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Abstract: The aim of this review was to investigate the relationship between biofilm and 
peri-implant disease, with an emphasis on the types of implant abutment surfaces. 
Individuals with periodontal disease typically have a large amount of pathogenic 
microorganisms in the periodontal pocket. If the individuals lose their teeth, these 
microorganisms remain viable inside the mouth and can directly influence peri-implant 
microbiota. Metal implants offer a suitable solution, but similarly, these remaining bacteria 
can adhere on abutment implant surfaces, induce peri-implantitis causing potential 
destruction of the alveolar bone near to the implant threads and cause the subsequent loss 
of the implant. Studies have demonstrated differences in biofilm formation on dental 
materials and these variations can be associated with both physical and chemical 
characteristics of the surfaces. In the case of partially edentulous patients affected by 
periodontal disease, the ideal type of implant abutments utilized should be one that adheres 
the least or negligible amounts of periodontopathogenic bacteria. Therefore, it is of 
clinically relevance to know how the bacteria behave on different types of surfaces in order 
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to develop new materials and/or new types of treatment surfaces, which will reduce or 
inhibit adhesion of pathogenic microorganisms, and, thus, restrict the use of the abutments 
with indication propensity for bacterial adhesion. 

Keywords: biofilm; dental implants; titanium; zirconia 
 

1. Introduction 

The success of dental implants depends on the maintenance of osseointegration that is defined as a 
direct bone-to-implant contact without interposition of any other tissue [1]. Simultaneously, in order to 
preserve osseointegration around dental implants it is desirable to have no relationship between the 
maxillary and mandibular or parafunctional forces, mal-aligned forces of stress, peri-implantitis [2,3], 
absence of systemic diseases, e.g., diabetes mellitus [4], and to consider the host immune-inflammatory 
response to the bacterial challenge [5]. Despite the relatively high success rates of dental implant 
survival, reported to be higher than 90% for both partially or completely edentulous patients in 
longitudinal studies, some groups have demonstrated the role of putative periodontal pathogens in the 
etiology of peri-implantitis and their deleterious effects on hard and soft peri-implant tissues [6–10]. 

Late implant failure could be due to a disruption between implant and the mineralized tissues after 
osseointegration has been established due to overloading or microbial infection [11–13]. Whereas the 
main problem of osseointegration is solved by the use of high quality implants, with appropriate 
surface treatment and adequate surgical technique, the peri-implant tissue inflammation as a 
consequence of biofilms on abutments in the subgingival region is currently considered a major 
contributor to implant loss [14,15]. The presence of biofilms near to the implant abutments is 
characterized clinically by inflammation of the peri-implant mucosa progressing to subsequent 
destruction of the alveolar bone in contact with the implants threads. The teeth are unique structures, 
unlike the implants, which have the prosthetic restorations that bind to the implant body, e.g., crowns, 
metal structures or simple metal rods, which can lead to cracks or gaps forming between the implants 
and connectors. When compared to its natural non-implanted counterpart, peri-implant tissue 
comprises fewer fibroblasts, an increased amount of collagen fibers, blood supply, and the periosteal 
vascular plexus and parallel orientation of the gingival fibers [16]. 

In addition to these inherent factors in histopathology of peri-implant tissue, there are several 
differences in the designs of implants or macrostructure (screw versus cemented; one or two surgical 
stages), the type of surface or microstructure (commercially pure titanium, titanium alloys, titanium 
plasma sprayed, hydroxyapatite surfaces blasted with oxides, treated with acids, or a combination 
thereof) and the degree of smoothness or roughness or ultrastructure (crystallinity of the 
hydroxyapatite coating the implant, or nitrous acid type used), as well as different shapes and abutment 
materials [17]. Thus, these parameters existing between tooth and implant materials profoundly and 
directly influence the local microbiota. 
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2. Surface Characteristics of Abutments Implants 

The scientific literature shows that bacterial plaque may play a prominent role as an etiologic factor 
responsible for implant loss after osseointegration, due to the presence of high levels of bacteria in the 
peri-implant sites [2,18–22]. As observed for teeth, the microorganisms need to interact with the 
implant abutment surface for the formation and growth of biofilm. Several studies suggest that some 
restorative materials have antibacterial activity, while others induce bacterial growth. 

The physical and chemical characteristics of the materials will determine the type and quantity of 
the microbiota around these surfaces [23,24]. The non-specific physicochemical mechanisms of 
bacterial adhesion involve the superficial free energies and interaction surfaces theory in which 
adhesion is regarded as the interaction of Van der Waals forces and electrostatic phenomena [25]. 
Surface chemical composition, surface energy, surface water contact angle [26], and roughness are 
important parameters that may have a critical and fundamental influence on the interaction of 
biomaterial surfaces with proteins and cells. Once biomaterial surfaces have contact with biological 
molecules either in vitro or in vivo, the proteins present in the biological medium immediately coat the 
surfaces. Thereafter, salivary acquired pellicle formation takes place as the first step to biofilm 
formation (Figure 1). 

Figure 1. Image showing salivary acquired pellicle formation upon an implant surface as 
the first step in biofilm formation. 

 

With regard to the influence of surface roughness on biofilm formation, previous reports showed 
that protein adsorption and bacterial adhesion in vivo might be determined by a threshold surface 
roughness of 0.2 μm [27,28]. Burgers et al. [29] evaluated the initial biofilm formation, in vitro and  
in vivo, on different titanium surfaces and correlated these findings with different surface properties. 
Before biofilm formation, the authors determined the surface roughness and the surface free energy of 
samples and observed that the initial bacterial adhesion to differently textured titanium surfaces was 
primarily influenced by roughness surfaces values. This can be explained because the rough surfaces 
tend to entrap bacteria into micropits, protecting them from washing forces [28]. The difference in 
results from in vivo, in situ, and in vitro experiments is clear and the interfering factors involved are 
inclusion criterions established to select the patients, in relation to in vivo and in situ studies, and the 
number and types of bacteria used to biofilm formation, in case of in vitro study. Freitas et al. [30] in 
2005 showed that a more rough surface causes an exponential increase in the number of bacterial cells, 
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when just one kind of bacterium, Streptococcus sanguis, was utilized. However, when the study was 
performed upon the same type of surface, titanium, changing only the roughness value, and using a 
large number of bacteria species, the roughness does not act as an influential factor. In this case, no 
difference on bacteria adhesion can be justified by the same physical characteristic. The 
hydrophobicity and hydrophilic characteristic surfaces are other crucial elements that can directly 
influence bacterial adhesion [31]. In the case of implant surfaces, it is known that bone cells are 
attracted to a hydrophilic surface [32]. Recent studies have focused on the mechanism of chemical 
alterations within the dioxide titanium coating to enhance osteoconductivity and improve early 
osseointegration [33–35]. The increase in surface wettability may also have an influence on the 
amount of adsorbed proteins, since a very hydrophobic surface may prevent water from wetting the 
available surface, and, thus, further protein interaction with it. Alternatively, an increase in surface 
hydrophilicity may reduce the hydrophobic interaction between proteins and the surface, causing a 
lower adsorption affinity. Moreover, bacteria also have biomolecules in their cell wall that determine 
the surface properties and the adhesion dynamics [36]. In the case of gram-negative bacteria, the 
presence of lipopolysaccharide (LPS) in the outer membrane, tends to become more hydrophilic 
bacterial cell, and increase the attraction to hydrophilic surfaces too [37]. According to Husmark and 
Ronner, surface charge can also be influenced by the pH of the medium and consequently, change the 
bacteria adhered to it [38]. The relationship between surface and bacterial cell is mediated by a 
complex array of chemical and physical interactions, which add to the complexity of identifying the 
ideal surface with respect to abutment implants. 

2.1. Types of Implant Abutments 

In relation to the implant material types, titanium is the most commonly used material in dentistry 
due to its excellent physical and chemical characteristics, i.e., biocompatibility, stability and corrosion 
resistance [39]. To date, titanium is considered the “gold standard” and has maintained a dominant 
position as an abutment and implants material in long-term dental implant treatments. However, the 
high demand for aesthetic restorations has led to the introduction of ceramic implant abutments made 
from zirconium oxide stabilized with yttrium [40]. The microstructural and mechanical properties of 
the zirconia, as well as its excellent biocompatibility, have been well documented [41,42]. In dentistry, 
zirconia has been used for clinical applications in ceramic crowns, fixed partial dentures, orthodontic 
treatment supports, implants as well as abutments [43]. In addition, it has been shown that zirconia 
accumulates less plaque than titanium [42]. Despite the ceramic being used as abutment material for 
several years, only a limited number of related articles have been published concerning biofilm and 
abutment implants surfaces [44,45]. 

2.1.1. Microbiology of Periodontal Disease 

Periodontitis is a chronic inflammatory disease, initiated by the accumulation of plaque on enamel 
surfaces in close proximity with the gingival tissue, in which disease expression involves intricate 
interactions of the biofilm with the host immune inflammatory response and subsequent alterations in 
bone and connective tissue homeostases [46]. With the permanence of dental plaque on the tooth 
surface, the population dynamics of the microbiota is changed, favoring the development of biofilm 
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with anaerobic bacteria, in particular microorganisms of the red complex (a group of bacteria that are 
grouped together based on their association with severe forms of periodontal disease) [47], which are 
responsible for alveolar bone loss and ultimately the tooth. Among periodontopathogenic bacteria, 
(Porphyromonas gingivalis), a gram-negative anaerobe and one of the most important pathogens in 
chronic periodontitis, has the ability for co-aggregation not only with (Fusobacterium nucleatum), but 
also with early colonizers (such as Streptococcus gordonii) [48], which could help explain its early 
appearance in the development of dental plaque biofilms [49,50]. However, it is important to mention 
that the virulence of P. gingivalis has been attributed to a variety of potential factors associated with its 
cell surface: fimbriae, lipopolysaccharides, capsules, proteases, hemagglutinins, and major outer 
membrane proteins [51]. On the tooth surfaces, these microorganisms are detected in dental plaque 
samples within six hours after professional tooth cleaning [52], and their numbers increase in 
compromised sites. Moreover, these structures can bind with receptors of epithelial cells, invade them 
and initiate an inflammatory process. The increase of cytokines released by the host defense cells can 
cause bone resorption and, consequently, loss of teeth or even implants. Attention has also been given 
to F. nucleatum, a gram-negative anaerobic bacteria, commonly found in the subgingival biofilm in 
periodontal pockets. This organism also has an important role in biofilm maturation, acting as a bridge 
between the early and late colonizers, guiding biofilm architecture and, consequently, enhancing the 
adherence of more periodontitis-associated bacteria [53]. As well as P. gingivalis, F. nucleatum is also 
capable of adherence to and invasion of host epithelial cells and stimulates the host immune 
inflammatory response. Since the presence of these microorganisms increases and/or decreases in the 
presence of other primary and intermediate colonizers, the successful treatment of periodontal disease 
would suggest an increase of the Actinomyces spp, and simultaneously, a reduction of pathogens of the 
orange and red complex [54]. 

2.1.2. Periodontal Disease—Peri-Implant Disease 

There is a philosophy that patients with periodontal disease should be considered a risk factor for 
peri-implantitis [55]. After partial alveolar bone loss as a consequence of periodontal disease, the 
periodontopathogenic microorganisms remain within periodontal pockets, and these microorganisms 
have the ability to colonize various implants even after osseointegration has been successfully 
achieved [47]. The remaining microorganisms adhere to the teeth, as well as on crowns and implants, 
and directly influence the peri-implant microbiota to promote the plaque development for a more 
subgingival microbiota [56–58]. The history of periodontitis has been associated with peri-implant 
disease. Marrone et al. [59] showed the prevalence of peri-implantitis in patients with active 
periodontitis was 57.1%. Thus, if a patient is not stable with respect to periodontitis they could have 
more chances to present peri-implantitis on one of their implants after >5 years duration. This finding 
is in agreement with a study regarding prevalence and risk variables for peri-implant disease in 
Brazilian subjects where those with periodontitis were more prone to develop peri-implantitis [60].  
In addition, other studies have also associated a history of periodontitis with peri-implant  
disease [57,58,61]. Karoussis et al. [62] compared the survival rate of implants in patients with and 
without a history of periodontitis. They concluded that in 10 years, the implants survival rate for the 
group with a past history of chronic periodontitis was 90.5% while for the group with no past history 
of periodontitis was 96.5% [62]. Roos-Jansaker et al. [63] evaluated the long-term result of implant 
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therapy, using implant loss as an outcome variable. The patients were called in for a complete clinical and 
radiographic examination, 9–14 years after implant placements. A significant relationship was observed 
between implant loss and periodontal bone loss of the remaining teeth at implant placement. Other authors 
associate the microbiota with unsuccessful healing of the implants [10,59,64–66]. What perhaps make 
such conclusions more difficult to interpret are the conflicting definitions of peri-implantitis found in 
the literature [60,67,68]. Depending on how peri-implantitis is defined, the frequencies of  
occurrence will considerably vary and it may become difficult for comparison between studies.  
Berglundh et al. [16] in a systematic review, reported frequencies of peri-implantitis ranging of 0% to 
14.4%, with a weighted mean on fixed partial dentures of 6.4%. The authors observed that late implant 
loss (5–10 years) occurs in the range of 2.1% to 11.3%. This suggestion may be partly explain the 
controversial range of peri-implantitis and posterior implants loss. The bacterial colonization upon 
implant surfaces and in the gingival tissues may occur only minutes after implantation [69] and, after 
10 days, the bacterial microbiota composition around these new implants becomes similar to 
microbiota around periodontally compromised teeth [70]. 

2.2. Biofilm Formation on Abutment Implant Surfaces 

Strategies to reduce bacterial adhesion and biofilm formation on implant abutment surfaces play an 
important role on clinical practice and may be used to maintain soft tissue integrity or improve  
peri-implantitis treatment [71]. However, conflicting opinions exist on biofilm formation among 
different types of materials [15,72–75]. Titanium and zirconia are hydrophobic materials. Since  
gram-positive bacteria present hydrophobic characteristics due to a thick peptidoglycan layer, they will 
be attracted immediately to these materials. In contrast to gram-negative bacteria, those in direct 
contact will be repelled. Hydrophobic/hydrophilic interactions may explain why some reports do not 
show differences between biofilm formation when utilizing material surfaces of a similar chemical 
nature. Brakel et al. [76] compared the early bacterial colonization and the health of soft tissues 
adjacent to the mucosal surfaces of the titanium and zirconia abutments. Microbiological sampling and 
measurement of clinical parameters were performed two weeks and three months after abutment 
implantation. The authors concluded that there was no significant difference in bacterial adhesion in 
both abutments, titanium and zirconia [76]. Although titanium and zirconia are hydrophobic materials, 
titanium exhibits semi conductor features due to its bioactive dioxide layer [77] and this may explain 
controversial results in the scientific literature. Scarano et al. [15] showed that zirconia discs fixed on a 
device worn intraorally showed less plaque accumulation than Titanium discs, even with similar 
surface roughness. This was attributed to lower electrical conductivity of zirconia in comparison to 
titanium. Al-Ahmad et al. [75] also evaluated biofilm formation in various types of titanium and 
zirconia abutment surfaces in vivo and found that the oral biofilm accumulation was lower on the 
zirconia surface compared to the titanium surface. 

It is also important to discuss, that when the implants are in contact with plasma or saliva, proteins 
can direct the attraction or repulsion of bacteria present on external layers since proteins have different 
degrees of hydrophobic to hydrophilic regions. The main salivary protein adsorbed to titanium in vivo 
and in vitro is albumin [78,79], and albumin adsorption to titanium occurs through calcium (Ca+2 
bridges [80]. The negative charge from titanium dioxide may attract positive ions, such as Ca+2 and its 
presence thus increases the adhesion of some bacteria species. Hauslich et al. [81] 2012, demonstrated that 
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pretreatment of titannium surfaces with Ca+2 ions increased the adhesion of S. mutans and F. nucleatum to 
the Ti surfaces, but did not influenced the P. gingivalis adhesion. F. nucleatum possesses Ca+2-dependent 
binding proteins on the cell surface similar to those of S. mutans [82]. These findings indicate that the 
divalent ion Ca+2 may serve as a bridging agent in the adhesion of bacteria to Ti surfaces. 

Bacteria can detect the non-biological substrate and express different genes, probably as part of the 
adaptation to a new microenvironment. The differences in the depth and viability of the biofilms on the 
different materials are a result of physical and chemical properties that determine gene expression 
profiling of bacteria, regardless of film formation [75]. 

3. Conclusions 

In the case of partially edentulous patients affected by periodontal disease, the type of abutment 
implant to be used requires careful consideration. In general, previous reports compare biofilm 
formation on different types of surfaces using few numbers of bacteria. The multiple factors involved 
in complex biofilm formation, such as roughness and electrostatic interactions between bacteria and 
surfaces and interbacterial interactions can make it difficult to characterize and determine the ideal 
abutment implant surface. However, understanding the influence of materials surfaces on bacterial 
adhesion will help future development of new materials or surface treatments, in order to reduce or 
inhibit adhesion of pathogenic microorganisms on them. 
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