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Background. Nifedipine-induced gingival overgrowth (NGO) is a multifactorial pathogenesis with increased extracellular matrix
including collagen and glycans, inflammatory cytokines, and phenotype changes of fibroblasts. However, the molecular etiology
of NGO is not well understood. The objective of this study is to investigate the key genes in the pathogenesis of NGO. Methods.
In this study, we examined the proliferation and migration abilities of fibroblasts derived from patients with chronic
periodontitis, nifedipine nonresponder gingival overgrowth, gingival overgrowth caused by nifedipine, and healthy normal
gingiva. We conducted RNA-Seq on these four groups of fibroblasts and analysed the differentially expressed genes (DEGs).
Results. Fibroblasts derived from NGO patients had higher proliferation and migration abilities than those of the other groups.
Protein-protein interaction network analysis indicated that TGFB2, ITGAS8, ITGA1l, FGF5, PLA2G4D, PLA2G2F, PTGSI,
CSF1, LPARI1, CCL3, and NKX3-1 are involved in the development of NGO. These factors are related to the arachidonic acid
metabolism and PI3K/AKT signaling pathways. Conclusion. Transcriptional gene expression analysis identified a number of
DEGs that might be functionally related to gingival overgrowth induced by nifedipine. Our study provides important

information on the molecular mechanism underlying nifedipine-induced gingival overgrowth.

1. Introduction

Drug-induced gingival overgrowth (DIGO)/hyperplasia is a
frequent adverse effect observed in patients treated with
anticonvulsant, immunosuppressant, and some antihyper-
tensive medications [1-3]. Nifedipine is widely used to
treat hypertension and/or angina. Nifedipine-induced gin-
gival overgrowth (NGO) is reported to be the most frequent
form of DIGO, with an incidence ranging from 6.3% to 83%
[4-6]. However, the molecular etiology of NGO is not
well understood.

Several possible mechanisms and pathways of NGO have
been proposed over the years. Several factors are thought to
influence the relationship between nifedipine and gingival
overgrowth, including local inflammation, drug-induced
alterations in gingival connective tissue homeostasis, and
genetic predisposition [7, 8]. NGO is characterized by cell
proliferation and extracellular matrix (ECM) component
accumulation in gingival connective tissues. Inflammatory

cytokines, such as interleukin-1p [9] and interleukin-6 [10],
have also been reported to synergistically enhance prolifera-
tion and collagen production in human gingival fibroblasts
(hGFs) [11]. In addition, collagen synthesis is controlled by
matrix metalloproteinases (MMPs) and tissue inhibitor of
metalloproteinases (TIMPs). MMPs are key enzymes
involved in the degradation of collagen and ECM compo-
nents during periodontal inflammation and NGO [12, 13].
Moreover, not all patients taking nifedipine develop gingival
overgrowth. In the literature, patients who show NGO are
termed “responders,” and those who do not are termed “non-
responders.” Such interindividual susceptibility to gingival
changes may be related to genetic predisposition, which can
influence a variety of factors in the drug-cell-plaque-induced
inflammation interaction [14]. Our previous study has
proved that MMP-2 and MMP-9 played significant roles in
regulating nifedipine-induced gingival overgrowth develop-
ment and progression. Nifedipine treatment accompanied
by local inflammation regulated MMP-2 and MMP-9
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expression, which was most likely associated with NGO
severity [13]. Therefore, we strongly speculate that changes
in critical genes or effector molecules play a significant role
in the pathogenesis of NGO.

2. Materials and Methods

2.1. Experiment Groups and Tissue Preparation. In our study,
gingival specimens were obtained from 12 patients ranging
from 40 to 70 years old (n = 3 for each group). Inclusion cri-
teria were as follows: (1) the average time of taking nifedipine
for high blood pressure was 3-8 years; (2) all patients had no
other systemic diseases or history of taking antibiotics within
3 months before enrollment; (3) women were not pregnant
and did not take contraceptives; (4) the number of teeth
reserved in the mouth >20; and (5) informed consent was
signed for treatment research. Objectives in the NNGO
group and NGO group should meet items 1-5 at the same
time, and objectives in the control group and CP group
should meet items 2-5. In addition, the diagnosis of peri-
odontitis was based on the following: (1) interdental clinical
attachment loss (CAL) is detectable at >2 nonadjacent teeth,
or (2) buccal or oral CAL>3mm with pocket probing
depth (PPD) >3mm is detectable at >2 teeth but the
observed CAL cannot be ascribed to nonperiodontitis-
related causes [15]. Exclusion criteria were as follows: (1)
patients with gingival hyperplasia due to other drugs (such
as phenytoin sodium and cyclosporine A); (2) patients with
other systemic serious diseases; and (3) patients using hor-
mone therapy in the past 3 months.

Cases were divided into four groups, and the status of
periodontal disease activity was measured and assessed by
gingival index (GI), gingival margin level (GML), and
CAL. Periodontal manual probe and measurements were
recorded in 28 teeth at four sites, namely, distobuccal, mid-
buccal, mesiobuccal, and lingual, per tooth three times.
Each tooth was scored as the average of 4 dental scores.
The scoring criteria of GI score [16] are as follows: 0 points:
healthy gingivae; 1 point: mild inflammation of the gingi-
vae, slight changes in gingiva color, mild edema, and no
bleeding during exploration; 2 points: moderate inflamma-
tion of the gingivae, reddish gingivae, bright edema, and
bleeding diagnosis; and 3 points: severe inflammation of
the gingivae, obvious swelling or ulceration of the gingivae,
and a tendency to bleed automatically. CAL means the dis-
tance from the cementoenamel junction to the bottom of
the periodontal pocket which indicates the degree of attach-
ment loss. GML means the distance from the gingival mar-
gin to the cementoenamel junction which indicates the
degree of gingiva degradation.

All the patients were made to undergo oral ultrasonic
scaling to remove deposits which might interfere in probing
pockets and detecting CAL.

(Group A) Patients with periodontally healthy tissues
(GIscore=0, GML=0mm, and CAL=0
mm) who needed the third molar extracted
(NOR)
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(Group B) Patients with severe chronic periodontitis
(GIscore=2, GML=3mm, and CAL>5
mm) who needed the third molar extracted
(CP)

(Group C) Patients with nifedipine non-responder gin-
gival enlargement (GIscore=1, GML=0
mm, and CAL = 0 mm) who needed the third
molar extracted (NNGO)

(Group D) Patients ~ with  gingival  enlargement
(GIscore=1, GML=-3mm, and CAL=0
mm) caused by nifedipine who needed peri-
odontal treatment (NGO)

Informed consent was obtained from each participant
under a protocol approved by the Ethics Committee of Fudan
University. Tissues from the proximal papillae of the man-
dibular third molars were made into paraffin sections, and
one representative section from each specimen was stained
with hematoxylin and eosin (H&E), while the remaining gin-
gival tissue was used to culture fibroblasts for RNA-Seq. The
samples were fixed in 10% buffered formalin for 48 h at 4°C
for further histological examination.

2.2. Cell Culture. Briefly, after isolation of the gingival tissue,
gingival epithelial tissue was eliminated in the culture dish
with a small amount of Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% fetal bovine serum (FBS). The tis-
sue was cut into 1 mm’ blocks using ophthalmic scissors,
transferred into culture flasks and cultured in an incubator
at 37°C, 5% CO,, and 95% relative humidity. The medium
was changed daily. The cells were grown to semiconfluence,
harvested by trypsinization at 37°C for 2 min, and then sub-
cultured in a new dish. The experiments were performed
using fourth-passage fibroblasts.

2.3. CCK8 Assays. The Cell Counting Kit 8 (CCK8, Dojindo,
Kumamoto, Japan) was used to assess hGF proliferation.
According to the manufacturer’s instructions, 1.5x 10°
cells/ml were seeded into 96-well culture plates. The growth
medium was replaced with serum-free DMEM after cells
were allowed to attach for 24 h. Then, 10 ul of CCK-8 solu-
tion (5 g/l) was added and incubated for a further 2h. A Mul-
tiskan GO spectrophotometer (Thermo Scientific, Waltham,
MA, USA) was used to measure absorbance at 450 nm.

2.4. Transwell Cell Migration Assay. Cell motility was deter-
mined in vitro using a Transwell chamber (Costar, Corning,
NY, USA). The cells were trypsinized and placed into the
upper wells of the Transwell chamber (40,000 cells per well)
in 100 yl of serum-free DMEM. In the lower section of the
chamber, 600 ul of DMEM containing 10% FBS was added.
The cells were then cultured in an incubator for 24 h. After
the nonmigrated cells were scraped off, the membranes were
fixed with methanol, and cells were counted after staining
with 4/, 6-diamidino-2-phenylindole (DAPI; KeyGEN Bio-
TECH, Nanjing, China). The cells in five separate fields were
counted using light microscopy at 200x magnification.
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F1GURE 1: Photographs of mouths and representative H&E staining of the gingival tissues showing the four experimental groups (NOR:
normal; CP: chronic periodontitis; NNGO: nifedipine nonresponder gingival overgrowth; NGO: nifedipine-induced gingival overgrowth).
Epi: squamous epithelium; Ct: connective tissue; Ic: inflammatory cell; Sp: spinous cell layer; Ke: hyperorthokeratosis; C: collagen bundles.

Bar = 100 ym.

2.5. RNA-Seq and Protein-Protein Interaction Network
Analysis. To construct each cDNA library, total cellular
RNA was extracted from fibroblasts using Trizol reagent
(Invitrogen, Carlsbad, CA, USA). Each ¢cDNA library was
constructed according to the manufacturer’s guidelines,
and next-generation sequencing was carried out in the
company (WuXi AppTec Co. Ltd, Wuxi, China), using an
Mlumina HiSeq 2000 platform (IGA, Udine, Italy). RNA-
Seq compares the number of reads that align to a specific
transcript in different samples or cDNA libraries. Expres-
sion was calculated using RPKM (Reads Per Kilobase of
exon model per Million mapped reads) normalization,
while accounting for the length of the transcript, the num-
ber of base pairs, and the total number of reads in the tran-
scriptome [17]. This normalization eliminates the influence
of different gene lengths and sequencing levels on the cal-
culation of gene expression. Genes were considered differ-
entially expressed if they exhibited a Benjamini and
Hochberg-adjusted p value (FDR) of 5%, and a mean fold
change of 0.2. Bioinformatics analysis of DEGs was based
on RNA-Seq results. Moreover, to further study the rela-
tionships among DEGs at the protein level, we generated
a PPI network (based on the identified DEGs) by integrat-
ing protein information from the Search Tool for the
Retrieval of Interacting Genes (STRING) database (http://
string-db.org/). The Database for Annotation, Visualiza-
tion, and Integrated Discovery (DAVID) online platform
(https://david.ncifcrf.gov/) was used to perform Gene
Ontology (GO) analysis of the DEGs.

2.6. Statistical Analysis. Statistical calculations were carried
out using SPSS version 20 (IBM Corp., Armonk, NY, USA).
Student’s t-test or one-way analysis of variance (ANOVA)
was performed to determine statistical significance for each
comparison; p < 0.05 was considered statistically significant.

3. Results

3.1. The Clinical Features. The normal gingivae were pale
pink and glossy. The margin was knife edged and scalloped.
A streamlined papilla was often grooved by a sluiceway
approximately 1-2 mm depth, and the attached gingivae were
stippled. The gingiva was firm, including multiple blood ves-
sels and nerves (Figure 1(a)). In the CP group, the knife-
edged margin became rounded, the interdental sluiceway
was lost, and the gingival surface became smooth and glossy.
Gingival bleeding occurred frequently upon touching
(Figure 1(b)). The clinical features of gingivae in the NNGO
group were similar to those of normal gingivae (Figure 1(c)).
In the NGO group, enlargement was either localized or gen-
eralized, affecting the entire mouth. The entire papillae and
surrounding tissues were enlarged, giving the gingival tissues
a lobulated appearance (Figure 1(d)).

3.2. Histological Findings. In the NOR group, gingival tissue
exhibited the structure of stratified squamous epithelium
(EPi), with short, organized epithelium spikes. Approxi-
mately 3 to 4 layers of acanthocytes were present, and granule
cells were flat, with well-adhered keratin. Cuboidal basal cells
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F1GURE 2: hGFs derived from NGO patients had high abilities of proliferation and migration. (a) The gingival fibroblasts of four groups were
cultured. The proliferation (b) and migration (c) ability of the cells was detected by CCK8 and Transwell assay. NOR: normal; CP: chronic
periodontitis; NNGO: nifedipine nonresponder gingival overgrowth; NGO: nifedipine-induced gingival overgrowth. *p <0.05, **p < 0.01,

and ***p < 0.001.

with hyperchromatic basophilic nucleus were perpendicular
to the basement membrane. The lamina propria had a large
amount of connective tissue (Ct), which contained collagen
fiber bundles and fibroblasts, scattered with some chronic
inflammatory cells (Ic) and lymphocytes (Figure 1(e)). How-
ever, each layer of epithelial cells in NGO was increased, and
the keratinized epithelium was thicker. The excessive epithe-
lial spikes were wider, with irregular elongation, and some
even crossed the reticulate thickening of the prickle cell layer.
The spinous epithelial cells were also larger, and collagen
bundles appeared wavy. The connective tissue collagen fibers
were increased in the lamina propria. The fibroblasts were
plump, and chronic inflammatory cells were more frequently
observed than in the NOR group (Figure 1(h)). In the CP
group, the acanthocyte layer was thickened, epithelium
spikes were elongated, and connective tissue was increased,
with more inflammatory cell infiltration (Figure 1(f)). Simul-
taneously, the microscopic appearance of tissue from the
NNGO group was not clearly distinguishable from that of
the NOR group (Figure 1(g)).

3.3. hGFs Derived from NGO Patients Had High Abilities of
Proliferation and Migration. hGFs obtained after digestion
from the four groups presented elongated, spindle-shaped
adherent growth (Figure 2(a), A and B). CCK8 assays were
performed to investigate hGF proliferation. hGFs derived
from the NGO and CP groups showed significantly enhanced
proliferation comparing with those from the NOR and
NNGO groups (p < 0.05). However, hGFs derived from the
NGO group exhibited higher proliferation compared with
those from the CP group (p < 0.05) (Figures 2(a), B and
2(b)). The migration rates of hGFs were subsequently mea-
sured using Transwell chambers. hGFs derived from the
NGO group were more capable of migration compared with
those from the CP group (Figures 2(a), C and 2(c)).

3.4. Transcriptomic Analysis of hGFs Derived from Nifedipine-
Induced Gingival Overgrowth. To assess differences in hGF
gene expression between NGO and the other groups, we
used a volcano plot to identify fold changes and statistical
significance (Figure S2A). First, 4040 (1866 upregulated
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and 2174 downregulated), 2867 (1141 upregulated and 1726
downregulated), and 11032 (6720 upregulated and 4312
downregulated) genes were identified in the NGO group that
displayed fold changes >2 (p <0.05) versus the other three
groups. Therefore, these genes were identified as differentially
expressed genes (DEGs). PPI analysis revealed several DEGs
in the NGO group compared with those in the CP group,
including NOS3, ITGAM, RAC2, PIK3CG, MMP9, TGFBI,
and IL6 (Figure 3(a)). GO analysis demonstrated that NGO
might be related to the cytoplasm, cytoplasmic part, protein
binding, and binding functions (Figure S1A). KEGG analysis
indicated that these DEGs might be involved in the Rapl
signaling pathway, the PI3K-Akt signaling pathway, and axon
guidance (Figures S1B and S1E).

To explore the different susceptibilities to nifedipine,
we analysed the DEGs between the NGO and NNGO
groups and identified several key DEGs, including FGFR1,
VEGFA, IL6, MMP2, CDH1, ERBB3, RHOD, and MAPK13.
GO analysis revealed that NGO might be related to the cyto-
plasm, cytoplasmic part, binding, and protein binding
(Figure 3(b)). KEGG results showed that these DEGs are
involved in proteoglycans in cancer, regulation of actin cyto-
skeleton, and metabolic pathways (Figure S1F).

Finally, the distributions of the DEGs and their overlap-
ping expression in these different groups are illustrated by a
Venn diagram in Figure 4(a), which shows that 138 DEGs
were altered in NGO compared with those in the other
groups, indicating that these 138 genes may be affected by
nifedipine (Table S1). Based on PPI network analysis, we
discovered several significant DEGs that may participate in
the regulation of NGO, such as TGFB2, ITGAS8, ITGAll,
FGF5, PLA2G4D, PLA2G2F, PTGS1, CSF1, LPARI, CCL3,
and NKX3-1 (Figure 4(b)). These factors might be involved
in PI3K-AKT signaling (Figure 4(d)). In addition, GO
analysis showed that NGO was closely related to cell
response to stimulus and to protein binding (Figure 4(c)).

4. Discussion

Nifedipine is the most frequently implicated calcium channel
antagonist in DIGO [18-20], yet the underlying molecular
mechanism remains unclear. Currently, some of the most
cited causes and risk factors of gingival overgrowth include
gender, genetics, duration of administration, and inflamma-
tion [13, 14, 21]. The pathogenic mechanisms of DIGO are
known to be genetically predetermined, as gingival fibro-
blasts are more sensitive to GO-inducing drug than other
fibroblast subpopulations. Such fibroblast heterogeneity
leads to variations in the production of potentially prolifera-
tive, fibroblastic cytokines/GFs and the environmental
response related to ECM components [22]. In the present
study, we cultured and analysed hGFs derived from NGO
patients and observed that these hGFs exhibited enhanced
migration and proliferation abilities.

RNA-Seq provides an even more precise measurement of
transcriptional levels of gene expressions involved in DGO
than all other methods, enabling us to further elucidate the
molecular mechanism underlying NGO. In this study, tran-
scriptome analyses yielded rich information on gingival

fibroblasts from the NGO group. Previous work has sug-
gested that local inflammation, especially dental plaque, is a
vital factor in the etiology of DIGO [23-25]. To eliminate
the effect of inflammatory factors on gingival hyperplasia,
fibroblasts from patients with gingival hyperplasia were com-
pared with those from periodontitis patients. Based on PPI
network analysis between the NGO and CP groups, we iden-
tified key novel DEGs in the fibroblasts derived from the
NGO group including NOS3, RAC2, ITGAM, and PIK3CG,
which were upregulated compared to the CP group. To our
knowledge, this is the first report describing the relationship
between these novel genes and NGO. NOS3 promotes the
synthesis of nitric oxide (NO), an intracellular signaling mol-
ecule that regulates vasodilation via a cGMP signaling-
mediated signal transduction pathway [26]. Meanwhile,
RAC2 augments reactive oxygen species (ROS) production
by increasing NOS activity [27], through NADPH oxidase
[28]. ROS are reported to play a critical role in oxidative
stress, which seems to be linked to the initiation and pro-
gression of fibrotic diseases [27, 29]. PIK3CG is a key fac-
tor of cell growth, proliferation, and motility, involved in
the endothelial progenitor migration [30]. Moreover, IL6
and TGFB1 were identified as significant DEGs in the
NGO group compared with the CP group. IL6 is related
to immune-inflammatory features associated with NGO.
TGFBLI plays a key role in fibrosis of different tissues, such
as skin, liver, kidney, eye, lung, and the cardiovascular sys-
tem. TGFB1 stimulates fibroblastic population and ECM
deposition of fibronectin and glycosaminoglycans (GAGs)
[31-33]. MMP9 was significantly upregulated in NGO
fibroblasts. Our previously study illustrated that MMP9 is
a potential contributor to NIGO development and is most
likely associated with NIGO severity [13]. These results
suggest that NGO is influenced by various factors includ-
ing cytokines and enzyme, although the inflammatory pro-
cess is ultimately responsible for the severity of NGO [34].

Considerable sequestration of nifedipine has been
observed in patients who exhibit significant gingival changes
arising from treatment with this drugs [35, 36]. However, not
all patients receiving nifedipine develop gingival overgrowth.
Gingival fibroblasts exhibit functional heterogeneity in
response to various stimuli [7]. Comparing the NOG and
NNGO groups, we identified several key DEGs such as
FGFR1, VEGFA, IL6, MMP2, CDH1, ERBB3, RHOD, and
MAPK13. FGF is a fibroblast mitogen molecule with the dif-
ferentiation functions related to fibroblastic proliferation
according to GO analysis [37]. FGFR1-ligand binding acti-
vates several signaling cascades and mediates the RAS and
MAPK/ERK signaling pathways [38]. VEGFA promotes
endothelial cell proliferation and differentiation, induces
microvascular hyperpermeability, and participates in ECM
remodeling [39]. CDHI is involved in regulation of cell-cell
adhesion, mobility, and proliferation of epithelial cells [40].
RHOD is involved in the internalization and trafficking of
activated tyrosine kinase such as PDGFRB and ERBB3 [41].
PDGF stimulates IGF synthesis, which leads to increased
fibroblast collagen synthesis and may be related to the stim-
ulation of mesenchymal tissues during periodontal regenera-
tion [42]. MMP2 was downregulated in fibroblasts derived
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FIGURE 3: Protein—protein interaction network of the differentially expressed genes (DEGs).

from the NOG group compared with those from the NNGO
group. Decreased MMP-2 levels may be associated with
impaired tissue remodeling, leading to pathological collagen
deposition and tissue fibrosis [43]. MAPK13 is one of the

four p38 MAPKs that play an important role in cellular
responses evoked by extracellular stimuli such as proinflam-
matory cytokines, the regulation of the epidermal keratino-
cyte differentiation, and apoptosis. Our results indicate that
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FIGURE 4: RNA-Seq analysis. (a) The distributions of the DEGs and their overlapping expression in different groups were illustrated by Venn
diagram analysis. (b) Protein-protein interaction network of the differentially expressed genes (DEGs). The GO analysis (c) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis (d) of these genes; x-axis is the function description corresponding to the KEGG
signal pathway. y-axis is the p value; p value < 0.05 means significant enrichment. NOR: normal; CP: chronic periodontitis; NNGO:
nifedipine nonresponder gingival overgrowth; NGO: nifedipine-induced gingival overgrowth.

these DEGs are closely related to nifedipine sensitivity in
fibroblasts and are involved in proteoglycans in cancer and
regulation of the actin cytoskeleton. The development of
NGO might be regulated by the RAS, MAPK/ERK, and
RAPI signaling pathways.

To further identify the mechanism of NGO, we analysed
the overlapping gene expression between the NGO and
NNGO groups, the NGO and CP groups, and the NGO
and NOR groups. Based on PPI network analysis, we identi-
fied key DEGs including TGFB2, ITGAS, ITGA1l, FGF5,
PLA2G4D, PLA2G2F, PTGS1, CSF1, LPAR1, CCL3, and
NKX3-1. TGFB2 suppresses IL-2 dependent T-cell growth.
Downregulation of TGFB2 expression is associated with the
reduction of cyclosporine-induced GO in rats treated with
roxithromycin [44]. FGF5 plays an important role in regu-
lating cell proliferation via ERK1/2 activation [45]. ITGA8
plays a role in organogenesis, likely by regulating the recruit-
ment of mesenchymal cells into epithelial structures [46].
ITGA11 is a collagen receptor [47]. ITGA11 knockdown in
hepatic stellate cells (liver-specific myofibroblasts) markedly
reduced transforming growth factor f-induced differentia-
tion and fibrotic parameters [48]. It might be involved in
fibrogenic signaling. LPARI is a lysophosphatidic acid
receptor related to actin cytoskeleton reorganization, cell
migration, differentiation, and proliferation. LPARI acti-
vates G proteins to trigger cytoplasmic Ca®" influx. LPAR1
contributes to fibrosis and cell migration in response to
injury [49, 50]. CCL3 (also known as macrophage inflam-
matory protein-la) is a member of the CC chemokine
family. It is classified as a macrophage-derived inflamma-
tory mediator [51]. PLA2 is a superfamily of enzymes that
catalyzes the production of free fatty acids and lysopho-
spholipids [52]. PLA2 regulates IL-1f5-induced chemokine

expression [53], which might be associated with the
inflammation during NGO. The androgen-regulated
homeodomain transcription factor NKX3-1 plays a role in
early prostate development and functions as a prostate-
specific tumor suppressor [54]. CSF1 promotes proinflam-
matory chemokine release and regulates membrane ruffling,
cell adhesion, and cell migration [55]. PTGS1 mediates
prostaglandin E2 (PGE2) production and promotes vascular
smooth muscle cell proliferation. These factors are involved
in the arachidonic acid metabolism and PI3K/AKT signal-
ing pathways.

In conclusion, this study revealed a number of DEGs
that may be functionally related to gingival overgrowth
induced by nifedipine. Although our study only illustrated
the role of fibroblasts in this process, it provides an impor-
tant information and a certain direction for further
research on the molecular mechanism underlying this con-
dition. Nevertheless, there are some limitations of this
study. The main limitations are lack of verification exper-
iment in the cells and small sample size. Therefore, larger
study groups and further study are required for clarifying
these genes or signal pathway.
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