@,
BMC Immunology Bioted Cent

Research article

The Toll-Like receptor adaptor TRIF contributes to otitis media
pathogenesis and recovery

Anke Leichtle!>, Michelle Hernandez?4, Kwang Pak!, Nicholas ] Webster3,
Stephen I Wasserman'? and Allen F Ryan* 1!

Address: 'Department of Surgery/Otolaryngology University of California, San Diego, 9500 Gilman Avenue, La Jolla, California 92093, USA,
2Department of Medicine/Rheumatology, Allergy and Immunology University of California, San Diego, 9500 Gilman Avenue, La Jolla, California
92093, USA, 3Department of Medicine/Endocrinology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, California 92093, USA,
4Department of Pediatrics, Division of Allergy, Inmunology, Rheumatology, & Infectious Diseases, University of North Carolina at Chapel Hill
School of Medicine, 4030 Bondurant Hall, CB#7000, Chapel Hill, NC 27599, USA and 5Department of Otolaryngology, University of Lubeck,
Ratzeburger Allee 160, Lubeck 23538, Germany

Email: Anke Leichtle - ankeleichtle@yahoo.de; Michelle Hernandez - michelle_hernandez@med.unc.edu; Kwang Pak - kpak@vapop.ucsd.edu;
Nicholas ] Webster - NWebster@ucsd.edu; Stephen I Wasserman - swasserman@ucsd.edu; Allen F Ryan* - afryan@ucsd.edu

* Corresponding author tEqual contributors

Published: 5 August 2009 Received: 9 March 2009
BMC Immunology 2009, 10:45  doi:10.1186/1471-2172-10-45 Accepted: 5 August 2009
This article is available from: http://www.biomedcentral.com/1471-2172/10/45

© 2009 Leichtle et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Toll-like receptor (TLR) signalling is crucial for innate immune responses to
infection. The involvement of TLRs in otitis media (OM), the most prevalent childhood disease in
developed countries, has been implicated by studies in middle ear cell lines, by association studies
of TLR-related gene polymorphisms, and by altered OM in mice bearing mutations in TLR genes.
Activated TLRs signal via two alternative intracellular signaling molecules with differing effects;
MyD88 (Myeloid differentiation primary response gene 88) inducing primarily interleukin
expression and TRIF (Tir-domain-containing adaptor inducing interferon §) mediating type |
interferon (IFN) expression. We tested the hypothesis that TRIF and type | IFN signaling play a role
in OM, using a murine model of OM induced by non-typeable Haemophilus influenzae (NTHi). The
ME inflammatory response to NTHi was examined in wild-type (WT) and TRIF-/- mice by qPCR,
gene microarray, histopathology and bacterial culture.

Results: Expression of TRIF mRNA was only modesty enhanced during OM, but both type | IFN
signalling genes and type | IFN-inducible genes were significantly up-regulated in WT mice. TRIF-
deficient mice showed reduced but more persistent mucosal hyperplasia and less leukocyte
infiltration into the ME in response to NTHi infection than did WT animals. Viable bacteria could
be cultured from MEs of TRIF-/- mice for much longer in the course of disease than was the case
for middle ears of WT mice.

Conclusion: Our results demonstrate that activation of TRIF/type | IFN responses is important in
both the pathogenesis and resolution of NTHi-induced OM.
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Background

Otitis media (OM) is the most common pediatric disease
in industrialized nations [1,2]. OM is characterized by
hyperplasia of the middle ear (ME) mucosa, the develop-
ment of effusion, and leukocytic infiltration of the ME
[3,4]. The etiology of OM is multifactorial, with Eus-
tachian tube dysfunction, prior viral infection and allergy
[5-7] all being factors known to contribute to OM inci-
dence. However, bacterial infection is common to most
acute and/or recurrent OM. Non-typeable Haemophilus
influenzae (NTHi), which since the introduction of pneu-
mococcal vaccines is associated with an increasing per-
centage of OM [8], is one of the most common pathogens
isolated from the ME in OM.

NTHi can influence host cells through interaction with
pattern recognition receptors, which recognize molecules
produced by pathogens and which play a key role in
innate immunity. They serve as the first line of host
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A schematic representation of TLR signaling via the
MyD88 versus TRIF adaptors. MyD88 signaling strongly
stimulates the production of pro-inflammatory interleukins,
primarily via NFkB. A subset of TLRs signal via the adaptor
TRIF, resulting primarily in the production of type | IFNs. The
role of TRIF signaling in OM, previously unknown, is
explored in this study. TLR, Toll-like receptor; MyD88, Mye-
loid differentiation primary response gene 88; TRIF, Tir-
domain-containing adaptor inducing interferon 3; TRAF,
TNF-receptor-associated factor; RIP1, receptor interacting
protein kinase |; TAKI, mitogen-activated protein kinase
kinase kinase 7; TBKI, TANK-binding kinase |; IKKg, inhibi-
tor of kappa light polypeptide gene enhancer in B-cells,
kinase epsilon; p50, NFkB, nuclear factor of kappa light
polypeptide gene enhancer in B-cells; p50, NF«B, subunit I;
p65, NFkB, subunit 3; JNK, Jun kinase; p38, p38 mitogen acti-
vated protein kinase IRF3, interferon regulatory factor 3;
ISRE, interferon-stimulated response element; TNFa, tumor
necrosis factor alpha; IL, interleukin; IFN, interferon.
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defense in infection, and they include the family of Toll-
like receptors (TLRs). As illustrated in Figure 1, TLR activa-
tion induces pro-inflammatory cytokines such as inter-
leukins (ILs), tumor necrosis factor alpha (TNFa) and
type I interferons (IFNs), via signaling cascades including
those dependent upon the MyD88-NFkB, TRIF-IRF3 and/
or MAP kinase pathways. All TLRs except TLR3 recruit the
adaptor MyD88 (Myeloid differentiation primary
response gene 88), which can influence gene expression
by activating downstream intracellular pathways. The
most dominant of these is NFkB, leading to the produc-
tion of TNFa and other pro-inflammatory cytokines.
MyD88 can also activate the JNK and p38 MAP kinase
pathways with subsequent expression of stress and
inflammation genes. Finally, MyD88 can activate the IFN
response factors (IRFs) IRF5 and IRF7. IRF5 mediates the
production of pro-inflammatory cytokines, while IRF7
can lead to the expression of type I IFN genes (IFNs a and
B). The alternative TLR adaptor TRIF (Tir-domain-contain-
ing adaptor inducing interferon B) is recruited only by
TLR3 and TLR4. TRIF primarily activates type I IFN gene
expression via IRF3, although via RIP1 and with delayed
kinetics it can activate NFkB and MAPKs [9-11].

While ME responses to TLR ligands such as peptidogly-
cans and lipopolysaccharide (LPS) are well documented
[12,13], the role played by TLR signaling pathways in OM
pathogenesis has not been as fully studied. In ME epithe-
lial cell lines, NTHi induces TLR2 expression [14,15] and
TLR2 activation regulates the expression of pro-inflamma-
tory cytokines and mucin genes [16-18]. Moreover, poly-
morphisms in the TLR4 gene are associated with increased
OM susceptibility in children [19]. Polymorphisms in the
genes for TNFo, a major pro-inflammatory target of TLR
signaling, and for IL-10, which often opposes TLR signal-
ing, are associated with OM [19,20]. Experimentally,
reduced short-term responses to NTHi, from 6 hours to 3
days, were reported in the MEs of C3H/He] mice, which
express a nonfunctional TLR4 [21]. TLR signaling defi-
ciencies have also been shown to induce abnormalities in
the recovery from bacterial infection at other sites [22,23].

We recently reported that MyD88 deficiency significantly
prolongs OM and delays bacterial clearance from the ME
of mice by weeks [24], suggesting that this adaptor mole-
cule is critical for OM recovery. However, OM does
improve over time in MyD88-deficient animals, with the
majority of MEs clearing NTHi by 42 days (our unpub-
lished observation), suggesting a MyD88-independent
response to infection in the ME. We also evaluated OM in
TLR4-deficient mice, and found impaired early bacterial
clearance and delayed recovery [25]. In dendritic cells,
both TRIF and MyD88 are known to play major roles in
responses to TLR4 ligands [26,27]. We therefore explored
the potential role of the major MyD88-independent TLR
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signaling pathway, which acts via the adaptor protein
TRIF, in OM.

Using a well-established experimental model of OM
induced by NTHi [28], we evaluated the expression of
genes related to TRIF signaling during acute OM, to deter-
mine whether genes that subserve this pathway or are its
targets are altered, which would suggest a role in mediat-
ing innate immunity in this condition. Using TRIF-defi-
cient mice, we also assessed the role of TRIF in OM
pathogenesis and ME bacterial clearance. Compared to
control mice, we demonstrate extensive expression of
genes related to TRIF-mediated signaling in OM in WT
mice. We also found that the lack of TRIF reduces and
delays the expression of the characteristic histopathologi-
cal findings of OM, indicating a role in mediating patho-
genesis. We also observed delayed bacterial clearance
suggesting that TRIF contributes, at least in part, to anti-
bacterial responses in the ME. This paper presents the first
demonstration of the role of TRIF in OM.

Methods

Animals

TRIF-/-, TLR2-/- and TLR4-/- mice on a C57BL/6 back-
ground (the null alleles were 6 x backcrossed onto
C57BL/6, and then intercrossed to establish the
homozygous lines) were originally generated by Beutler
and colleagues [29,30], and used with their permission,
but were generously supplied by Dr. Timothy Bigby of
UCSD. Age-matched C57BL/6] control mice, and C57BL/
6J:CB F1 hybrids for gene array analysis, were purchased
from Jackson Laboratories (Bar Harbor, ME). All experi-
ments were performed according to NIH guidelines and
approved by the Institutional Animal Care and Use Com-
mittee of the San Diego VA Medical Center. The mice were
housed and maintained in accordance with NIH policy
for the human treatment of animal subjects.

Bacteria

Haemophilus influenzae (non-typeable, biotype II; NTHi)
strain 3655 (originally isolated from the ME of an otitis
media patient in St. Louis; provided by Dr. Asa Melhus,
Lund University) was streaked onto chocolate agar over-
night. Two colonies were picked and grown in 25 ml of
brain heart infusion (BHI) media with 1 ml of Fildes
Enrichment (BD Diagnostic Systems). The bacteria were
spun down (9,000 rpm, 10 min) and then resuspended to
a final titer of 105 - 10°/ml [31].

Surgery

TRIF-/- and C57BL/6] mice were divided into groups of 6
mice for each experimental time point (3 each for histopa-
thology and bacterial culture). For DNA microarrays, 40
C57BL/6]J:CB F1 hybrid mice per time point were divided
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into two groups. All animals were inoculated with NTHi
as previously described [28,31]. Briefly, the mice were
deeply anesthetized, and both ME bullae were accessed
via a ventral midline incision in the neck. A hole was
made in the bullae using the tip of a 21 gauge needle. Both
MEs were injected with ~5 pl of NTHi inoculum, after
which the incision was closed [28,31]. Uninoculated
(time 0) or sham injected (saline) animals served as con-
trols.

qPCR

Expression of TRIF mRNA during NTHi-induced OM was
assessed in individual ME mucosae from wild-type (WT),
TLR2-/- AND TLR4-/- mice (n = at least 6 per time point)
by qPCR s previously described [25]. The ME mucosae
were dissected, mRNA was extracted and reverse tran-
scribed, and 1 pg/pl of cDNA was amplified using com-
mercial TagMan qPCR primers (Applied Biosystems,
Foster City, CA) for TRIF (Mm01260003_m1) and
MyD88 (MmO01351743_gl) in an ABI Prism 7000
Sequence Detection System (Applied Biosystems). Fold
induction was calculated using the comparative threshold
cycle (Ct) method [32]. Relative expression of each target
gene was normalized to levels of GAPDH and compared
to uninfected mucosa.

DNA Microarray

For each time point and condition (NTHi or PBS injec-
tion), forty WT (C57BL/6]J) ME mucosae were harvested
from deeply anesthetized mice at 0, 3 and 6 hours, as well
as 1, 2, 3, 5 and 7 days after NTHi inoculation. The tissue
from 20 different mice was pooled, to generate two inde-
pendent samples. The tissue was homogenized in TRIzol™
(Invitrogen, Carlsbad, CA) and total RNA was extracted.
Total RNA quality was assessed using the RNA 6000
Labchip Kit on the Agilent 2100 Bioanalyzer for the integ-
rity of 18S and 28S ribosomal RNA. The mRNA was
reverse transcribed using a T7-oligodT primer then in vitro
transcribed using T7 RNA polymerase to generate bioti-
nylated cRNA probes that were hybridized to Affymetrix
MU430 2.0 microarrays. Duplicate arrays were hybridized
for each time point, using RNA from pools of different
mice to obtain an independent biological replication.
Raw intensity data was median normalized and statistical
differences in gene transcript expression levels were evalu-
ated using a variance-modeled posterior inference
approach (VAMPIRE) [33]. This program uses a Bayesian
approach to identify altered genes. Statistical analysis by
VAMPIRE requires two distinct steps: (1) modeling of the
error structure of sample groups and (2) significance test-
ing with a priori-defined significance thresholds. VAM-
PIRE models the existing error structure to distinguish
signal from noise and identify the coefficients of expres-
sion-dependent and expression-independent variance.
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These models are then used to identify microarray features
that are differentially expressed between treatment
groups. This method allows the use of small numbers of
replicates to evaluate gene expression across a continuum
of conditions, down to one array per condition if (as in
the present study) many samples are pooled for each array
(i.e. the array itself samples the mean value) and if multi-
ple conditions are assessed. We used two arrays per condi-
tion, as recommended by the UCSD Microarray Core. We
compared mice inoculated with NTHi or PBS for each
time point against uninjected (0 hour) controls to gener-
ate sets of genes that change over time with NTHi or PBS
injection. We also compared mice inoculated with NTHi
versus PBS at each time point to generate sets of genes that
are differentially regulated between the two conditions.
Bonferroni multiple testing correction (ag,,s< 0.05) was
applied to identify only those genes with the most robust
changes. Functional gene families were assessed by gene
ontology (GO) analysis, and specific genes were overlaid
on pathways using Genespring GX 7.3 (Agilent Technolo-
gies, Santa Clara, CA).

The IFNa's comprise a large family of highly similar genes,
clustered on the same chromosome along with some
pseudogenes, that are not well represented on the Affyme-
trix MU430 2.0 microarray: Affymetrix identifies two
probes for IFNa.2, two for IFNa11, three for [IFNa12 and
four for IFNa13. However, for human Affymetrix gene
arrays, oligonucleotides for the IFNa family are reported
to be incorrectly identified [34]. We therefore evaluated
the IFNa probes present on the MU430 2.0 microarray by
nBLAST against the mouse genome, and found similar
problems with gene identification. Several IFNa probes
aligned to IFNa isoforms different from those specified by
Aftymetrix, while other IFNo probes cross-aligned with
several different IFNa.'s [see Additional File 1]. We there-
fore considered only those probes that matched a single
IFNo gene. Probes were found to align uniquely to the
IFNa2, 4, 5, 9, 11 and 14 genes, as well as to an unas-
signed IFNa gene similar to IFNa7.

As a separate evaluation of IFN signaling, we assessed the
expression of IFN-responsive genes that have been identi-
fied as preferentially activated by type I IFNs (that is,
IFNa's and IFNB as opposed to IFNy) by Baechler et al.
[35], choosing the 9 genes shown in their study to be most
strongly up-regulated in leukocytes by IFNf.

As a negative control, we assessed the expression of several
genes whose EST profiles on Genbank show expression
highly restricted to the testis, reasoning that these genes
are highly unlikely to play a role in OM: Cyct (testis cyto-
chrome ¢); Tct3 (t-complex-associated testis-expressed 3);
Dnajb3 (HSP40 homolog B3); Adam4 (a disintegrin and
metaloprotease 4); Tcplb (t-complex protein B) and
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Nkx2-6 (NK2 transcription factor-related, locus 6). None
of these genes showed significant changes during OM.

As a positive control, we assessed genes reported in the lit-
erature to be strongly up-regulated in OM. All were signif-
icantly regulated in OM in the array data, at levels roughly
similar to those previously reported: Muc4 (mucin 4, 5-
fold at 48 and 72 hours) [36]; Muc5ac (10-fold at 24 and
48 hours) [37,38]; Muc5b (5-fold at 24 hours) [36];
S$100a9 (36-fold at 24 and 48 hours), S100a8 (20-fold at
24 and 48 hours), Fth1 (ferritin heavy polypeptide 1, 3-
fold at 48 hours) [39].

Histology

Deeply anesthetized mice were perfused intracardially
with 4% paraformaldehyde. MEs were harvested at 0, 6,
12 hoursand 1, 2, 3, 5, 10, 14 or 21 days post inoculation,
processed and sectioned. Sections were stained with hae-
matoxylin and eosin (H&E), and micrographs were digit-
ally recorded. Mucosal thickness and percent area of the
ME lumen occupied by inflammatory cells were measured
at standardized areas of the ME, and computer-averaged
as described previously [28].

Bacterial Clearance

Bacterial presence was evaluated and analyzed from at
least six WT, and TRIF-/- MEs per time point, by obtaining
a sample from each for NTHi culture, as described previ-
ously [24]. Briefly, a 1 pl culture loop was used to sample
the ME contents. If no fluid was present, the loop was
used to scrape the ME mucosa to recover any adherent
bacteria. Each loop was then used to separately streak four
quadrants of a chocolate agar plate, which was incubated
for 24 hours prior to evaluation of bacterial colonies. Pos-
itivity was judged based upon the presence of multiple
NTHi colonies (>1) on one or more quadrants of the
plate. The presence of NTHi was verified by Gram staining
of colony-forming units, and by negative cultures on
blood agar plates versus chocolate agar plates.

Statistics

Except for gene array values as above, data were analyzed
with ANOVA using StatView statistics software with Bon-
ferroni correction, as described elsewhere [40]. Differ-
ences were considered significant at p < 0.05.

Results

TRIF expression is up-regulated in the ME mucosa by
NTHi

We evaluated TRIF expression in the ME mucosa of WT
mice by qPCR (Figure 2). Expression increased after
administration of NTHi, reaching approximately 2.5-fold
of that seen in the normal ME by 3 days after inoculation,
remained elevated for 14 days, and recovered to baseline
by 21 days.
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Figure 2

ME expression of TRIF in WT mice, and in animals
deficient in either TLR2 or TLR4, during NTHi-
induced OM, assessed by qPCR. TRIF mRNA is normal-
ized to GAPDH mRNA, and expressed relative to that in
uninfected control mice. N = 6 or more samples for each
data point. Error bars represent SEM. * = P < .05; *** = P <
.001.

TRIF expression in the ME is altered by TLR2 and TLR4
deficiency

To evaluate TRIF expression in mice with a deficit in a
major activator of MyD88, we assessed TRIF mRNA
expression in TLR2-deficient mice (Figure 2A). Since TLR4
can activate both MyD88 and TRIF, we also measured
TRIF mRNA in TLR4-/- mice (Figure 2A). TRIF expression
in the absence of NTHi was significantly greater in both
knockout strains than in uninfected WT mice. Upon infec-
tion with NTHi, TRIF mRNA decreased in these TLR defi-
cient animals. Within 24 hours, expression in the
knockout and WT mice converged, and remained similar
across the three strains over the course of 21 days.

TRIF signaling and type I IFN genes induced by NTHi
infection in the ME mucosa

The expression of genes relevant to type I IFN and TRIF
signaling in the ME mucosa (see Figure 1) was evaluated
by gene array in C57BL/6J:CB mice (Figure 3A-C, Addi-
tional Files 2-S). GO analysis revealed that genes related to
type I IFN signaling were significantly regulated during
the course of OM. In addition, individual genes encoding
signaling molecules associated with TRIF showed up-reg-
ulation, which was greatest at 1 day after inoculation (Fig-
ure 3A, Additional File 2). Type I IFN receptors were
similarly up-regulated. In contrast, the expression of most
type I IFNs represented on the array showed relatively lit-
tle change, with a modest tendency for down-regulation
from 3 hours to 1 day after inoculation, and slight up-reg-
ulation at 2-3 days. An exception was an unassigned IFNa
gene similar to IFNa7, which was sharply up-regulated at
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3 and 6 hours. (Figure 3B, see Additional File 1). Genes
that are normally induced by type I IFNs were very
strongly up-regulated in the ME mucosa in a biphasic
manner; with peaks at 6 hours and at 2-3 days after inoc-
ulation (Figure 3C, Additional File 3). None of the genes
that were differentially regulated by NTHi were signifi-
cantly altered in sham (saline-injected) MEs.

TRIF-I- mice show reduced and delayed inflammatory
response to NTHi

To assess the functional influence of TRIF, we investigated
the ME response to NTHi in TRIF-/- mice. WT mice dem-
onstrated hyperplasia of the ME mucosa, which reached a
maximum thickness 2 days after inoculation with NTHi
(Figures 4 and 5). Mucosal thickness remained elevated at
3 days, and then recovered to baseline by 5 days in WT
mice. In TRIF-/- mice, there was a slightly greater thickness
of the mucosa prior to NTHi administration, compared to
WT mice. However, the additional increase in mucosal
thickness induced by NTHi was more gradual, peaking at
3 days after inoculation, and recovered more slowly, not
reaching baseline until 10-14 days. Moreover, peak thick-
ness was less than in WT mice.

The infiltration of leukocytes into the ME lumen of WT
mice (Figure 6) was minimal until 1 day after NTHi inoc-
ulation, and like mucosal thickness, reached a maximum
at 2 days. Thereafter cellular infiltration decreased to reach
baseline at 10 days. The infiltration of leukocytes in TRIF-
/- animals was substantially reduced and delayed com-
pared to WT animals. However, recovery to baseline had
occurred by 5 days.

Bacterial clearance is delayed in TRIF-/- mice

Bacterial clearance of the ME cavity was examined in TRIF-
deficient mice and compared to that observed in WT mice
(Table 1). In WT mice, 4 out of 6 (4/6) culture plates were
positive at 1 day, increasing to 6/6 at 2 days, and decreas-
ing to 3/6 at 3 days. Thereafter, no bacteria were recovered
from WT MEs. TRIF-/- MEs were similar to WT MEs for 1,
2, and 3 days after NTHi administration, with 4/6, 5/6 and
3/6 MEs positive for bacterial colonization respectively.
However, in contrast to WTs, bacterial colonies could be
still detected at 5 and 7 days, with 1 positive plate out of
6. Cultures were negative thereafter. By comparison, the
MEs of MyD88 mice were strongly positive through 21
days (data from Hernandez et al.) [24], and even at 42
days (our unpublished observation) 1/6 MEs remained
positive. TLR4-/- MEs were culture-positive until 14 days.

Discussion

In this investigation we found that biological processes
mediated by TRIF activation contribute to the pathogene-
sis of NTHi-induced OM in mice. After NTHi infection of
WT mice the expression of TRIF, as well as of many TRIF-
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signaling genes. mRNA encoding genes of the TRIF signaling pathway (see Figure 1) in the ME mucosa. Data are expressed as
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Figure 4

Histological response to NTHi inoculation in the MEs
of WT and TRIF-deficient mice. Representative H&E
stained sections of the ME mucosa in WT and TRIF-/- mice
before (0 hr) and at various times after inoculation of the ME
with NTHi.

associated signaling genes and type I IFN-responsive
genes, was up-regulated. Moreover, animals deficient in
TRIF exhibited altered OM, consisting of delayed and
reduced morphological signs of mucosal hyperplasia and
inflammation as well as a delay in bacterial clearance.

As noted above, TRIF is recruited and activated following
ligand binding to TLR3 and/or TLR4, both of which are
up-regulated in the ME by exposure to NTHi [25]. TLR4 is
expressed by epithelial cells in the ME mucosa, and also
by infiltrating leukocytes [25]. While TLR3 has not been
localized in the ME, it is an intracellular receptor found on
endosomal membranes of phagocytic and other cells [11].
Moreover, NTHi infection produces molecules that serve
as ligands for these TLRs. Lipooligosaccharide (LOS), with
molecular structure closely related to LPS, can activate cel-
lular signals via TLR4 [11,41]. TLR3 is preferentially acti-
vated by double-stranded RNA from viruses [42], and this
mode of stimulation would presumably not be involved
in the response to NTHi. However, bacterial RNA is also
able to activate TLR3 [43,44]. In addition, host molecules
released during host cell injury or death can activate TLRs.
TLR3 can respond to host mRNA and DNA [45] while
TLR4 can be activated by heat-shock proteins [46], both of
which are released during tissue injury as is known to
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occur in OM [e.g. [47]]. Injection of TLR ligands, includ-
ing LPS, into the ME mimics many of the pathologic
changes observed in OM, including mucosal inflamma-
tion and edema, ME pressure abnormalities, and infiltrate
of leukocytes into the subepithelial space and the ME
lumen [12]. Thus substrates for TRIF activation are present
in the ME during OM, and TLR activation independent of
infection can contribute to its pathogenesis.

The dominant biological response to TRIF activation is
type I IEN gene expression. The type I IFNs can be pro-
duced by a variety of cell types, unlike the so-called
immune IENs (type II, IENY) that are produced primarily
by T-cells [48]. Type I IFN expression is induced by the
activation of IKKe, TBK1 and IRF3, all of which we found
to be significantly up-regulated in the ME following NTHi
inoculation. IRF3 activation in turn induces the expres-
sion of type I IFNs and other genes containing ISREs (IFN-
stimulated response elements) in their promoters, includ-
ing a number of type I IFN-inducible genes [49]. The type
I IFNs are classically associated with response to viral
infection. However, it has long been noted that exposure
to bacteria can increase the expression of type I IFNs and
IFN-related genes [e.g. [50,51]], and that expression of
IKKe, downstream from TRIF and upstream from IRF3, is
enhanced by LPS [e.g. [52]]. Bacterial induction of type I
IFNs is presumably related to their initial role in innate
immunity and their later roles in dendritic cell, macro-
phage and T-cell activation. Type I IFN-inducible genes
have diverse functions related to inflammation and
immunity, including cellular RNA and protein metabo-
lism, growth and differentiation, apoptosis and signal
transduction [53].

The production of type I IFNs by peripheral blood leuko-
cytes is reduced in individuals susceptible to upper respi-
ratory infections [54,55], including OM [56]. Moreover,
type I IENs are pro-inflammatory and could contribute to
OM pathogenesis. In addition, type I IEN gene expression
is known to make significant contributions to adaptive
immunity, which could influence late responses to NTHi.
For example, type I IFNs contribute to the maturation of
dendritic cells [57,58], the cross-priming of CD8 T-cells
[59], and the production of IL-12 [60]. In the presence of
TNFa, type I IFNs can also facilitate the development of
the pro-inflammatory Th1l T-cell phenotype [61]. As a
result, T-cells of both IFN-B deficient [62] and IFN-a/p
receptor-deficient mice [63] show a less inflammatory,
Th2 bias. As noted above, TRIF can also be associated with
the production of TNFa and interleukins via NFxB activa-
tion, albeit at a lower level and with delayed kinetics when
compared to MyD88 mediated processes.

Our gene expression data support the idea that TRIF sign-

aling is active during NTHi-induced OM. TRIF mRNA was
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Figure 5

Mucosal thickness in WT versus TRIF-/- mice during
NTHi-induced OM. Thickness of the ME mucosa, meas-
ured at standardized locations in the ME of WT and TRIF-/-
mice before (0 hr) and at various times after ME inoculation
with NTHi. Each data point represents the mean of 6 MEs.
Bars represent one standard deviation. Significant difference
between WT and TRIF-/- mice: **P < .001.

found by qPCR to increase during NTHi-induced OM.
Moreover, TRIF expression was up-regulated in uninfected
mice deficient in either TLR2 or TLR4, possibly suggesting
a compensatory change in TLR signaling. Given that TLR2
and TLR4 can employ different signaling mechanisms
(Figure 1), it is surprising that TRIF expression is so similar
in the absence of either gene. However, we have previ-
ously shown [25] that TLR4 is required for the early up-
regulation of TLR2 induced by NTHi, which may account
for the similarity.

GO analysis of gene array expression patterns during OM
identified type I IFN signaling as a pathway that is signifi-
cantly regulated in the ME by exposure to NTHi. Tran-
scripts encoding most elements of the TRIF signaling
cascade are also up-regulated, especially 24 hours after
NTHi inoculation. While most type I [EN genes were not
extensively regulated during OM, expression of at least
some appears to be enhanced. This was especially true of
a proposed IFNo gene similar to IFNa7, which showed a
sharp spike in fold expression within hours of NTHi inoc-
ulation, but several IFN genes were mildly up-regulated
later in OM. Finally, genes responsive to type I IFNs are
strongly up-regulated at 3-6 hours and again at 2-3 days
after NTHi inoculation.

http://www.biomedcentral.com/1471-2172/10/45
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Figure 6

Inflammatory cells in the ME of WT versus TRIF-/-
mice during OM. Area of the ME cavity covered by infil-
trating cells, measured at standardized locations in the ME of
WT and TRIF-/- mice before (0 hr) and after ME inoculation
with NTHi. Each data point represents the mean of 6 MEs.
Bars represent one standard deviation. Significant difference
between WT and TRIF-/- mice: *P < .05.

The relatively low degree of regulation of type I IFN genes
that we observed when upstream TRIF signaling and
downstream IFN-regulated genes were more extensively
up-regulated is puzzling. One possible explanation is the
potential for regulation of IFNa genes that are not repre-
sented on the Affymetrix mouse microarray. Alternatively,
increased TRIF signaling could bypass type IFNs and inter-
act directly with ISREs in the promoters of IFN-responsive
genes. Thus it can be speculated that the increased produc-
tion of "IFNa similar to IFNa7," which we observed
immediately after NTHi inoculation, or of an undocu-
mented IFNa might mediate the initial response of type I
IFN-inducible genes observed at 3-6 hours (Figure 3C,
Additional File 3). However, many of these genes contain
ISREs in their regulatory DNA [49], and so might be
directly regulated by IRF3. The later peak in expression of
type I IFN-inducible genes, at 2-3 days after inoculation,
could again be mediated by the type I IFNs themselves, by
enhanced signaling through mildly up-regulated IFNo/
receptors and/or by direct regulation of ISREs [49]
through IRF3 and other elements of the TRIF signaling
cascade, which were up-regulated at 1 day. Of course, an
alternate potential source of type I IFN-related gene
expression after NTHi is activation of IRF7 via MyD88,
which can also induce the expression of type I IFNs and
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Table I: Comparison of bacterial clearance in WT, TRIF-/-, TLR4-/- and MyD#88-/- MEs.

Time after NTHi instillation C57BLI/é) TRIF-/- TLR4-/-* MyD88-/-%*
Day | 4/6 4/6 4/6 6/6
Day 2 6/6 5/6 4/6 6/6
Day 3 3/6 3/6 3/6 6/6
Day 5 0/6 176 4/6 6/6
Day 10 0/6 1/6 3/6 6/6
Day 14 0/6 0/6 1/6 6/6
Day 21 0/6 0/6 0/6 2/6

Bacterial colonization of the culture plates from the MEs of each genotype. The number of positive plates out of 6 is provided. *TLR4-/- data from

Leichtle et al., [25], and **MyD88 data from Hernandez et al. [24].

IFN-inducible genes. This may be especially true for their
expression later in OM. While lack of MyD88 has rela-
tively little influence upon early OM, it has a very strong
influence upon late events [24]. However, the most com-
pelling evidence for the involvement of TRIF signaling in
OM is the altered OM phenotype observed in TRIF-/-
mice, consisting of decreased initial inflammatory
response to NTHi, and delays in both mucosal recovery
and bacterial clearance. These data suggest that TRIF con-
tributes to both early and late events in OM.

TLR4 is activated by endotoxins, including the LOS of
NTHi [12], and therefore seems the most likely TLR to
activate TRIF. We have shown previously [25] that mice
deficient in TLR4 show initial mucosal hyperplasia similar
to that of WTs, and demonstrate early leukocyte infiltra-
tion which exceeds that seen in WTs but differ in express-
ing early defects in TLR2 and TNFo gene expression and in
persistent hyperplasia and impaired bacterial clearance.
Since TLR4 can signal via the alternative adaptor MyDS88,
differences between the TLR4-/- and TRIF-/- phenotypes
suggest that this TLR signals via both adaptors. Finally, it
has been suggested that additional pathogen receptors
sensitive to bacterial molecules and using the TRIF adap-
tor may exist [64].

In a previous study [24], we found that in response to
NTHi, animals deficient in MyD88 also initially develop
mucosal hyperplasia and leukocyte infiltration of the ME
similar to WT mice. Since both ME mucosal hyperplasia
and leukocyte infiltration are delayed in TRIF-deficient
animals, it thus seems possible that initial ME mucosal
hyperplasia and leukocyte infiltration in response to
NTHi are mediated in part by signaling via TRIF. Interest-
ingly, despite the delayed and reduced leukocyte infiltra-

tion in TRIF-/- mice, these animals did clear NTHi from
the ME, albeit with a delay. This suggests that the TRIF-
deficient macrophages that enter the ME may well be
capable of efficient phagocytosis and bacterial killing. It
should be noted that mucosal hyperplasia persisted
longer in TRIF-/- mice than in WTs, indicating a potential
involvement of this adaptor protein in OM recovery.

Importantly, MyD88-null animals show failure of OM to
resolve at 21 days post-inoculation and, indeed, higher
levels of peak OM at after WT animals have completely
recovered [24]. They also showed failure to clear NTHi
from the ME out to 42 days (our unpublished observa-
tion). These data suggest that MyD88 may be more
involved in the recovery of OM than in the initiation of
pathogenesis. In another study, we noted that TLR4,
which can signal via TRIF, was more involved in early OM
while TLR2, which does not use TRIF, was more critical for
recovery [25]. Combined with the data from the present
study, our results suggest that TRIF signaling may be more
involved in immediate responses during NTHi OM than is
MyD88. Other investigators have noted that TLR4
responses to pathogens can occur earlier than those of
TLR2 [65]. One reason for this may be the ability of TLR4
to signal via TRIF, and to induce the expression of type I
IFNs [30], as well as via MyD88. The type I IFN pathway
has been suggested to mediate the most immediate TLR
responses to infection, followed by MyD88 signaling
inducing expression of pro-inflammatory cytokines like
TNFo, [41].

The higher levels of TRIF mRNA expressed in TLR2-/- and
TLR4-/- mice in the absence of NTHi exposure suggests
that activity mediated through these receptors normally
suppresses the expression of TRIF. This may be a specific
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and compensatory response to decreased signaling via
MyD88. Alternatively, increased pathogen loads in the ME
may be responsible for the increase in TRIF mRNA. The
enhancement of TRIF mRNA observed in our qPCR data
following NTHi inoculation is consistent with the latter
possibility.

Conclusion

The present study demonstrates that TRIF signaling is
important for an appropriate host response to NTHi in the
ME, and to the relevance of TLRs in the response of
humans to infection [19,20,66]. These findings under-
score the complex interactions of TLRs acting via both
MyD88-dependent, and MyD88-independent signaling
pathways in the induction and resolution of NTHi-
induced OM. They further suggest the potential impor-
tance of these innate immune pathway molecules and
their pathways as targets for new treatments of this impor-
tant human disease.
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