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ABSTRACT: The failure of default scoring functions to ensure virtual screening enrichment is a persistent problem for the
molecular docking algorithms used in structure-based drug discovery. To remedy this problem, elaborate rescoring and
postprocessing schemes have been developed with a varying degree of success, specificity, and cost. The negative image-based
rescoring (R-NiB) has been shown to improve the flexible docking performance markedly with a variety of drug targets. The
yield improvement is achieved by comparing the alternative docking poses against the negative image of the target protein’s
ligand-binding cavity. In other words, the shape and electrostatics of the binding pocket is directly used in the similarity
comparison to rank the explicit docking poses. Here, the PANTHER/ShaEP-based R-NiB methodology is tested with six
popular docking softwares, including GLIDE, PLANTS, GOLD, DOCK, AUTODOCK, and AUTODOCK VINA, using five
validated benchmark sets. Overall, the results indicate that R-NiB outperforms the default docking scoring consistently and
inexpensively, demonstrating that the methodology is ready for wide-scale virtual screening usage.

1. INTRODUCTION
Structure-based drug discovery is increasingly turning toward in
silico methods such as molecular docking for expediency and
cost efficiency.1−5 Docking aims to predict accurately both the
bioactive binding pose and the affinity of a ligand forming the
complex with its receptor. Docking sampling, generating
alternative ligand binding poses against the receptor’s binding
site, is performed using incremental construction, matching
algorithms, or stochastic methods such as Monte Carlo and
genetic algorithms. Docking scoring, which is roughly divided
into force-field-based, empirical, or knowledge-based methods,
ranks the generated ligand−receptor complexes. Depending on
the scoring method, noncovalent bonding interactions and also
hydrogen bonding (H-bonding), hydrophobic effect, and even
binding entropy can be summed for the final score.1,2,5,6

Docking sampling treats either only the ligand flexibly or both
the ligand and the receptor adjust reciprocally. As the number of
degrees of freedom increases, also the computational costs of
docking simulations increase. Although popular these days, it is
debatable if either the flexible or induced-fit docking are suitable
for high-throughput virtual screening as opposed tomuch lighter
rigid docking simulations.2,6 A robust metric for assessing

sampling is to compare the predicted poses against the
experimentally verified poses.7−11 However, for example, X-ray
crystal structures are only snapshots of the dynamic recognition
process, and thus, both the ligand and the receptor can have
alternative reciprocal conformations.12,13 Even so, the docking
generally samples the “correct” poses excellently or at least
reasonably well.1,5,14,15

Despite its potential, docking has disadvantages that must be
acknowledged. First, the ability of the algorithms to separate
active ligands from the inactive ones is highly dependent on the
target protein or its conformation.13,16 Second, even if the right
conformer is sampled, it is frequently given too low a
score.14,17,18 Third, the success is dependent also on the
software and/or applied settings, and unfortunately, without
verification, it is difficult to make the needed adjustments.9,19,20

Even when relying on benchmarking, the enrichment metrics
such as the area under the curve (AUC) might give too rosy a
picture because the early enrichment could remain too low for
effective drug discovery.21−23
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As it stands, there exists a plethora of postprocessing
techniques, involving force field-based optimization and
evaluation steps, for improving the docking results. Due to the
high cost of these methods, e.g., SIE (Solvated Interaction
Energy) or MM/GB(PB)SA (Molecular Mechanics with
Generalized Born or Poisson−Boltzmann and Surface Area
solvation) calculations,24−26 their implementation is limited to
the top-ranked compounds in the multistep workflows. Instead,
the alternative conformers outputted by the sampling could
already contain the bioactive poses, and effective rescoring could
rank them correctly. On a case-by-case basis, the docking
performance can even be improved by calculating a consensus
score that combines the output of several functions.27−29

In the negative image-based rescoring (R-NiB; Figure 1),21

molecular recognition is not considered as the sum of its parts as
in standard docking, but the focus is put on the shape/

electrostatics complementarity between the ligand and its
binding cavity in its entirety. A negative image, encompassing
both the key shape and charge features of the cavity (Figure 1), is
generated using PANTHER.22 In the negative image-based
(NIB) screening,22,25,30,31 this cavity-based drug-like NIBmodel
or pseudoligand is used to dock rigidly the ab initio-generated
ligand conformers via geometry optimization using ShaEP.32 In
contrast, in R-NiB, the shape/charge of the conformers
originating from flexible docking is directly compared against
the negative image without the optimization (a.k.a. docking).
The PANTHER/ShaEP-based rescoring (∼2−4 ms/comp.) is
much faster to compute than the initial flexible docking (e.g.,
PLANTS: ∼40−80 ms/comp.).21

In a prior study,21 the NIB methodology was modified to
facilitate the rescoring of explicit docking solutions of
PLANTS.37 The benchmarking was performed with 11 targets
using validated test sets,38,39 and despite its ultrafast speed and
relatively simple premise, R-NiB (Figure 1) was able to improve
the flexible docking enrichment with multiple targets. Notably,
the yield improvements did not require specific tinkering of the
software settings.21 Here, the aim was to determine if R-NiB
(Figure 1) is as efficient with the other widely used docking
software as it is with PLANTS. Accordingly, R-NiB was paired in
addition to PLANTS with GOLD,40 GLIDE,41,42 DOCK,43

AUTODOCK,44 and AUTODOCK VINA34 and tested on five
different targets.39

While there is software- and target-specific differences, R-NiB
(Figure 1) consistently improved the performance of the
selected docking algorithms. Overall, R-NiB also produced
higher enrichment than the rescoring algorithm SMINA,45

although the latter method excelled in the very early enrichment
with many targets and docking software. Given the clear-cut
nature of the results, it is suggested that R-NiB should be
routinely paired with flexible docking simulations in virtual
screening assays to facilitate efficient drug discovery.

2. RESULTS
2.1. Selecting Targets for Benchmarking. Target

proteins (Figure 2; Table 1) were selected based on the
dissimilarities in their ligand-binding cavities shape, size, and
hydrophobicity or the level of difficulty observed in the prior
docking or negative image-based rescoring (R-NiB; Figure 1)
efforts.21 As a result, the composition and the number of filler
atoms or charge points in the final negative images or models,
reflecting the cavity shape/electrostatics, vary markedly between
the targets (N = 44−79; Figure 2). The five target proteins are
valid drug discovery targets for which there exist several high-
resolution X-ray crystal structures (Table 1; Figure 2) and
commonly used benchmarking test sets (Table 1).39

The mineralocorticoid receptor (MR; Figure 2A) has a well-
defined and mostly hydrophobic ligand-binding site typical for
steroid-binding nuclear receptors; i.e., high-affinity binding
requires a tight fit between the ligand and the cavity. In contrast,
the ligand-binding site of neuraminidase (NEU; Figure 2B) is a
small opening on the protein surface; this open-endedness of the
target cavity is a mounting challenge for flexible docking
algorithms as demonstrated by a case study involving prion
protein.51 Although the retinoid X receptor alpha (RXRα;
Figures 1 and 2C) is also a nuclear receptor with a hydrophobic
binding site, its pocket is a lot larger than that of MR. The
binding site of cyclooxygenase-2 (COX-2; Figure 2D) is a well-
defined space with both hydrophobicity- and charge-driven
characteristics important for inhibitor binding. Finally, phos-

Figure 1. Negative image-based rescoring step-by-step. The negative
image-based rescoring (R-NiB) protocol follows five steps: (1) Ligand-
binding cavity and its centroid are selected from the protein 3D
structure (a cartoonmodel of RXRαwith the bound docosa hexaenoate
or HXA; PDB: 1MV9).33 (2) Negative image or NIB (negative image-
based) model (transparent surface), composed of neutral filler atoms
(cyan spheres) and negative cavity point (red sphere), is generated
using PANTHER.22 (3) Flexible molecular docking (e.g., VINA34) is
performed for the ligands (e.g., lig. #1 and lig. #2 or C44184559 and
CHEMBL2085503 in the DUD-E set for the RXRα18), and several
(e.g., N = 3) alternative docking poses (stick models with white
backbone) are outputted for each compound. (4) Cavity-based
rescoring or the shape/charge comparison of docking poses (one at a
time!) is used with theNIBmodel without geometry optimization using
ShaEP.32 (5) Comparison produces similarity scores (from 1 to 0) for
each docked pose, and this information is used to rank the individual
docking poses and the ligands. Based on the R-NiB ranking, compounds
can be categorized or predicted as inactive (red stickmodel; e.g., lig. #1)
or active (green stick model; e.g., lig #2). Note that the steps involved in
the protein or ligand preparation for NIB model generation or docking,
visual inspection of the best-ranked poses, or potential benchmarking
efforts are omitted for brevity. The figure was created using BODIL35

and Visual Molecular Dynamics or VMD 1.9.2.36
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phodiesterase-5 (PDE5; Figure 2E), whose ligand-binding
cavity is spacious and contains plenty of water, was chosen
due to the challenge it has presented for flexible docking and
negative image-based (NIB) screening as well as R-NiB in prior
studies.21,22,25

2.2. Default Docking ScoringBetter Than Guessing.
The superiority between different docking softwares (Table 1) is

under constant debate because the success of molecular docking
in separating the active ligands from the inactive compounds is
software and target specific.7−11 Furthermore, the success of the
different docking algorithms is difficult to assess reliably via
enrichment comparisons if the software in question skips a
substantial and variable number of ligands during the docking.
This is especially the case with the early enrichments, where a

Figure 2.Negative images of target proteins’ ligand-binding cavities. On the left, 3D structures of target proteins (cartoon models) with co-crystallized
ligands (CPK models) at binding cavities. In the middle, cross sections of binding cavities (opaque surfaces) in close ups (red boxes). PANTHER22-
generated negative images or NIB (negative image-based) models are composed of neutral filler atoms and negatively or positively charged cavity
points (cyan/red/blue spheres). On the right, NIBmodels are shown with space-filling transparent surfaces either with cavity points or an active ligand
from PLANTS37 docking (sticks with a green backbone). Both the shape and volume (N = 44−79) of NIB models vary substantially between (A)
mineralocorticoid receptor (MR; PDB: 2AA2),49 (B) neuraminidase (NEU; PDB: 1B9V),50 (C) retinoid X receptor alpha (RXRα; PDB: 1MV9;
different angle shown in Figure 1),33 (D) cyclooxygenase-2 (COX-2; PDB: 3LN1),46 and (E) phosphodiesterase-5 (PDE5; PDB: 1UDT).29 NIB
models aim to encompass only those cavity sections needed for ligand binding instead of filling the cavities to the brim. The figure was created using
BODIL35 and Visual Molecular Dynamics or VMD 1.9.2.36
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difference of only a few docked ligands can skew the results to
either direction.
Here, in order to compare the docking results of different

software reliably, the skipped molecules were added to the
bottom of the ranking list at even ratios that correspond to
random picking. Flexible docking, especially regarding scoring,
was also done using the default settings of each software to limit
the amount of computations to a manageable level and make the
comparison unbiased. In practice, most of the tested algorithms
(e.g., DOCK) have multiple and potentially better-suited
scoring functions for the targets than default scoring. As per
expectation, the performance of the docking software in
benchmarking varied a great deal. Usually, default docking
scoring was a lot or at least slightly better than a proverbial coin
toss in recognizing the active ligands from the inactive decoys
(Table 2; Figure 3; Figures S1−S10).
Depending on the test set, PLANTS docking produced AUC

values within the range from 0.55± 0.03 to 0.85± 0.01. GOLD,
VINA, and AUTODOCK performed roughly similarly and
acquired AUC values between 0.47 ± 0.03 and 0.88 ± 0.02.

Here, DOCK performed fractionally worse than the other
softwareit failed with RXRα and MR as the AUC values
ranged from abysmal to only barely above random (Table 2).
However, it is also noteworthy that DOCK performed
exceptionally well with NEU (AUC: 0.82−0.83 ± 0.02; Table
2; Figure 3). The docking success of GLIDE depended highly on
a target and the used screeningmode:With theHTVSmode, the
AUC values ranged from unsuccessful (MR: 0.48 ± 0.03) to
moderate (RXRα: 0.68 ± 0.03), and with the SP mode AUC,
values remained comparable to other docking software. The
hydrophobic, static, and tight binding pocket of MR and the
large and polar binding pocket of PDE5 (Figure 2A, E) were
especially problematic for docking with the test sets (Table 2).
Moreover, the high early enrichment values, EFd 1% and EFd

5%, produced by docking screenings do not necessarily translate
into high AUC values and vice versa. To put it simply, a high
AUC value relates to good overall enrichment, and the high early
enrichment values indicate that more active compounds are
found at the very beginning of the ranking list. Accordingly, in
the case of NEU, PLANTS docking produced a relatively low

Table 1. Benchmark Ligand Sets and Protein 3D Structures

Target proteina RXRα COX-2 PDE5 MR NEU

PDB code 1MV9 3LN1 1UDTb 1XOZb 2AA2 1B9V
Resolution (Å) 1.9 2.4 2.3 1.37 1.95 2.35
ligsc 131 435 398 398 94 98
decsc 6935 23,136 27,520 27,520 5146 6197

aRetinoid X receptor alpha (RXRα),33 cyclooxygenase-2 (COX-2),46 phosphodiesterase-5 (PDE5),47,48 mineralocorticoid receptor (MR),49

neuraminidase (NEU).50 bOnly PDB entry 1UDT48 was used for docking. Both 1UDT48 and 1XOZ47 were used in NIB (negative image-based)
model generation. cNumber of active ligands (ligs) and decoy molecules (decs) after performing ligand preparation with LIGPREP in MAESTRO
(status before docking screening).

Table 2. Performance of Molecular Docking Algorithms in Benchmarkinga

GLIDE DOCK

PLANTS HTVS SP GOLD Def. Opt. VINA AUTODOCK

RXRα AUC 0.77 ± 0.02 0.68 ± 0.03 0.83 ± 0.02 0.76 ± 0.02 0.41 ± 0.02 0.52 ± 0.03 0.82 ± 0.02 0.88 ± 0.02
EFd 1% 11.5 44.3 65.6 16.8 4.5 8.4 40.5 54.2
EFd 5% 37.4 50.4 77.1 35.1 6.8 13.0 55.7 72.5
docked ligs%/decs% 100/100 51/31 82/67 100/100 26/45 73/69 100/100 100/100

COX-2 AUC 0.66 ± 0.01 0.66 ± 0.01 0.74 ± 0.01 0.71 ± 0.01 0.61 ± 0.01 0.64 ± 0.01 0.76 ± 0.01 0.61 ± 0.01
EFd 1% 5.7 24.1 37.2 12.8 11.3 11.3 33.8 3.0
EFd 5% 21.6 35.2 46.7 38.1 20.2 22.1 47.4 11.7
docked ligs%/decs% 100/100 58/40 83/74 100/100 52/35 83/69 100/100 100/100

PDE5 AUC 0.78 ± 0.01 0.67 ± 0.01 0.76 ± 0.01 0.76 ± 0.01 0.50 ± 0.01 0.54 ± 0.01 0.64 ± 0.02 0.61 ± 0.02
EFd 1% 11.3 7.0 10.3 9.0 0.3 1.5 11.3 5.8
EFd 5% 28.1 23.6 32.4 30.7 4.8 6.0 22.1 14.1
docked ligs%/decs% 100/100 83/84 94/99 100/100 89/94 96/97 100/100 100/100

MR AUC 0.55 ± 0.03 0.48 ± 0.03 0.50 ± 0.03 0.47 ± 0.03 0.41 ± 0.03 0.42 ± 0.03 0.53 ± 0.03 0.60 ± 0.03
EFd 1% 3.2 7.4 12.8 2.1 0.0 0.0 7.4 12.8
EFd 5% 19.1 9.6 19.1 7.4 1.1 0.0 9.6 24.5
docked ligs%/decs% 100/100 13/19 34/41 100/100 32/47 60/69 100/100 100/100

NEU AUC 0.85 ± 0.01 0.61 ± 0.03 0.82 ± 0.03 0.69 ± 0.03 0.83 ± 0.03 0.82 ± 0.03 0.56 ± 0.03 0.62 ± 0.03
EFd 1% 4.1 19.4 18.4 2.0 12.2 14.3 0.0 0.0
EFd 5% 32.7 31.6 43.9 9.2 34.7 36.7 4.1 4.1
docked ligs%/decs% 100/100 96/97 100/100 100/100 99/98 100/99 100/100 100/100

aBest docking results are bolded and in italics, if the values are within the error margin. Only those AUC values that are within the error margin are
highlighted.
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EFd 1% value of 4.1, although the generated AUC value was a
whopping 0.85 ± 0.01, indicating good overall enrichment
(Table 2; Figure 3). In contrast, DOCK was able to produce an
EFd 1% of 8.4, while AUC remained at 0.52± 0.03 for the RXRα
test set. Generally, GLIDE and VINA were producing slightly
better early enrichment than the other docking software (Table
2; Figure 3).
Notably, GLIDE and DOCK failed systematically to dock

many of the active ligands and inactive decoys (Table 2). The
software skipped most of the compounds in certain test sets
regardless of their potential activity. In the case of GLIDE, the
much faster HTVS screening mode discarded more ligands than
the SP mode: the ability to dock active molecules of MR and
NEU varied from 13% to 96% in the HTVSmode and from 34%
to 100% in the SP mode, respectively. Likewise, DOCK was
managing to dock far fewer compounds than the other
algorithms (Table 2). With RXRα, only 26% of the active
ligands were docked using the default settings. However, after
tweaking the orientation and iteration number settings together
with the conformer score cutoff, the number of docked ligands
could increase slightly or even substantially, and 73% of actives
could be docked, for example, with RXRα. Although only
PLANTS, GOLD, and VINA were able to dock all active and
decoy molecules, GLIDE and DOCK skipped a remarkably
higher number of active molecules than any other tested
software.
If omitting the fact that GLIDE docking skipped a lot of active

compounds, the algorithm produced very impressive enrich-
ment metrics. For example, AUC, EFd 1%, and EFd 5% values
for MR were 0.88 ± 0.03, 50.0, and 58.3 with GLIDE HTVS,
respectively, if the skipped molecules were ignored from the
calculations (Table S1). In the case of RXRα, the corresponding
values were 0.98 ± 0.01, 68.7, and 88.1, respectively. However,
skipping over a half of the molecules can hardly be counted as a
success, and when considering the skipped molecules, AUC,
EFd 1%, and EFd 5% values decreased to 0.48 ± 0.03, 7.4, and
9.6 for MR, and 0.68 ± 0.03, 44.3, and 50.4 for RXRα,
respectively (Table 2).
2.3. Negative Image-Based Rescoring Boosts Docking

Performance. R-NiB (Figure 1) works well with different
docking softwares and targets based on benchmarking (Table

3). Regardless, it is also clear that some docking algorithms
benefit more from cavity-based rescoring than others (Table 3;
Figure 3; Figures S1−S10). The rescoring works particularly
well with DOCK, PLANTS, and GOLD. PLANTS docking
results were improved here even more than in the prior study21

by implementing slightly different PANTHER settings (Table
S2). Simply put, these docking algorithms were consistently able
to output several alternatives and high-quality docking poses for
each test set compound, which is a prerequisite for improving
the yield postdocking using R-NiB or other rescoring methods
such as SMINA.45 R-NiB works relatively well also with VINA
and AUTODOCK, but the rescoring process itself is somewhat
laborious due to the properties of these two software tools as
described in Section 5.3.
VINA and AUTODOCK output the docking poses with only

polar protons included. As the lack of nonpolar protons could
affect negatively the R-NiB performance, the docked molecules
were used in the rescoring either directly (polar H’s in Table 3)
or after adding nonpolar protons andMMFF9453 partial charges
(all H’s in Table 3). The effects of this postprocessing to the R-
NiB results varied (Table 3; Figure 3). For example,
AUTODOCK and VINA performed exceptionally well with
RXRα (Figures 1 and 2), and moreover, the cavity-based
rescoring improved only the AUC and EFd 5% values without
the added polar protons. However, this improvement was
remarkable as the AUC and EFd 5% values increased notably
with VINA, for example, from 0.82 ± 0.02 to 0.93 ± 0.02 and
from 55.7 to 71.8, respectively. VINA docking for COX-2 was
not improved by R-NiB, whereas the improvement was clear for
AUTODOCK. With MR, VINA docking was improved more
when all protons were added for the ligand conformers, whereas
only the AUC values were improved when rescoring the
AUTODOCK poses. Rescoring of the docking poses of NEU
outputted by AUTODOCK and VINA was successful, but the
improvement was higher when the ligands contained all protons.
From a practical standpoint, GLIDE emerges as the most

problematic docking software of the bunch for R-NiB (Figure
1). Although the rescoring of the HTVS results improved
enrichment for the targets such as RXRα andNEU, the rescoring
of the SP poses improved the enrichmentmeaningfully only with
NEU (Table 3). Depending on the test set, particularly, the

Figure 3. Docking and rescoring performance as receiver operator characteristic curves. The linear receiver operator characteristic (ROC) curves are
plotted for the original docking and rescoring results of negative image-based rescoring (R-NiB; Figure 1)21 or SMINA45 rescoring. Benchmarking is
shown for a selected assortment of results, but the full set of data is given in the Supporting Information for each software and test set in the form of
linear (Figures S1−S5) and semilogarithmic ROC curves (Figures S6−S10). The figure was created using ROCKER0.1.4.52
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GLIDE HTVS mode produced far fewer docking poses than the
other docking software (Table S3). Accordingly, not only with
the case of GLIDE but also other docking software often
generated less conformers for the active ligands than for the
decoy compounds. Although GLIDE skipped a varying number
of molecules during docking and might generate a low number
of conformers, the dockedmolecules were usually well separated
to the active and inactive categories, and essentially, there was
not much to perform the rescoring with (Table 2; Table S1).
2.4. Negative Images Refocus Docking. Both flexible

docking and NIB model generation were performed using the
same centroid coordinates; thus, the ability of the methods to
focus their ranking on those compounds close to the center
could be compared (Table S4). Themore volume overlaps there
are with the docked ligands and the template NIB model in the
rescoring the higher the ShaEP scores, and as a result, the best-
ranked poses are also more centered than the lower ranked ones.
However, the best-ranked poses favored by the docking
algorithms are also close to the cavity center, and overall, the
data do not suggest that the rescoring would get its power from
discarding ligands that are docked away from the cavity center.
When the ligand-binding site is not a well-defined cavity (e.g.,
NEU in Figures 2B and 4), flexible docking typically generates
spatially scattered poses for scoring (Figure 4A). In such a case,
R-NiB focuses the compound selection effectively to the cavity
volume of interest (Figure 4B, C), but the benefits of this
refocusing are case specific (PDE5 vs NEU in Tables 2 and 3).
In addition to limiting the sampling to a certain cavity area or

volume with the center and radius options, the docking scoring
functions can also include steric terms that estimate the shape
complementarity between the ligand poses and residues lining
the cavity. Because R-NiB improves the docking yield mainly
based on the shape similarity (see below) between the ligands
and the cavity-based model, the capacity of default docking
scoring to exploit this important part of molecular recognition
was probed. The comparison of the ligands ranked best by the
docking software against the cavity-based negative images
indicates that the default scoring functions do not prefer ligands
or their conformers that would best match the cavity shape as
described by the PANTHER-generated NIB models. However,
one must remember that the NIB models do not necessarily
project the optimal dimensions of the cavity (Figure 2), and for

this reason, these results regarding docking scoring are
suggestive only (data not shown).

2.5. Shape Similarity Is Vital for Negative Image-Based
Rescoring. ShaEP32 compares both the shape and electrostatic
potential (ESP) between the cavity-based NIB model and the
docked molecule when calculating the total similarity score into
the range from 0 to 1. By default, an equal 50/50 weight is given
for the shape and ESP in the total scoring, and typically, it works
well in ligand-based screening, NIB screening, and R-NiB21,22,31

(Figure 1). As a rule, the shape similarity always gets a higher
score than the ESP similarity, which makes the shape similarity
between the docked ligand and the NIB model the determinant
factor of R-NiB scoring.
The AUC and EFd values of the shape and ESP similarity

scores were calculated separately for each test set and individual
docking solution using R-NiB (Table S5). Here and in the other
NIB studies,21,22,31,54 the best shape similarity score reported for
a molecule was typically two times higher in comparison to the
best ESP similarity score. As a result, the impact of the shape
similarity score on the total score (shape + ESP) has a major role
with rescoring. Because the ligand-binding pocket of MR is
highly hydrophobic (Figure 2A), R-NiBwould improve the early
enrichment of docking even more if the ESP similarity was
forfeited altogether at least with rescoring poses outputted by
GLIDE SP, GOLD, VINA, and AUTODOCK (Table S5). This
also explains why theMR test set works so well with R-NiB but is
more problematic for the standard docking functions that seem
to underestimate the importance of shape complementarity. In
the case of some docking software, the early enrichment can
indeed be improved when completely ignoring the ESP;
however, in none of these cases, AUC was improved. The ESP
score worked particularly poorly in the case of GLIDE, VINA,
and AUTODOCK.
Recently, promising results were reported for predicting

activity by relying solely on the ESP similarity between the small
molecules and the ligand-binding cavity, albeit the used data sets
were limited in size, and importantly, no customary decoy
predictions were processed.55 Also, in R-NiB, the shape
similarity scoring alone is usually not enough to acquire the
best R-NiB enrichment, but a small push from ESP is needed for
producing the top ranking. When considering only ESP scoring,
the enrichment of the test sets remains too low for improving the
docking yield. Nevertheless, occasionally ESP scoring can

Figure 4. Negative image-based rescoring refocuses neuraminidase docking. (A) Best poses of 10 top-ranked docked compounds (stick models),
sampled and selected by docking algorithm PLANTS,37 are relatively scattered in the partially open surface pocket of neuraminidase (NEU; opaque
magenta surface). The cavity center (green sphere), which is the geometric centroid of the co-crystallized ligand BANA206 (PDB: 1B9V),50 was used
to center PLANTS docking and NIB model generation with PANTHER.22 (B) The NIB model (transparent yellow surface), which was used in the
cavity-based rescoring with ShaEP,32 is shown with the centroid. (C) Best poses of 10 top-ranked docked compounds selected by negative image-based
rescoring (R-NiB; Figure 1)21 form a much tighter cluster than scattered ligands/poses selected at the top by default docking scoring of PLANTS. The
figure was created using BODIL35 and Visual Molecular Dynamics or VMD 1.9.2.36 See Figure 2 for more information.
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produce better results than a shape score alone; for example, this
was the case with RXRα and GOLD docking (Table S5). This
shape-centricity of R-NiB scoring (Table S5) is apparent for all
targets and docking algorithms. Although a high level of shape
similarity is a must for R-NiB implementation, a successful NIB
model generally pertains also to some ESP similarity with the
active ligands, reflecting the H-bonding capabilities of the
target’s cavity (Figure 1).
Benchmarking was also performed with ShaEP by aligning the

co-crystallized ligands against ab initio-generated ligand con-
formers (Table S6). This standard ligand-based screening
approach worked moderately well with some of the targets (e.g.,
COX-2: AUC 0.71 ± 0.01; EFd 1% 19.3; and EFd 5% 34.0),
which highlights the limited diversity of the DUD-E test sets
regarding shape similarity (Figure S11).56−58 However, this
does not mean that R-NiB is only able to find structurally very
similar molecules: the methodology does not fare any worse in
finding different molecule clusters in comparison to original
PLANTS scoring or SMINA45 rescoring (Section 2.7).
2.6. Rescoring Mixed Ligand Sets Using Negative

Images. PDE5 is a demanding nut to crack for the R-NiB
methodology (Figure 1)21 or for the flexible docking algorithms
(Table 2). This difficulty arises from the fact that the known
PDE5 inhibitors are a very diverse set of ligands, such as
exhibited by sildenafil or tadalafil47,48 (Figure S12), whose
binding poses and, ultimately, binding locations inside the cavity
vary considerably. Furthermore, the PDE5 binding pocket is
large (Figure 2E), and the ligand binding is affected by water
coordination and induced-fit effects. Indeed, clustering based on
Daylight’s fingerprint and Tanimoto similarity indicates that the
PDE5 test set contains chemically more diverse active ligands
than the other tested sets (Figure S11).
Due to these effects, R-NiB was performed using two different

NIB models for PDE5 that were created based on the PDB
entries co-crystallized with either sildenafil or tadalafil.47,48

Rescoring using neither one of the models alone produced
significant improvement in comparison to the original docking

(Table S7). When the two NIB models were used together, the
results improved only moderately in comparison to the single
NIB model rescoring (Table 3). Although PDE5 early
enrichment was slightly improved for GOLD docking and the
very early enrichment improved with PLANTS as well, the AUC
values generally decreased as a result of the two-model R-NiB
treatment for PLANTS, GOLD, and GLIDE. Although two
models might provide a more comprehensive picture of the
flexible PDE5 cavity space than a single model, the individual
weight of the templates is challenging to assign for R-NiB
scoring. The scale of the ShaEP score is directly affected by the
amount of the atoms present in the NIB models or ligands being
compared.
R-NiB improved the PDE5 enrichment, especially for DOCK,

VINA, and AUTODOCK that managed worse with the
demanding test set. With DOCK, failing to separate the active
molecules from the inactive decoys for the PDE5 set by default
(Table 2; Figure 3), the cavity-based rescoring provided easily a
minimal improvement (Table 3). In fact, the excellent R-NiB
enrichment suggests that the sampling of DOCK works far
better than its default scoring function. The rescoring of
AUTODOCK and VINA docking poses using R-NiB improved
both AUC and early enrichment values of PDE5, especially
when the docked molecules contained only the polar protons
(Table 3). However, with the fully protonated docking poses
(nonpolar protons included), early enrichment could not be
improved for VINA using R-NiB. Rescoring of PDE5 docking
results was more fruitful with SMINA than with R-NiB (see
below).

2.7. Negative Image-Based Rescoring vs SMINA
Rescoring. R-NiB (Figure 1) performance has been compared
against the rescoring algorithm XSCORE59 previously.21

Because R-NiB outperformed XSCORE at least with the default
settings, cavity-based rescoring methodology is now set against
another rescoring algorithm called SMINA.45 Here, this
software was used only for docking rescoring using its default
empirical scoring function. On the face of it, SMINA seems like a

Table 4. Performance of SMINA Rescoringa

GLIDE DOCK

PLANTS HTVS SP GOLD Def. Opt. VINA AUTODOCK

RXRα AUC 0.80 ± 0.02 0.66 ± 0.03 0.77 ± 0.02 0.78 ± 0.02 0.43 ± 0.02 0.67 ± 0.03 0.82 ± 0.01 0.82 ± 0.02
EFd 1% 40.5 32.8 41.2 38.9 11.5 32.8 38.9 35.9
EFd 5% 56.5 41.2 55.7 54.1 14.5 41.2 54.2 54.2

COX-2 AUC 0.76 ± 0.01 0.66 ± 0.01 0.73 ± 0.01 0.75 ± 0.01 0.64 ± 0.01 0.69 ± 0.02 0.77 ± 0.01 0.75 ± 0.01
EFd 1% 34.0 22.3 21.4 32.6 20.0 19.5 33.3 24.6
EFd 5% 48.3 37.5 43.0 47.6 29.9 34.5 47.8 42.3

PDE5 AUC 0.70 ± 0.01 0.62 ± 0.02 0.66 ± 0.02 0.73 ± 0.01 0.63 ± 0.02 0.66 ± 0.02 0.66 ± 0.02 0.71 ± 0.01
EFd 1% 16.1 10.3 11.1 19.6 12.8 15.1 14.1 13.3
EFd 5% 25.6 20.6 21.4 30.4 23.1 25.4 24.4 22.6

MR AUC 0.51 ± 0.03 0.48 ± 0.03 0.48 ± 0.03 0.51 ± 0.03 0.46 ± 0.03 0.51 ± 0.03 0.53 ± 0.03 0.53 ± 0.03
EFd 1% 7.4 6.4 9.6 7.4 4.3 4.3 7.4 6.4
EFd 5% 9.6 6.4 11.7 8.5 8.5 11.7 9.6 9.6

NEU AUC 0.52 ± 0.03 0.46 ± 0.03 0.57 ± 0.03 0.60 ± 0.03 0.58 ± 0.03 0.60 ± 0.03 0.52 ± 0.03 0.47 ± 0.03
EFd 1% 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
EFd 5% 1.0 0.0 0.0 3.1 2.0 3.1 1.0 2.0

aBolded and in italics if better than the original docking results. Underlined if also better than the negative image-based rescoring (R-NIB; Figure
1) protocol.
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worthy competitor to R-NiB because it is not only fast but also
relatively easy to use. However, benchmarking indicates that the
success of SMINA is more case-specific than that of R-NiB
(Table 4; Figure 3).
SMINA did not improve docking enrichment for NEU at any

level. MR was also difficult for SMINA rescoring except for
solutions output by DOCK (Table 4). SMINA performed
particularly well with PDE5 as it was able to improve at least the
early enrichment of 1% even better than R-NiB with every
docking software (Table 4; Figure 3). If not including MR and
NEU test sets, SMINA worked well with DOCK, PLANTS, and
GOLD. On the other hand, it was far less successful with GLIDE
and VINA because it was able to improve the early enrichment
only occasionally. As a fork of VINA, it was unexpected that
SMINA rescoring of VINA docking results proved to be
problematic. With AUTODOCK, SMINA was able to improve
not only PDE5 but also COX-2 results and with a higher yield
than R-NiB. In addition, SMINA outperformed R-NiB in some
other cases, such as RXRα and COX-2 sets docked with
PLANTS and the COX-2 set docked with GOLD.

All in all, when SMINA rescoring seemed to work out, the
yield improvement was notable. SMINA was also consistently
able to increase the very early enrichment rather than the AUC
values (Figure 3; Figures S1−S10; Table 4).

2.8. Docking Predictions vs X-ray Crystallography. In
addition to benchmarking (Table 2; Figures S1−S10), docking
or R-NiB (Figure 1) performance can be evaluated by
comparing the predicted and/or top-ranked poses against the
co-crystallized protein-bound ligand conformers. These com-
parisons can be simple on-screen 3D visualizations, but
numerically, they are typically processed as the Root-Mean-
Square deviation (RMSd) values. These kinds of comparisons
have been done widely with different docking software.7,8,10,11

Recently, PLANTS was stated to be the best software when
considering the ability of a docking algorithm to reproduce the
co-crystallized ligand binding pose and rank it as the best pose.9

However, because the results vary depending on the survey and
the used test sets, the ultimate ranking between docking
algorithms remains elusive.

Table 5. Root-Mean-Square Deviation: Docking and Rescoring vs X-ray Crystallography

RMSd < 1.0 Å RMSd < 2.0 Å RMSd < 3.0 Å

Docking software Scoring method Docked/co-crystallizeda Best scoredb Allc Best scoredb Allc Best scoredb Allc

PLANTS default 31/31 8 15 15 27 18 29
R-NiB 9 16 18
SMINA 5 8 12

GLIDE HTVS default 26/31 9 11 12 17 17 20
R-NiB 11 15 19
SMINA 8 12 16

GLIDE SP default 29/31 12 16 17 21 21 24
R-NiB 11 18 23
SMINA 11 16 23

GOLD default 31/31 12 15 17 23 19 24
R-NiB 11 21 23
SMINA 13 17 21

DOCK def. default 24/31 7 13 11 14 12 15
R-NiB 7 10 10
SMINA 7 12 13

DOCK opt. default 31/31 8 12 14 19 15 22
R-NiB 8 14 14
SMINA 6 13 15

VINA default 31/31 9 12 19 26 21 28
R-NiB 9 17 18
SMINA 7 9 12

AUTODOCK default 31/31 10 13 17 21 19 24
R-NiB 9 17 21
SMINA 8 13 16

aNumber of docked active ligands with known poses from the X-ray crystallographic studies. bRoot-Mean-Square deviation (RMSd) value of the
best pose suggested by the docking software, negative image-based rescoring (R-NiB), or SMINA. cBest RMSd value, if all docking poses are
compared against the co-crystallized ligand conformer. The scoring results with most matches with the verified poses are bolded. The representative
PDB codes for the used X-ray crystal structures were the following: 4K6I, 1FM9, 1RDT, 1MVC, 4K4J, and 3A9E for the retinoid X receptor alpha
(RXRα); 4PH9, 4M11, 3QMO, 5KIR, 1PXX, 3NT1, 5JVZ, and 4COX for cyclooxygenase-2 (COX-2); 3TGE, 3HC8, 1XOZ, and 1TBF for
phosphodiesterase-5 (PDE5); 5MWY, 3VHU, 2AA5, 2AA2, and 4UDA for the mineralocorticoid receptor (MR), and 1B9V, 1XOG, 2QWE,
1A4Q, 2QWG, 1LTF, and 6HCX for neuraminidase (NEU).
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Generally, docking is regarded as successful, if the RMSd value
is below either 1.5 or 2.0 Å; however, a larger threshold is
sometimes needed to detect truly worse or better docking poses.
Namely, the smaller the ligand is, the higher the impact of a
minor (and potentially trivial) difference between the predicted
and verified poses is to cause a relatively large RMSd shift.
Moreover, the ligand could have more than one valid binding
mode, and only one of them is co-crystallized with the protein in
the X-ray crystal structure.12 Even so, if one has a high-resolution
ligand−receptor complex 3D structure available, the compar-
ison against the experimental structures should be performed by
default. In total, 31 active molecules in the five test sets were
found to have representative X-ray crystal structures available in
PDB (6×RXRα, 8×COX-2, 4× PDE5, 5×MR, and 8×NEU;
Table 5).
When focusing solely on the best poses selected by the

docking software themselves, VINA found 61% highly similar
poses in comparison to the co-crystallized ligand conformers
(RMSd < 2.0 Å in Table 5). If considering only the poses that
have RMSd values of <1.0 Å with the co-crystallized conformers,
GLIDE SP and GOLD outperformed the other software by
predicting 39% of the binding poses correctly. The MR binding
poses were the easiest ones to reproduce by the tested docking
software (Table 5), and not surprisingly, the reproduction of the
PDE5 inhibitor binding poses turned out to be the most
demanding case for the docking algorithms.
For most software, more than one alternative docking pose

could be outputted. From the rescoring point of view, this
feature is relevant because any of these outputted poses (not just
the highest ranked ones) could be the proper bioactive
conformation of the molecule that is sought after. Thus, the
RMSd values were also calculated for the alternative conformers
(column “All” in Table 5) and not just the best-ranked poses.
PLANTS and VINA outperformed the other software by
reproducing 87% and 84% of the co-crystallized poses,
respectively (RMSd < 2.0 Å in Table 5). When focusing only
on those poses with the RMSd values of <1.0 Å, GLIDE SP was
slightly better than PLANTS or GOLD because it reproduced
52% of the co-crystallized poses as opposed to 48%.
Because the cavity-based rescoring improves the docking

results, sometimes substantially (Table 3), it seems logical that
R-NiB (Figure 1) would also focus on those ligand conformers
that match the verified binding modes. However, the
comparison against the co-crystallized ligand conformers
indicates that R-NiB was only slightly better in selecting the
correct poses in comparison to the original docking algorithms
(Table 5). The best-rescoring matches were acquired with
GOLD and GLIDE HTVS as R-NiB selected three and four
more molecules, respectively, with the RMSd threshold of <2.0
Å compared to the original docking scoring. Notably, PLANTS
reproduced altogether 27 of the 31 verified ligand conformers
with the RMSd value of <2.0 Å. Despite this good premise, R-
NiB could pick correctly only 16 of these high-quality poses
outputted by PLANTS. SMINA performed worse than R-NiB,
as it typically failed to select more of the co-crystallized poses
with any of the tested thresholds than the original docking
(Table 5).

3. DISCUSSION
Although the importance of the shape complementarity for
molecular recognition has been acknowledged for a long
time,60,61 the meaningful use of this revelation in drug discovery
has proven difficult. It is easy to fathom the importance of shape

similarity between the receptor’s cavity and a high-affinity
ligand, but the exact dimensions of the relevant pocket are a lot
harder to ascertain or utilize in practice. The importance of
shape constraints in docking has been noted in recent D3R
Grand Challenges,62,63 and importantly, several novel methods
address the issue by applying experimental ligand shape
constraints,64,65 template matching,66 or interaction fingerprint
matching67 to improve docking accuracy. The negative image-
based rescoring (R-NiB; Figure 1) provides a tangible way to
address this issue in the docking-based virtual screening
assays.21,22,31

Negative images are an intuitive way to abstract and visualize
the shape/electrostatics features of the ligand-binding pockets/
cavities, grooves, or even tunnels present in the protein 3D
structures (Figure 2). Therefore, various cavity detection or
analysis algorithms such as VOIDOO/FLOOD,68 FPOCK-
ET,69 CAVER,70 POVME,71−73 and SITEMAP74,75 have been
developed to perform cavity visualization or druggability,
accessibility, size/volume, or flexibility estimation. PAN-
THER22 differs from the other software as it is not primarily
focused on the analysis, visualization, or even binding site
detection or prediction, but instead, it was intended to facilitate
cavity-based rigid docking or negative image-based (NIB)
screening.22,25,30

In other words, PANTHER-generated NIB models not only
mirror the shape/electrostatics of the binding pocket but also
their filler atom/cavity point and charge composition were
intended to be drug-like from the start (Figure 2). The volume
of the best NIB model does not necessarily cover the entire
ligand-binding cavity, but it preferably spans areas that facilitate
drug binding (Figure 2; Figure S12). Precisely, due to this drug-
likeness, the NIB models can be used directly as pseudoligand
templates in the similarity comparison with explicit docking
poses in R-NiB (Figure 1). The model generation has been
shown to work successfully without prior structural data on the
ligand binding;21,54 however, the co-crystallized ligands can be
used to improve themodel dimensions especially regarding early
enrichment (Figure 2; Figure S12). The user adjusts the model
via the PANTHER settings (Table S2) to ensure its drug-like
composition, and by doing so, takes it further away from simply
depicting the cavity.
The premise of the R-NiB methodology (Figures 1 and 2) is

two-fold. First, flexible docking is expected to sample correctly
the bioactive ligand binding poses, even if the default scoring
falters in the ranking of those same poses.14,17,18 Second,
ligand−receptor complex formation relies heavily on shape
complementarity,60,61 and consequently, the best docking poses
could be recognized by putting this facet of molecular
recognition into focus. Indeed, the results indicate that R-NiB
boosts docking by simply comparing the alternative docking
poses against the shape/charge of the binding cavity’s negative
image (Figures 1 and 2). The performance boost comes mainly
from the shape similarity between the ligand-binding cavity and
the docked ligands (Figure 2; Table S5). R-NiB works not only
with all six tested docking softwares (Table 3) but also with very
different drug targets (Figure 2; Table 1).When also considering
the rapid calculation times,21 R-NiB is clearly a handy tool for
improving the efficiency of docking-based high-throughput
virtual screening (HTVS) assays.
Docking sampling is typically performed within a loosely

defined volume given either as a 3D box or sphere. The protein-
bound ligands can assist in defining the search area; however,
flexible docking brings out binding poses that are a lot more
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scattered than what the negative images in R-NiB allow (Figure
4). As a result, the docking algorithms go on to score and rank all
docking poses of which some might be noticeably off the cavity
center or binding hot spot(s), in an equal manner. This lack of
focus can be problematic, for example, when docking ligands
into cavities located on the protein surfaces such as is the case
with neuraminidase (NEU; Figures 2B and 4). In this context, R-
NiB provides the needed focus by limiting the compound
selection to specific locations/volumes of the protein’s cavity
(Figure 4). If the model generation is confined to a certain
subsection of the cavity, the rescoring also becomes specialized
or focused to a certain subset of the screened active
compounds.54

If the target’s pocket is spacious, it is advisible to generate
alternative NIB models to study the different cavity parts
separately instead of trying to build one model that fits all the
parts. Moreover, a single static protein 3D conformation is
frequently not enough to depict the ligand-binding cavity, when
benchmarking diverse ligand sets or attempting to discover truly
novel hit compounds using flexible docking.13,76,77 This is
because the reciprocal induced-fit effects between the ligand and
its receptor can lead to profoundly different binding modes that
cannot be predicted using a single protein conformation. For
example, a single NIB model cannot distinguish adequately two
or more distinct ligand types included in phosphodiesterase-5
(PDE5; Figure S12) or estrogen receptor alpha test sets.21

Instead of trying to build an all-inclusive NIB model using a
single input structure, docking and rescoring should be
performed using several target protein conformations.
An interesting in silico solution for this multiconformation

problem is to sample the protein’s conformational ensemble
using molecular dynamics (MD) simulations prior to the
docking/rescoring or optimization of the postdocking complex
states using energy minimization.78 Although the MD
simulations can be very useful in refining the docking-based
binding mode predictions,79−85 the abundance of stochastic
noise, i.e., too many random and irrelevant changes, complicates
or even prevents their effective HTVS usage. On the other hand,
the short minimizations of the complexes cannot necessarily
overcome completely wrong configurations or distinguish
docking- or MD-related artifacts. Moreover, the postprocessing
works reliably only after performing the initial docking and
cavity-based rescoring because both docking and R-NiB are
sensitive regarding input protein conformation.
SMINA45 is an interesting rescoring software due to its speed,

ease of use, and possibility of generating custom scoring
functions. However, at least using its default settings, SMINA
was more case-specific than R-NiB. SMINA outperformed R-
NiB with PDE5 but also in some cases with COX-2. The COX-2
test set contains both selective and nonselective ligands,39 which
likely affects the R-NiB results when using only a single NIB
model similar to the estrogen receptor alpha test set.21 Overall,
R-NiB worked better than SMINA in rescoring at least with
these specific DUD-E test sets (Table 3 vs Table 4) with the
notable exception of very early enrichments (Figures S6−S10).
By building specific scoring functions, SMINA could work better
with specific targets; however, further tinkering of the NIB
models would improve the R-NiB results as well. In a prior
study,21 R-NiB was performed using slightly different default
settings of PANTHER, and implementation of only minor
changes led to improvement of the PLANTS rescoring results
(Table S2).

The rescoring success is not dependent on the amount of
outputted alternative docking poses but the quality of the
generated ligand conformers. Although the quantity is not
proportional to the quality, there need to be a few conformers, or
at least one docking pose for each compound to perform any
rescoring. Particularly, if the average number of docked
conformers highly differs between active and decoy molecules,
it distorts the original active/decoy ratio, and with high
conformer numbers, the R-NiB success sometimes decreases
(data not shown). Thus, a high number of outputted conformers
does not guarantee success, and vice versa, R-NiB can improve
the docking yield also if only a couple conformers are given (e.g.,
RXRα with GLIDE HTVS; Table 3).
R-NiB was not markedly better than default docking scoring

in recognizing the experimentally verified ligand binding poses
from the pool of alternative docking poses (Table 4). While
bigger validation sets would have been preferable, these results
already show that docking is generally able to sample the ligand
binding correctly, if several conformers are outputted.18 R-NiB
also outperformed SMINA in recognizing the correct poses
albeit it is not infallible. Despite these encouraging results, R-
NiB is, above all, meant for HTVS usage instead of predicting
individual ligand-binding poses. As docking has already
positioned the molecules inside the binding pocket, R-NiB
only selects those molecules with the key shape/electrostatics
features. This means that the match between the NIBmodel and
the docked active ligands cannot be optimal for any of them
when boosting the docking screening yieldit is always a give-
and-take situation.

4. CONCLUSIONS

Negative image-based rescoring (R-NiB; Figure 1) improved the
performance of six popular docking softwares, including GLIDE,
PLANTS, GOLD, DOCK, AUTODOCK, and VINA34 (Table
1), in benchmark testing (Table 3). R-NiB improved the
docking enrichment most consistently with PLANTS, GOLD,
and DOCK. The direct shape/electrostatics comparison
between the explicit docking poses and the cavity-based negative
images (Figure 2) was made for five target proteins. Although
there was software- and target-specific differences, both the
overall enrichment and the early enrichment were improved by
R-NiB in most cases (Table 2 vs Table 3). The results indicate
that R-NiB is an excellent solution for rescoring flexible docking
poses that are generated using a single high-quality protein 3D
structure (Table 3; Figures S1−S10). In short, the cavity-based
rescoring works well in benchmarking regardless of the used
docking software, thus making R-NiB an attractive addition to
any docking-based virtual screening assay.

5. EXPERIMENTAL SECTION

5.1. Ligand Preparation. Retinoid X receptor alpha
(RXRα; Figure 1), cyclooxygenase-2 (COX-2), phosphodies-
terase type 5 (PDE5), mineralocorticoid receptor (MR), and
neuraminidase (NEU) small-molecule test sets (Table 1) were
acquired from the DUD-E (A Database of Useful (Docking)
Decoys − Enhanced) database.39 Although very useful, some of
the DUD-E sets (RXRα being a notable exception) have been
criticized as containing, for example, shape similarity biases that
can favor ligand-based screening.56−58 The preparation of the
ligands to the 3D SYBYL MOL2 format including the addition
of tautomeric states, OPLS386 partial charges, and protonation
at pH 7.4 was done withMAESTRO 2017-1 (Schrödinger, LLC,
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NY, USA, 2017) as described in a prior study.21 A single
conformer was generated for each compound from a SMILES
string; accordingly, the same ligand 3D conformer was used as
the input for all docking algorithms. For AUTODOCK4.2.644

and AUTODOCK VINA1.1.2,34 the ligands were converted to
the PDBQT format using the prepare_ligand4.py script of
AUTODOCKTOOLS1.5.6.44

5.2. Protein Preparation. The protein 3D struc-
tures33,46−50 used in the docking and rescoring steps were
solved using X-ray crystallography and acquired from the
Protein Data Bank (PDB; Figure 2; Table 1).87,88 For
PLANTS37 and GLIDE41,42 docking, the PDB entry editing,
including the PDB-to-MOL2 conversion and removal of the
unnecessary protein-bound ligands was performed in the
BODIL Molecular Modeling Environment.35 REDUCE3.2489

was used to protonate the structures at pH 7.4. For GLIDE
docking, the default settings of the Protein Preparation Wizard
in MAESTRO 2018-1 were used in the protein preprocessing,
but the pH was set to match 7.4. For AUTODOCK and VINA
docking, the PDB entries were converted to the PDBQT format
and prepared using AUTODOCKTOOLS. The preparation
included incorporation of the Gasteiger(-Marsili) partial
charges,90 addition of polar protons, and removal of crystal
waters or extra co-crystallized ligands. The protein preparation
for UCSF DOCK6.843 docking was performed with UCSF
CHIMERA1.1291 using the default settings of the Dock Prep
tool. The protonation of histidines was set unspecified, and the
protein surface was created using the Write DMS tool in
CHIMERA.
5.3. Molecular Docking. The centroid coordinates of the

protein-bound or co-crystallized ligands in the PDB entries
(Figure 2) were used as the centers for the flexible docking
simulations. If not specified otherwise below, the docking was
performed using the default settings. At maximum, 10
alternative poses were set to be outputted for the rescoring,
and the radii were set to 10.0 Å. In the case of AUTODOCK and
VINA, the conversion of molecule files to the PDBQT format
needs to be done separately, whereas the MOL2 and PDB
formats are suitable for other programs. The example input files
containing settings for docking are included in the Supporting
Information.

1. GOLD5.6.340 uses a genetic algorithm optimizer in
docking sampling and a force field-based scoring function
GoldScore. The scoring function considers H-bonding
energy, van der Waals energy, potential metal interaction,
and torsional strain in the binding pose estimation.

2. GLIDE2018-141,42 uses a systematic search technique in
the ligand placement and Emodel scoring function that
combines a force field-based method with empirical
scoring function GlideScore. The compounds were
docked using the default settings with both high-
throughput virtual screening (HTVS) and standard
precision (SP). Extra precision (XP) was not used as it
is not suitable for processing high numbers of molecules.

3. PLANTS1.2,37 whose docking sampling relies on an ant
colony optimization method, was used to dock the
compounds included in the DUD-E sets using the default
settings already in a prior study.21 The scoring was
performed using ChemPLP that combines the piecewise
linear potential (PLP) and GOLD’s ChemScore. PLP is
used to model steric complementarity between the ligand
and its protein receptor, whereas ChemScore is used to

calculate hydrogen and metal bonding, ligand heavy-atom
clashes, and internal energies.

4. AUTODOCK4.2.644 relies on a Lamarckian genetic
algorithm for docking sampling and semiempirical free
energy force field for scoring.92 Grid box dimensions were
adjusted to roughly match the 10 Å docking radius with a
default 0.375 Å spacing. To be better suited for virtual
screening, the maximum number of energy evaluations
was decreased to 2,500,000 in the docking procedure.

5. AUTODOCK VINA1.1.234 is based on AUTODOCK,
but the algorithm uses the Broyden−Fletcher−Gold-
farb−Shanno (BFGS) quasi-Newton method for the
conformation generation and a combination of empirical
and knowledge-based scoring functions. The maximum
number of binding modes was set to 10, and the search
space was set to 17−20 Å (corresponds roughly to 10 Å
docking radius) depending on the size of the docked
ligand. As the output of VINA34 docking score contains
only one decimal by default, the poses were reprocessed
so that the search space was omitted (−score_only option)
to separate them better for ranking purposes.

6. DOCK6.843 uses shape-based ligand placement and a
grid-based energy scoring, although other scoring
functions and their combinations can also be employed.
The space of the ligand-binding pocket is determined with
the DOCK accessory SPHGEN. A minimum sphere
radius of 1.0 Å was used. The spheres within 8−10 Å of
the co-crystallized ligand were selected. The grid files
were generated using a 17−20 Å grid box with a default of
0.3 Å grid spacing depending on the size of the binding
pocket. The flexible docking, which outputted 10
conformers for each compound, was performed with the
default settings, if successful. To decrease the number of
skipped molecules, the maximum number of orientations,
anchor orientations, and iterations per cycle per anchor
was increased to 1000, and the conformer score cutoffwas
set to 200 kcal/mol.

5.4. Root-Mean-Square Deviation Calculations. The X-
ray crystal structures of the target proteins with bound active
ligands, if available, were acquired from PDB.87,88 The co-
crystallized ligands also included in DUD-E were located based
on their specific SMILES (Simplified Molecular-Input Line-
Entry System) strings and ChEMBL database93 codes. If several
3D structures were available, the one with the best resolution
was selected. The backbone Cα atoms of the protein structures
containing the active ligands were superimposed with the
template structure used in docking with VERTAA in BODIL.35

The realigned coordinates of the co-crystallized ligands and the
docked ligands were both converted to the MAE format using
MAESTRO2018-1. The Root-Mean-Square deviation (RMSd)
calculations were performed for the ligands with the rmsd.py
script in MAESTRO. In the case of VINA and AUTODOCK,
the best rescoring results were used for the RMSd evaluation.

5.5. Negative Image Generation. The negative images or
NIB (negative image-based) models of the target proteins’
ligand-binding cavities (Figure 2) were generated using
PANTHER0.18.15.22 The cavity centroids were calculated
directly using the ligands present in inputing the protein
structures (Figures 1-2; Table 1). The same default PANTHER
settings were utilized for all models, if not specified otherwise.
The NIB model volumes were limited using the ligand distance
limit of 1.5 Å (2.0 Å for the NEU); i.e., the models were not
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allowed to grow too far from the area occupied by the co-
crystallized ligands. The box radius option was set to 20.0−27.0
Å depending on the target protein’s cavity volume.
The face-centered cubic (FCC) packing method was used

with RXRα, NEU, and tadalafil-bound PDE5 structures,
whereas the less dense body-centered cubic lattice (BCC)
packing was selected for COX-2, MR, and sildenafil-bound
PDE5 structures. With COX-2, the lining id angle option was
decreased to 10° to include one positively charged cavity point
near the side-chain oxygen of Gln178 in the model. With MR,
the radius for the charged atoms option was decreased to 0.2 Å,
and the exclusion distance for the charged atoms and their
residues was set to 0.4 Å. This was done to make one end of the
NIB model slightly thicker. The only positively charged cavity
point near the main chain oxygen of Asn306 in the NIBmodel of
RXRα was removed from the negative image manually as it was
considered unconnected with the rest of the model.
The PANTHER input files, PDB files, and NIB models are

included in the Supporting Information.
5.6. Negative Image-Based Rescoring. The negative

image-based rescoring (R-NiB; Figure 1)21 or the similarity
comparison of the shape/electrostatics between the docked
poses and the cavity-based negative image was performed with
ShaEP1.1.3.32 The similarity comparison was done without
superimposing the original docking poses with the template NIB
model using the −noOptimization option. For rescoring, the
docked molecules need to be protonated and contain partial
charges. However, both AUTODOCK and VINA output
docking poses lacking nonpolar protons with the Gasteiger-
(−Marsili) partial charges90 in contrast to the input molecules
containing all protons and the user-selected charges. In these
specific cases, the outputted conformers were protonated at pH
7.4, and the Merck Molecular Force Field 94 (MMFF94)53

partial charges were incorporated with OBABEL2.4.194 before
the rescoring.
5.7. SMINA Rescoring. SMINA45 (November 9, 2017;

based on AUTODOCK VINA1.1.234) is a freely downloadable
fork of VINA.34 Although it maintains most of the VINA
properties, SMINA was designed with energy minimization and
scoring inmind. It has a default scoring function that emphasizes
the steric term or shape similarity between the ligand and its
receptor, but the user also has a possibility to create custom
scoring functions with different scoring term weights.1 To
compare the performance of R-NiB (Figure 1)21 against the
default scoring function of SMINA, all the docking solutions
outputted by the tested algorithms were also rescored using
SMINA.
5.8. Figure Preparation and Data Analysis. Figures 1, 2,

and 4 were prepared using BODIL35 and VMD1.9.2.36 The area
under the curve (AUC) and the early enrichment factors (EFd)
were calculated with ROCKER0.1.4,52 which uses the Wilcoxon
statistic95 to estimate the standard deviation. The EFd values
reported in this study correspond to the percentage of true
positive ligands discovered when 1% or 5% of the decoy
compounds have been found. The receiver operating character-
istics (ROC) curves in Figure 3 were plotted with ROCKER.52 If
the docking software could not produce a docking pose for a
compound, these molecules were added to the bottom of the
results. In practice, both the skipped or undocked active ligands
and decoy compounds were added in even ratios; however, the
even distribution always started with a decoy. This practice
makes the EFd and AUC values or ROC curves comparable
between different software. Due to the heterogeneity of the

experimental measurements for the DUD-E test sets, no activity
correlation was estimated. To-be-released in-house algorithm
SDFCONF0.8.20 was used to calculate the average geometric
centroids for the top-ranked docking poses.
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O. T. Ultrafast Protein Structure-Based Virtual Screening with Panther.
J. Comput.-Aided Mol. Des. 2015, 29, 989−1006. Software can be found
at www.medchem.fi/panther (accessed 12.12.2018).
(23) Truchon, J. F.; Bayly, C. I. Evaluating Virtual ScreeningMethods:
Good and Bad Metrics for the “Early Recognition” Problem. J. Chem.
Inf. Model. 2007, 47, 488−508.
(24) Virtanen, S. I.; Niinivehmas, S. P.; Pentikaïnen, O. T. Case-
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