [71,162], and Fg08079
and CLM2 are required for the biosynthesis of butenolide [163] and culmorin [164], respectively.
To systematically characterize the CYPome of F. graminearum, CYP gene knockout mutants were
generated, and a comprehensive phenome of 102 CYP mutant library of F. graminearum was tested in
38 traits (Figure 3) [20]. Notably, specific CYP genes have been identified that are required for virulence
(five CYPs), conidiation (one CYP), and sexual development (two CYPs) in this fungus.
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Figure 3. Phenotypic analyses of CYP deletion mutants of F. graminearum. (a) Altered xenobiotic stress
response of wild type (Z-3639) and one CYP deletion mutant. DD, 1-dodecanol; (b) Development
of perithecia (upper panel) and formation of asci rosettes (lower panel); A CYP gene deletion strain
(right panel) showed defects in perithecia and ascospore formation whereas the parent strain (left panel)
displayed normal perithecia and ascospores. Scale bar = 500 µm (upper), 20 µm (lower left), and 200 µm
(lower right); (c) Altered ultra-violet (UV) stress response of wild type and CYP mutant strain;
(d) Virulence of wild-type and CYP deletion strains on wheat heads. Five mutants showed reduced
virulence compared to the wild-type strain (Z-3639). These data have been reproduced from [21] with
slight modifications, Copyright 2013, John Wiley & Sons.
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6.1. Trichothecenes

Trichothecenes are a large family of sesquiterpenoid secondary metabolites mainly produced
by Fusarium spp. [165]. They are potent inhibitors of protein translation in eukaryotes via ribosomal
binding [166]. DON and NIV are not only phytotoxins that contribute to the virulence of F. graminearum,
but also mycotoxins that cause moldy-grain toxicosis in animals. In experimental animals, acute
high-dose exposure induces a radiomimetic effect, with symptoms such as diarrhea, vomiting,
leukocytosis, and gastrointestinal hemorrhage. At extremely high doses, these effects can cause
circulatory shock, reduced cardiac output, and ultimately result in death [167]. NIV is significantly
more toxic than DON [168]. Four CYPs, Tri1, Tri4, Tri11, and Tri13, are involved in biosynthesis of
trichothecenes (Figure 4). Among the four CYPs in the trichothecene biosynthetic gene cluster, Tri13,
3-acetyltrichothecene C-4 hydroxylase, is responsible for hydroxylation of trichothecenes at C-4 [169];
the gene is therefore a determinant of the DON- and NIV-producing chemotypes in F. graminearum [170].
TRI4 encodes a multifunctional oxygenase that is responsible for the conversion of trichodiene to
isotrichotriol. TRI4 mutants do not produce trichothecenes and highly accumulate trichodiene [70,171].
TRI1 and TRI11 encode 3-acetyltrichothecen C-8 hydroxylase and isotrichodermin C-15 hydroxylase,
respectively [71].
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6.2. Xenobiotic-Metabolizing CYPs in F. graminearum

CYPs have been extensively studied in many organisms because of their abilities for xenobiotic
decomposition. Likewise, some putative xenobiotic-metabolizing CYPs in F. graminearum have been
characterized based on genetic evidence [20]. Fg01972 (CYP505A7) mutant strains showed reduced
growth on 1-dodecanol-amended medium compared to the wild type (Figure 3a), and transcription of
Fg01972 was highly up-regulated in response to exogenous treatment with 1-dodecanol. The Fg01972
enzyme may play an important role in detoxification and/or mineralization of this compound.
Moreover, most CYP genes (93 of 102) were markedly induced in at least one xenobiotic condition [20],
demonstrating that many are closely related to xenobiotic metabolism, with redundant functions.
Further studies are required to identify the substrates of these CYP enzymes.

In F. oxysporum, CYP505 members are fatty acid hydroxylases that perform subterminal omega
hydroxylation of fatty acids [86]. Both the CYP505 (Fg07596 and Fg01972) and CYP540 (Fg02138 and
Fg02929) families in F. graminearum are highly induced by aliphatics such as n-dodecane and
1-dodecanol [20]. In addition, Fg10451 belongs to the CYP53A subfamily hydroxylates benzoic
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acid and other monosubstituted benzoate derivatives, forming para-hydroxylated products in the
ascomycete fungi A. niger, A. nidulans, and C. lunatus, as well as in the basidiomycete fungus
P. chrysosporium [51,52,55,56]. Fg02458 and Fg00012 are members of the CYP63 family, which is
predicted to take part in the degradation of fatty acids, and members of the subfamily CYP537A2
(Fg12737) are known to be related to benzoate 4-monooxygenase cytochrome P450 [14,29].

6.3. CYPs Required for Fungal Development and Virulence in F. graminearum

Phenotype-based screens of mutant libraries have provided a powerful approach for functional
genomic studies in F. graminearum [161,172]. A comprehensive phenome set illuminated the
molecular mechanisms underpinning sexual and asexual development, mycotoxin production, stress
responses, and pathogenicity in this fungus [161]. Our previous study on the systematic functional
characterization of CYP genes in F. graminearum revealed that many novel CYPs are closely involved
in fungal developmental processes including virulence [20]. Using this phenotypic dataset, we could
gain insight into the cryptic functions of CYPs in fungi.

In A. nidulans, the psi factor, hormone-like fatty acid-derived oxylipins, serves as a signal molecule
that modulates sexual and asexual sporulation by affecting the timing and balance of asexual and
sexual spore development [173]. Fg09671 (CYP616A1) deletion mutants of F. graminearum showed
defective sexual reproduction (Figure 3b) [20]. This indicates that Fg09671-mediated signalling might
be related to regulation of the initial stages of sexual development, such as switching from mycelial
growth to fruiting body development or differentiation of hyphae into fruiting body tissues.

The Fg01583 (CYP642A1) deletion mutant produced orange pigment in mycelia and grew faster
than the wild-type strain under ultra-violet (UV)-B conditions (Figure 3c). Most plants produce
flavonoids as the major red, blue, and purple pigments, and these pigments play key roles in defense,
as antimicrobial agents and UV protectants [174]. The exact biochemical function of Fg01583 is not
known yet, but this CYP642A1-type CYP enzyme seems to play a role in secondary metabolite
biosynthesis, which is important for UV protection.

In infection assays with flowering wheat heads, deletion mutants of five CYPs, Fg03700
(CYP620B1), Fg02111 (CYP636A1), Fg00012 (CYP630A1), Fg10451 (CYP53A8), and Fg12737 (CYP537A2),
showed reduced virulence compared to the wild type (Figure 3d). Plants synthesize and accumulate
secondary metabolites such as phytoalexins that are toxic to most fungi and are suspected of being
involved in plant defence mechanisms [175]. However, fungal pathogens frequently possess the
ability to detoxify host phytoalexins. For instance, PDA, a CYP enzyme produced by N. haematococca,
detoxifies the pisatin produced by its host [16]. We suspect that these CYPs, which displayed reduced
virulence when deleted, are involved in degradation of plant-derived metabolites or plant tissues for
successful infection. Recently, comparative in planta transcriptome analyses revealed that more than
40 CYPs may be involved in host–pathogen interactions of F. graminearum [176].

7. Conclusions

Fungal CYPs play essential roles for survival, and several azole fungicides that are mainly targeted
at the CYPs have been commercially used for control of animal and plant pathogenic fungi [177].
Decades of studies on fungal genetics and biochemistry have established the involvement of CYPs
in many bioconversion processes related to degradation of foreign compounds and biosynthesis of
secondary metabolites in fungi. However, scant information is available on CYPs and their involvement
in fungal developmental processes, including virulence, due to the lack of CYP mutants defective
in those phenotypes and available up-to-date molecular techniques. Using data from a systematic
functional genomic study of F. graminearum, we identified some clues to the novel functions of CYPs
in toxigenic fungi. Further studies should focus on the identification of the substrate specificity
of CYPs using metabolomic and/or biochemical approaches. Moreover, the complex regulatory
genetic networks governing CYP enzyme reactions will be uncovered by applying advanced molecular
genetics techniques and multi-omics approaches. These multidisciplinary studies on CYPs will provide
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fundamental information on fungal-specific CYPs compared to those of other organisms and new
insights into fungal biology and virulence.
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