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ABSTRACT: Despite the high potential as feedstock for the production of fuels and chemicals, the industrial cultivation
of microalgae still exhibits many issues. Yield in microalgae cultivation systems is limited by the solar energy that can
be harvested. The availability of reliable models representing key phenomena affecting algae growth may help designing
and optimizing effective production systems at an industrial level. In this work the complex influence of different light regimes
on seawater alga Nannochloropsis salina growth is represented by first principles models. Experimental data such as in vivo
fluorescence measurements are employed to develop the model. The proposed model allows description of all growth curves
and fluorescence data in a reliable way. The model structure is assessed and modified in order to guarantee the model
identifiability and the estimation of its parametric set in a robust and reliable way.

1. INTRODUCTION

Microalgae-based processes are considered one of the most
promising alternative technologies for the production of liquid
fuels in the transport sector.1 The main advantages of micro-
algae with respect to other possible feedstock are the high
potential productivity and the absence of competition with
traditional crops for arable land and clean water. However,
this potential is still theoretical, and algae production on large
scale is not profitable yet. Several issues need to be addressed
to reach this objective, ranging from algae cultivation and
harvesting as well as products extraction.1,2

The availability of reliable models would be greatly beneficial
as the possibility to represent the fundamental physical,
chemical, and biological phenomena would allow one to assess
the interactions between equipment design and product yields
and to scale-up and optimize the process design and operation.3

However, to be reliable a predictive model requires a specific
set of parameters to be estimated in the most precise and
accurate way. One important advantage of a model whose para-
meters have been reliably identified is that it can be used to
predict the system response also in conditions (significantly)
different from those tested during the identification experi-
ments, which is the typical case when a model is exploited for
process scale-up and optimization. To achieve that, however,
model parameters must be identifiable, and this may present
critical issues even in relatively simple models.4

In this work we will discuss a modeling structure to represent
some key phenomena in algae growth by giving special atten-
tion to the identifiability of the proposed model. Algae growth
is affected by several variables such as nutrient availability, tem-
perature, and mixing, etc. However, being algae photosynthetic
organisms, light is the key variable determining growth effi-
ciency and kinetics: for this reason, the focus of this work will

be on the representation of its influence on growth. It is worth
stressing that the correlation between light intensity and growth
is a very complex one, and while low irradiation is limiting, its
excess drives to the formation of reactive oxygen species and
has an inhibitory effect.5

In the literature several models of photosynthetic biomass
growth have been presented. It is possible to divide such
models into two main groups: “physiological models” and “state
models”. Physiological models attempt to describe the dynamic
behavior of photosynthetic cells and propose approximations
for the actual mechanisms involved in the cells’ growth. These
models may try to represent the optimal allocation of energy
and nutrients during cells’ activities (e.g., Ross and Geider6) or
to represent a specific metabolic reaction (e.g., Marshall et al.,7

where the damage and repair cycle of protein D1 is described).
Usually these models are extremely detailed and involve a
large amount of variables and parameters. The actual identi-
fication procedure may be extremely complex (sometimes even
impossible) and require numerous, highly specific, and costly
experiments.
State models are instead based on the concept of a photo-

synthetic unit (PSU) and are more instrumental for simulat-
ing and optimizing industrial cultivation systems. The PSU is
defined as the sum of the light harvesting complex, the reaction
center, and the associated apparatus, which are activated by
a given amount of light energy to produce a certain amount of
photoproduct.8 These models are called state models because
the PSU can be in different states of excitation. One of the first
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proposed state models was the model by Fasham and Platt,9

whose objective was to describe photoinhibition. Several other
modeling approaches have been proposed over the years.10−16

In this work we will consider the models by Camacho Rubio
et al.10 and by Eilers and Peeters (initially developed by Eilers
and Peeters11 and then improved by Wu and Merchuk16).
These models are capable of representing the key phenomena
of interest in this work, and they are reasonably simple so as to
limit possible identifiability issues. In the Eilers and Peeters
model, the authors assume that if an activated PSU absorbs an
additional photon, it may become inhibited. For this reason
they assume the rate of photoihibition to be proportional
to light intensity. It is also assumed that photosynthesis (and by
consequence biomass growth) is proportional to the transition
between the activated state and the resting state. Later Wu
and Merchuck16 modify the model of Eilers and Peeters,
introducing a constant maintenance factor in the description of
biomass growth.
In the model by Camacho Rubio et al.10 both photo-

inhibition and photoacclimation, which represent the cells’
response to optimize their photosynthetic apparatus to different
light intensities, are considered (note that in the original work,
and in several others, photoacclimation is instead called photo-
adaptation: photoacclimation is however a more accurate defi-
nition: in fact, adaptation refers to the organisms’ modifica-
tion during evolution to their environment, thus responses with
time scales extremely longer that the ones considered here).
Photoacclimation was at first represented as a steady state
process but more recently extended by the same authors in
order to represent its dynamics, together with the effect of
nonphotochemical quenching (NPQ) and dark respiration
(Camacho Rubio et al.12). This last model is indeed very
flexible, but the number of model parameters to be estimated
is very high and their precise identification may become a long
and difficult task, especially if a limited amount of data is
available, and for this reason it will not be discussed further in
this work.
For model development and identification we consider

experimental data referring to a particular species of microalgae
of industrial interest (Nannochloropsis salina (N. salina)) grown
in nonlimiting nutrients conditions and in a flat-plate photo-
bioreactor.17 These data sets were selected because exper-
imental conditions were optimized to minimize all influences
on algae growth other than light intensity. In fact, nutrients and
CO2 were provided in excess, but also the photobioreactor light
path was minimized to reduce as much as possible light
attenuation due to cells’ shading and scattering. Sforza et al.17

demonstrated that this assumption was an acceptable
approximation, especially considering that we are interested
in representing the exponential growth phase, where nutrient
availability is high and cell concentration low. Accordingly,
these data represent an accurate description of the influence of
light alone on algae growth, minimizing the effect of other
parameters. It is worth clarifying that other phenomena, which
also play a major influence on algae productivity in industrial
photobioreactors, such as the dark/light cycles due to mixing
are not considered in this model.
There are two main contributions in the present work.

On the methodological side, a step by step approach will be
presented and applied to guarantee the identifiability of the
growth model. Second, the utilization of both biomass concen-
tration (growth curves) and multiple fluorescence measurements
will allow shading light on some fundamental phenomena in the

correlation between illumination and growth; in particular, dif-
ferently from previous contributions, measurements of the light
profile of PSU saturation will be exploited.
The work is organized as follows: after outlining the general

identification methodology, the available experimental data and
the two candidate models will be introduced and discussed.
The successive section is about model discrimination and the
enhancement of the selected model. Then, an identifiability
analysis and a reparameterization approach will allow setting
up an identifiable model. The performance of the model in
describing algal growth will be critically discussed. Some final
remarks will conclude the work.

2. MODEL DEVELOPING APPROACH

Identifiability is a key issue to guarantee reliability and pre-
dictive capability in a model being developed. Figure 1 outlines
the basic tasks and information flux required to achieve such a
target. The preliminary step is to identify the phenomena that
need describing and the fundamental mathematical laws that
should be implemented to represent them. Here we assume
that some modeling assumptions are already available. In other
cases, preliminary experimental data may be needed to envisage
the correlation among data and to set up a suitable physical
interpretation through a mathematical model.
Typically, some available data may be exploited at this stage

to choose among competitive modeling approaches through
suitable discrimination techniques.18,19 At least in the easiest
cases a χ2 test on experimental data may be sufficient to make
the discrimination.20,21,22 Ad hoc experiments can also speci-
fically be designed to allow for a more effective and reliable
discrimination among different candidates.21−23 Once a suitable
candidate model has been selected (and a preliminary esti-
mation of its parameter has been carried out), the model may
need upgrading to improve its capability of representing the
phenomena being investigated (new experiments may be needed
and possibly designed, and an estimation of all model parameters
should be attempted).
Then it is extremely important to verify the model identi-

fiability, i.e., to confirm that the optimal set of parameters
values is unique and that their values can be determined in
a precise way (and ideally in a physically meaningful way).
If some identifiability issues arise, then a first approach to tackle
the problem is to reparameterize the model.24 If this is not
enough, then the model structure should be modified.
Once the model is proved to be identifiable, the final

parameter estimation can be performed. Note that even when a
model is identifiable, measurements of noise and other un-
certainty effects may still hinder its practical identifiability,
although properly designed experiments may help in tackling
the issue.25 Once the final parameters estimation has been
performed, new data, not involved in model calibration, should
be used to validate the model. This approach has been applied
to the specific case study and is discussed in the following
sections. For simulation and parameter estimation purposes,
the gPROMS software has been used.26

3. MODELING APPROACHES

The main advantage of state models is that they reduce the
complexity of photosynthesis into a few possible states of
the PSUs. This simple structure is also particularly effective in
the use of fluorescence measurements, which can be exploited
to monitor the PSU populations at different states. A PSU is
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defined as the sum of the light harvesting complex, the reaction
center, and the associated apparatus, which are activated by a
given amount of light energy to produce certain quantities of
photoproducts. The Eilers and Peeters model in the form
proposed by Wu and Merchuck16 (afterward denoted as EPM)
and the Camacho Rubio model (Camacho Rubio et al.,10 later
called CRM) are two of the simplest models that can describe
photosynthetic biomass growth as a function of light intensity.
Both models consider that a PSU can assume three different
states of excitation: (1) the resting (or open) state, which is the
state of PSU before the light energy excites the reaction center;
(2) the activated (or closed) state, that is the state of PSU
excited by light energy; (3) the inhibited state, which is the
state of PSU damaged by an excess of light energy. Both
models do not consider any limitation on nutrients availability
or mass transport of nutrients: i.e., only the exponential
growth phase is described. CRM considers photoacclimation
too, but without any representation of its dynamics. This is

a reasonable assumption also in our case study, since accli-
mation characteristic time scale (hours or days) is significantly
larger than the time scales of the other phenomena being
investigated.
In the work of Wu and Merchuck16 EPM was used to fit the

data of experiments carried out in a thin tubular loop reactor.
Part of the reactor was kept in dark to simulate mixing;
light intensities used for the experiments were 110, 220, and
550 μE/(m2 s). The measurements used to calibrate the model
were both biomass concentration and dark fluorescence
measurements (fluorescence measurements will be described
in section 4). Each experiment was carried out for 48 h, and
measurements were taken every 12 h. In the work of Camacho
Rubio et al.,10 CRM was applied to a wider range of light
intensities (ranging from 0 to 2000 μE/(m2 s)) and to different
light regimes (constant light, flashing light, and day−night
cycle). Data used by the authors were growth rate constant and
P−I curves taken from the literature.
EPM assumes that the number of PSUs is constant with

respect to light intensity and accordingly refers to the PSU x1,
x2, and x3 to represent the resting, activated, and inhibited
states, respectively. Conversely, CRM assumes that the number
of PSUs is a function of light intensity (indicated as at), and the
model equations are expressed as a function of the amount of
the PSUs in each of the three states (a1, a2, and a3). Parts a and
b of Figure 2 illustrate the two model structures.

3.1. Eilers−Peeters model. In Figure 2a, the three PSU
states are represented by circles and the possible state transi-
tions are represented by the arrows. The resting state PSU
can capture light energy and transfer it to an activated state.
The PSU in the activated state can be damaged by light, or
pass down the energy to start the dark phase of photosynthesis
(and then return to a resting state). An inhibited PSU can be
recovered and then return to the resting state. The reaction rate
of the transitions involving the absorption of light (i.e., x1 →
x2 and x2 → x3) is assumed to be first order with respect
to light intensity. The other two transitions are assumed to
be zero order with respect to light intensity. Each transition
is assumed to be first order with respect to the PSU frac-
tion involved in the transition. The growth rate constant
(μEP (h−1)) is assumed to be proportional to the state transi-
tion from activated to resting state, representing the photo-
chemical reactions. Considering that the growth rate can be
negative in the dark or at very low light intensity, a constant

Figure 1. Information flux of the model identification procedure.

Figure 2. (a) Scheme of EPM. x1, x2, and x3 represent the fractions of
PSUs in resting, activated, and inhibited states, respectively. (b) Scheme
of CRM. a1, a2, and a3 are the numbers of PSUs in resting, activated, and
inhibited states, respectively; at represents the total number of PSUs.
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maintenance (MEP (h−1)) factor is introduced. The model
equations are as follows:

= − + +
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The set of parameters (whose physical meaning is summarized
in Table 1) is represented by vector θ̂EP = [ka

EP,kd
EP,ki

EP,kr
EP,

kp
EP,MEP].

3.2. Camacho Rubio Model. In CRM, the photoinhibition
rate is assumed to be proportional to the sum of resting state
and activated PSUs, i.e., the active PSUs represented by a1 + a2
[PSUs/cells] in Figure 2b. As in EPM, PSU activation reaction
is assumed to be first order with respect to light intensity and
to the amount of resting state PSUs. However, in CRM the
transition from activated to resting state, related to biomass
growth, is defined as a Michaelis−Menten kinetic, assuming an
enzymatic reaction as the limiting step of this process. Also,
from an analysis of experimental data, the authors10 assume that
the photoinhibition reaction rate is first order with respect to
the square root of light intensity. As in EPM the recovery
of damaged PSUs is assumed to be a first order reaction with
respect to the number of damaged PSUs. Finally, as anticipated,
CRM includes photoacclimation. The total amount of PSUs
(at [PSUs/cells]) in CRM is thus assumed to be a hyperbolic
decreasing function of light intensity. As for EPM, the growth
rate constant (μCR (h−1)) is assumed to be proportional to
the transition from activated to resting state and a constant
maintenance factor (MCR (h−1)) is introduced. The model
equations are as follows:
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As reported in the literature, it appears that the condition KS
CR ≫

a2 is true for the entire range of light intensities considered in
the experiments (ranging from 50 to 1000 μE/(m2 s)). Thus,
the Michaelis−Menten kinetic may be well approximated by
a first order kinetic as in EPM. Accordingly, the reduced set
of parameters is represented by vector θ̂CR = {ka

CR,kd
CR,ki

CR,kr
CR,

kp
CR,kc

CR,MCR} (parameters’ physical meanings and units are
reported in Table 2).

4. EXPERIMENTAL SETUP AND AVAILABLE DATA
The aim of this work is to describe the growth of microalgae in
nonlimiting nutrient conditions and according to the hypo-
thesis that the light intensity is constant with respect to the
culture time and depth. The fundamental phenomena to be
described are as follows: (i) reaction centers oxidation/reduction
cycle, to represent the photosynthesis, and (ii) the damaging
effect of excess light on PSUs (photoinhibition).
Our data refer to algal cultures grown at different light

intensities.17 During the experiments, microalgae were acclimated
to the light used and to the geometry of the photobioreactor.
Each experiment was conducted in parallel at least twice and in
two identical photobioreactors, in order to ensure its repro-
ducibility.17 Only the data in the exponential phase of the
original growth curves were used for the parameters estimation,
since our model represents only exponential growth and does
not consider nutrients limitation. Experimental setup was built to
limit as much as possible cells shading by decreasing as much as
possible the light path and working at low cells concentration.
This, together with the presence of nutrients and CO2 in non-
limiting amounts, ensures that growth is dependent only from
the light intensity reaching the culture.
Moreover, experimental measurements of fluorescence will be

used as additional data for the parameters estimation.27 These
data are commonly available for the photosynthetic organisms
and have been exploited to estimate photosynthetic efficiency
in a large body of experimental literature (reviewed by Maxwell
and Johnson27). In our case we considered in particular two
fluorescence parameters, related to the oxidation state of the algal
cells: the parameters q (or Fv/Fm),

28−31 and qL, whose physical
meanings will be briefly detailed in the following.
Parameter q = Fv/Fm (with Fv = Fm − F0) was measured

for each light intensity at which microalgae were grown.
F0 represents the fluorescence in the dark when all reaction
centers are open. Conversely, the maximum Fm is the fluorescence
after a saturating light flash, when all reaction centers are closed.
Here the fluorescence is higher than F0 because saturated
PSUs are unable to perform photochemistry and therefore a
larger amount of excitation energy is re-emitted as fluorescence.

Table 1. Parameters of EPM Significance and Units

param significance units

ka
EP kinetic constant of the activation reaction rate m2/μE
kd
EP kinetic constant of the deactivation reaction rate

(photochemical quenching)
s−1

ki
EP kinetic constant of inhibition reaction rate m2/μE
kr
EP kinetic constant of the recovery reaction rate s−1

kp
EP proportionality factor between photochemical quenching and

biomass growth rate constant
s/h

MEP maintenance factor h−1

Table 2. Parameters of CRM Significance and Units

param significance units

ka
CR kinetic constant of the activation reaction rate m2/μE
kd
CR kinetic constant of the deactivation reaction rate

(photochemical quenching)
s−1

ki
CR kinetic constant of inhibition reaction rate m/(μE·s)0.5

kr
CR kinetic constant of the recovery reaction rate s−1

kp
CR proportionality factor between photochemical

quenching and biomass growth rate constant
s/h

kc
CR rate constant involved in the photoacclimation

process
MCR maintenance factor h−1
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When PSUs are active, there is a large difference between Fm and
F0 (and thus a larger Fv/Fm), while if PSUs are photoinhibited,
Fm is closer to F0. For this reason, the Fv/Fm parameter is
commonly used in the literature to quantify active PSUs in vivo.
The precise value of Fv/Fm in the case of fully active PSUs
is known to be variable between species, since it depends on
specific properties such as the antenna size. Here it is set to
be equal to 0.65 as this is a value commonly measured in several
microalgae32 and also in healthy Nannochloropsis cultures,
exposed to low light.17,31 In order to have a parameter bound
between 0 and 1, it is possible to define the parameter qnorm =
q/qmax, where qmax is the value of Fv/Fm in the case of fully active
PSUs.
In cultures exposed to different light intensities, a decrease in

this value indicates the presence of photoinhibited PSUs, as
normally experienced in high light conditions. For this reason,
it can be used to estimate the content of photoinhibited PSUs
and thus it can be correlated to x3 and a3 populations, using the
definition of EPM and CRM, respectively.
While q is rather commonly employed in several similar

studies,16 in order to have a better representation of the oxida-
tion state of the PSUs in illuminated cells, here we also included
the fluorescence parameter qL, which provides a linear esti-
mation of the saturation level of PSU as discussed in detail
in the work by Kramer et al.33 This means that qL is 1 when
all active PSUs are open, while it decreases to 0 when all
PSUs are closed and photosynthesis is saturated. Parameter
qL = [(Fm′ − FS′)/(Fm′ − F0′)](F0′/FS′) was measured for 21 dif-
ferent light intensities with a PAM fluorometer. Here Fm′ and
F0′ stands for the same minimal and maximal fluorescence,
measured in light adapted cells, while FS′ stands for stationary
fluorescence in illuminated cells. Thus, qL can be exploited as
an estimation of the relative ratio of x1 and x2 populations
(a1 and a2 according to CRM). The complete set of experi-
mental measurements used in this work is reported in Appendix A.

5. MODEL DISCRIMINATION AND PRELIMINARY
PARAMETERS ESTIMATION

The first objective is to discriminate between the two
alternative models so as to select the most suitable one to
describe our system. Parameter estimations were performed
for both models, based on the entire set of experimental data.
The different performance is quantitatively summarized by
the χ2 test (in the case of EPM, we have χ2 = 890.1, whereas, for
CRM, χ2 = 301.6).
Figure 3 shows the behavior of the two models in represent-

ing fluorescence experimental profiles. Although both fittings
are quite unsatisfactory, CRM clearly outperforms EPM. In fact,

Figure 3a shows that although EPM provides a slightly better fit
for the profile of q at low light intensities, only CRM is capable
of representing the trend at a higher intensity. Figure 3b,
however, shows that although EPM performance is still the
worst one, both models cannot properly represent the oxidative
state of PSU in light adapted cells, consistent with the fact that
these kinds of measurements were not considered in building
such models. This means that both models are not accurate in
estimating the PSU oxidative state.
Also in the predictions of the growth rate constant, reported

in Figure 4, CRM outperforms EPM. In fact, EPM does not

predict the correct value of light intensity at which the maxi-
mum growth rate is reached and underestimates the growth
rate constant at low light. CRM correctly predicts the optimal
light intensity but it overestimates the growth rate constant at
low light.
No additional experiments are needed for discrimination

purposes and CRM is then selected, although the experimental
data demonstrate that further improvements are required to
improve the fitting in the region between 150 and 700 μE/(m2 s)
with respect to the PSU oxidation state. It is worth underlining
that the main difference between EPM and CRM is the presence,
in the latter, of a photoacclimation term expressed through the
number of PSUs per cell. This suggests that the inclusion of this
response is absolutely necessary for an accurate description of the
photosynthetic performances and is consistent with its biological
relevance, demonstrated by the fact that acclimation responses are
conserved in all photosynthetic organisms.

5.1. Enhancing CRM. To improve the model, a more
detailed description of some fundamental biological phenom-
ena needs to be introduced. According to several works in the

Figure 3. Measurement (black circles) and predicted values of (a) qnorm and (b) qL. Red solid lines represent the profiles according to EPM, while
the dashed green lines represent the profiles according to CRM.

Figure 4. Growth rate constant predicted by the EP (solid line) and
CR models (dashed line) and experimental values of the growth rate
constant (black squares).

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie500523z | Ind. Eng. Chem. Res. 2014, 53, 6738−67496742



literature, PSII photoinhibition occurs at all light inten-
sities.29,34,35 Therefore, we assumed that photoinhibition does
not depend on the number of active PSUs, but is simply related
to light intensity. Above Icr (the light intensity where photo-
synthesis is saturated) a second process (photoprotection) is
activated: in these conditions a fraction of the energy absorbed
does not lead either to photochemistry or to PSU damage but
is simply dissipated (e.g., because of NPQ). Accordingly, eq 6
has been modified to represent the different behavior above and
below Icr. Furthermore, in eq 6, the reaction order with respect
to the light intensity is assumed to be 0.5: since there is no clear
physical reason for setting such a value, here we decided to
increase the model flexibility and its capability of incorporating
all energy dissipation phenomena, by making the reaction order
a parameter (α) to be estimated.
As mentioned above, photoprotection mechanisms are

activated when photochemical reactions are saturated, and
accordingly parameter Icr plays a key role in representing this
behavior. The value of critical light intensity when photosyn-
thesis is saturated has been fixed to 150 μE/(m2 s), which is
the light intensity in response to which Nannochloropsis growth
is maximal, and the limit over which the growth rate is not
linearly dependent on light anymore.17 This choice is well con-
sistent with the observation of NPQ dependence from light
intensity observed in Nannochloropsis cells, which shows activa-
tion only over this limit (NPQ data are reported in Appendix B).
This parameter thus depends on both light intensity and the
number of active PSUs.
Also eq 8 representing photoacclimation is modified to allow

for a higher flexibility: the hyperbolic form is retained, but the
light exponent becomes an additional parameter (α2) to be esti-
mated (see later on, eq 13).
Finally, the representation of the maintenance factor is modi-

fied, too. In CRM the maintenance factor is treated as a con-
stant (in fact, this is a typical assumption). However, the
maintenance factor should vary with light intensity to account
for the metabolic cost of repairing damaged PSUs.36 In order
to do this, the easiest way is to express the maintenance factor
as a linear function of the damaged PSUs fraction. Since the
fluorescence measurements return the number of active PSUs,
the variable term of the maintenance factor was related to
the difference between the maximum value of fluorescence
(qmax) and the current value of fluorescence (q). Finally the
fluorescence measurements q and qL are related to the
oxidation state of the PSUs, as discussed in section 4.
The modified CRM (mCRM) is thus constituted by the

following set of equations:

= −
a
t

k Ia k a
d
d

2
a 1 d 2 (10)

=
− ≤

+ − + − >α⎪

⎪⎧⎨
⎩

a
t

k Ia k a I I

k I a k I I a a k a I I

d
d

if

( ) ( ) ifr

3 i,0 t r 3 cr

i,0 cr t i,1 cr 1 2 3 cr

(11)

+ + =a a a a1 2 3 t (12)

=
+ αa

k I
1

t
c

2 (13)

μ = −k k a Mp 2 2 (14)

= + −M M k q q( )0 M max (15)

=
+

q q
a a

amax
1 2

t (16)

=
+

q
a

a aL
1

1 2 (17)

where a new vector of the model parameters is θ̂ = [ka,kd,ki,0,ki,1,
kr,kp,kc,kM,M0,α,α2].

6. IDENTIFIABILITY ANALYSIS
In order to be reliable and suitable for process simulation and
optimization, the model for photosynthetic biomass growth has
to be identified against the experimental data. It can be verified
that mCRM shows identifiability issues if a parameter
estimation is performed on the whole parameters vector θ̂.
The estimation of the model parameters is characterized by
large confidence intervals for some parameters, and more than
one set of optimal values can be determined (i.e., the model is
not uniquely identifiable). In order to overcome this problem
both global (or structural) and practical identifiability of the
model have been studied. First of all, the global identifiability
has been verified using a differential algebra based method.
Afterward, the practical identifiability has been assessed through
a sensitivity analysis and a model reparameterization has been
performed.

6.1. Global Identifiability Analysis. The first step for
testing model identifiability is represented by global identifi-
ability analysis. Global identifiability analysis is in fact a
necessary condition for practical identifiability and can provide
the minimum number of observations required to identify an
unique set of optimal parameter values. The two hypotheses,
upon which structural identifiability analysis rely, are as follows:
(i) complete absence of measurement errors and (ii) a perfectly
accurate model structure. Those two assumptions refer to an
ideal case, and therefore, once a model is verified to be globally
identifiable, practical identifiability, too, needs assessing. Several
methods to study the structural identifiability of nonlinear
models have been developed in the past two decades and are
nicely reviewed in the work by Miao et al.37

A rather common approach is given by the series expansion
method (e.g., Dochain et al.38 applied this approach to kinetic
models of activated sludge respiration). It requires that func-
tions representing the model are infinitely differentiable, as the
method involves the calculation of arbitrary order derivatives.
Several examples of application of this method can be found in
the literature. However, the series expansion method has a
serious drawback: for high dimensional models, high order
derivatives are necessary and the resulting equations can easily
become too complicated to solve. In fact, it was verified that in
this case the series expansion method leads to an intractable
problem. Thus, in order to overcome the difficulties related to
high order derivatives calculation and the resolution of the
resulting equations, a method based on differential algebra
was taken into account. In particular, the software package
DAISY39 has been used here. DAISY, as with all differential
algebra based methods, requires equations of the models to
be written in the form of differential polynomials.37 For
this reason, mCRM has been slightly modified as detailed in
Appendix C.
Results indicate that a single experiment is not sufficient to

identify a unique value of all of the parameters. However, if
(at least) three parallel experiments are carried out at different
light intensities and both concentration and fluorescence
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parameters are measured during the experiments, the model
is globally identifiable. This means that the experienced identi-
fiability issues depend on practical identifiability. To tackle
the problem, a sensitivity analysis and a reparamereterization
will be performed. Note that in several cases, where more
complex models need considering, the analysis of the model
practical identifiability may be the only test that can be carried
out, since the verification of global identifiability may not
be viable.
6.2. Sensitivity and Correlation Analysis. As the

model is structurally identifiable, its practical identifiability
will now be tested through a sensitivity analysis. The sensiti-
vity qik of the ith response to the kth model parameter is
defined as

θ θ
=

∂
∂

≈
′ −
Δ

= = θq
y y y

i N k N1... , 1...ik
i

k

i i

k
M

(18)

where yi is the ith measured responses predicted by the model,
y′ is the same response obtained from a perturbed value of
the kth parameter θk, and Δθk is the perturbation (NM is the
number of measured responses and Nθ is the number of model
parameters). The principal goal of sensitivity analysis is to
evaluate the impact of each parameter on the measured
responses and to underline the presence of correlation among
specific subsets of model parameters. In an overparameterized
model, near-zero sensitivity values would be obtained, leading
to the nonidentifiability of some subsets of model parameters.
In the most desirable case, sensitivity profiles should be clearly
distinct and far from being symmetrical (i.e., they should
present a low mutual correlation). As the sensitivity analysis
requires prespecified parameter values, values by a preliminary

parameter estimation have been considered. Perturbation Δθk
was set equal to 1% of the parameter values.
First, the sensitivity profiles of biomass concentration will

be taken into account. Although not shown here for the sake
of conciseness, it was verified that all sensitivity profiles behave
as exponential curves. As a consequence, the final value of
sensitivities (value at 120 h) is sufficient to analyze the system
behavior in different experimental conditions. The sensitivity
profiles evaluated at four different light intensities are reported
in Figure 5.
For light intensities under the critical value, the sensitivities

related to parameters ki,0 and kr show opposite values. Above
the critical value of light intensity, the sensitivity of kr is the
opposite of the sum of the sensitivities of ki,0 and ki,1. This
suggests that it may be difficult to exploit biomass concen-
tration measurements to identify ki,0 and kr.
Another critical aspect is related to the fact that parameters ka

and kp exhibit a very similar sensitivity at low light condi-
tions (availability of growth data at high light intensities may
be necessary for a robust estimation of these parameters). Also
it should be noticed that the parameter related to photo-
acclimation, kc, and the parameter representing the maintenance
factor in the dark, M0, exhibit a very similar (and low) sensitivity
in all light conditions.
Fluorescence profiles (q and qL) are also considered. Because

the dynamics of PSUs are fast with respect to the sampling
time, and our measurements are steady state measurements,
only the steady state values of sensitivities will be reported.
In Figure 6a,b the values of the sensitivities of q and qL are
reported for four different light conditions. The sensitivities
of parameters α2, kc, kp, kM, and M0 are not reported, since they
are zero for both fluorescence measurements (they are related
to biomass growth and are not concerned with the oxidation
state of the PSUs).

Figure 5. Final values of dynamic sensitivities for mCRM, evaluated at different light intensities.
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Considering the steady state sensitivity values of the fluores-
cence measurements, the following critical aspects can be
noticed: (1) parameters ka and kd do not affect the dark fluores-
cence measurements, while they are completely anticorrelated if
light fluorescence measurements are available, showing opposite
sensitivities in all light conditions; (2) parameters ki,0, ki,1, kr,
and α are not affected by light fluorescence measurements; (3)
parameter kr is anticorrelated with ki,0, under the critical value
of light intensity, and with ki,1, above the critical value of light
intensity; (4) the sensitivity of ki,0 is always quite small.
The results suggest that a model reparameterization may be

necessary to help tackling the issue.24

6.3. Reparameterization of the Camacho Rubio
Model. Because the fluorescence data are measurements of the
PSU oxidation state under steady state conditions, an analytical
expression for fluorescence measurements can be derived from
eqs 10 to 12:
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with R0 = ki,0/kr, R1 = ki,1/kr, and R2 = ka/kd. The interesting
aspect is that only four parameters affect the steady state values
of the fluorescence measurements: the three ratios R0, R1, and R2
and parameter α. This suggests that, in order to have a practically
identifiable model, the values of two parameters affecting the PSU
dynamics have to be fixed if no dynamics in the fluorescence data
can be included in the data set. It was chosen to fix the values of
kr and kd, as those parameters represent the rate constant of the
recovery and deexcitation processes, respectively. An approxi-
mated estimation can be obtained, considering the time scales of
the processes involved: according to literature,40 values of 100 s−1

for ka and of 2.22 × 10−4 s−1 for kr were assumed. The very low
sensitivity to available measurements and the high correlation of
kc and M0 make it impossible to identify the two parameters.
However, in the case of M0, previous experiments suggest it to be
between 5% and 10% of the maximum growth rate.41 Here we
setM0 = 1.5 × 10−3 h−1 (∼8% of the maximum growth rate). For
parameter kc the preliminary estimation suggests that a “small”
value is required for a good description of data. Since in eq 13 we

have that Iα2 ≫ 1, we verified that kc = 1 is a good approximation
for representing all experimental conditions. After reparameteri-
zation, the vector of parameters to estimate is θ̂* = [R0,R1,R2,
kp,kM,α,α2].

7. RESULTS AND DISCUSSION
In the first part of this section the mCRM parameter estimation
results will be presented and discussed. In the second part two
additional growth curves and two new measurements of dark
fluorescence will be used to validate the model.

7.1. Model Calibration. In the estimation procedures,
parameters are normalized with respect to the initial values
obtained by the preliminary parameter estimation, to increase
numerical robustness. The results of parameters estimation
are reported in Table 3, along with the confidence intervals and

the t-values (for a statistically precise estimation of a model
parameter the t-value has to be greater than a reference t-value).
The t-value statistic shows that the parameter values are esti-
mated in a statistically satisfactory way.
The profiles of fluorescence, predicted after the identifica-

tion of the reparameterized mCRM, are reported in Figure 7.
We can observe that the model correctly fits both the dark
fluorescence profile (Figure 7a) and the light fluorescence
measurements (Figure 7b). Biomass growth profiles are rather
well represented by the model as illustrated in Figure 8, where
the six different illuminating conditions are represented.
In Figure 9 the growth rate constant predicted by the model is

reported along with the experimental value (i.e., the value obtained

Figure 6. Final values for dynamic sensitivities for the Camacho Rubio model evaluated at different light intensities considering literature values for
model parameters.

Table 3. Estimated Values of Parameters of the
Reparameterized mCRM, Normalised Values (with Respect
to the Initial Values) of the Parameters, Confidence Intervals
(conf int), and t-Student Values for Parametersa

param estd value normalized value 95% conf int t-value 95%

R0 4.93 × 10−4 1.12 0.21 5.20
R1 1.34 × 10−2 0.65 0.21 3.07
R2 3.30 × 10−3 2.77 0.41 6.72
kp 1.48 × 10−6 0.41 0.12 3.35
kM 1.12 × 10−1 1.96 0.91 2.15
α 0.45 0.45 0.048 9.52
α2 0.30 0.30 0.078 3.89

aThe reference t-value is equal to 1.67.
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fitting the experimental data of growth during the exponential
phase with an exponential curve). We can observe that, for all
light intensities at which an experiment was carried out, the
model well describes the experimental values of the growth rate
constant. This suggests that, thanks to the fundamental input of
the fluorescence parameters in illuminated cells (qL), the model
is capable of reproducing with sufficient accuracy the basic
processes of photosynthesis: photochemistry, light damage, and
also energy dissipation.
From a statistical point of view, the predicted profiles have

a χ2 value of 117.7 (whereas χ2 = 890.1 in the case of EPM and
χ2 = 301.6 for CRM).
7.2. Model Validation. In order to validate the model,

two experiments, not used for model calibration, will be taken
into account. In particular two growth curves at 350 and
750 μE/(m2 s) have been considered. For both cultures also
the value of q has been measured and was exploited for model
validation. In Figures 7a and 9 the validation points are
represented by red stars. In Figure 10 the growth curves have
been reported.
We can observe that the predictions are accurate for

the parameter q. Also the growth curves are predicted in a
sufficiently accurate way, although the growth at 350 μE/
(m2 s) is slightly overestimated by the model, while the
growth at 750 μE/(m2 s) is somewhat underestimated in the

final part. From a statistical point of view, validation leads to a
χ2 value of 226.23.

8. CONCLUSION
A literature model10 was selected and modified to describe
microalgae growth through a rigorous identification procedure.
The estimation of the model parameters was performed con-
sidering experimental data (growth profiles and fluorescence
measurements) on N. salina. Results show that the developed
model well represents biomass growth over a wide range of
light intensities. The modified model was also able to reproduce
fluorescence measurements, including the light profile of PSU
saturation. This suggests that the proposed model is accurate
enough to represent all major processes of photosynthesis,
photochemistry, PSU damage, and energy dissipation. While
results in reproducing experimental data are fully satisfactory, it

Figure 7. Measurement (black circles) and predicted values of (a) q and (b) qL. Blue solid lines represent the profiles predicted by the modified
Camacho Rubio model. Red stars in panel a represent the experimental data used for model validation.

Figure 8. Biomass concentration profiles at different light intensities
predicted by the modified Camacho Rubio model. Black circles
represent the experimental measurements.

Figure 9. Growth rate constant predicted by the modified Camacho
Rubio model (solid line) and experimental values of the growth rate
constant (black circles). Red stars represent the experimental values
of the growth rate constant for the experiments used in the model
validation.

Figure 10. Biomass concentration profiles at different light intensities
predicted by the modified Camacho Rubio model. Red stars represent
the experimental measurements used for the model validation.
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should be underlined that algae growing in an industrial scale
photobioreactor are exposed to different conditions. In
particular light is not homogenously distributed because of
cells shading, and illumination intensity is not constant because
of diurnal changes and cells mixing. Finally nutrient availability
can also be limiting. Future efforts will be made to expand the
model to include these phenomena, also by designing
appropriate experiments.

■ APPENDIX A
In this appendix the entire set of data used in this work is
reported. Table 4 reports the growth data at different light
intensities. Each datum is the mean of two experiments
conducted in parallel in two identical reactors. Table 5 contains

the values of the growth rate constant as obtained from the
linear regression of the growth curves reported in a semilog
scale; the coefficient of determination R2 is also included. From
every biomass culture, a sample was taken during the
exponential growth phase and the value of q was measured:
in Table 6 the available measurements are reported. Finally, the
second fluorescence parameter qL was measured for 21 different
light intensities using a PAM fluorometer. The data points
obtained by the PAM fluorometer are reported in Table 7.

■ APPENDIX B
Chlorophyll fluorescence was determined in vivo using Dual
PAM 100 from WALZ. Cells were grown as in Sforza et al.,17 at
50 μmol m−2 s−1. After 20 min of dark adaptation cells were

exposed to increasing actinic light (60 s for each point).
After each light treatment NPQ was determined by a satu-
rating flash and calculated as (Fm − Fm′)/Fm′. Data are illus-
trated in Figure 11.

■ APPENDIX C
Global identifiability analysis was performed using the software
package DAISY.39 Given that DAISY is based on differential
algebra techniques, it requires equations of the model to be
written in the form of differential polynomials. Thus, in eqs 11
and 13 terms (I − Icr)

α and Iα2 have to be modified. In particular
it is possible to define two additional variables, Iα and Iα2, to be
the Taylor series expansion of (I − Icr)

α and Iα2, respectively.
Accordingly
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where α̅ and α̅2 are parameter values at which the series
expansion has been considered. In this work we considered
McLaurin series truncated at the second order and a value
of 0.5 for α̅ and α̅2. The system of eqs 10−17, where eqs C1
and C2 have been used to substitute (I − Icr)

α and Iα2, has
been verified to be globally identifiable of several values of

Table 4. Measured Biomass Concentration Profiles at Different Light Intensitiesa

c (g/L)

time
(h) I = 50 μE/(m2s) I = 120 μE/(m2s) I = 150 μE/(m2s) I = 250 μE/(m2s) I = 350 μE/(m2s) I = 550 μE/(m2s) I = 750 μE/(m2s) I = 1000 μE/(m2s)

0 9.93 × 10−2 1.81 × 10−1 1.42 × 10−1 5.49 × 10−2 1.30 × 10−1 1.80 × 10−1 1.21 × 10−1 3.02 × 10−1

24 1.44 × 10−1 3.07 × 10−1 2.40 × 10−1 1.10 × 10−1 1.69 × 10−1 − 1.61 × 10−1 4.12 × 10−1

36 − − 3.60 × 10−1 − − −
48 1.57 × 10−1 4.69 × 10−1 4.68 × 10−1 2.21 × 10−1 2.02 × 10−1 4.10 × 10−1 1.86 × 10−1

60 − − 5.76 × 10−1 − − −
72 2.07 × 10−1 8.01 × 10−1 − 3.32 × 10−1 4.06 × 10−1 6.19 × 10−1 3.50 × 10−1 4.56 × 10−1

84 − − 1.07 − − −
96 − 1.43 − 5.57 × 10−1 5.17 × 10−1 7.87 × 10−1 4.80 × 10−1 5.70 × 10−1

120 − − 1.78 6.92 × 10−1 9.50 × 10−1 6.30 × 10−1 1.22

144 6.31 × 10−1 − − 8.32 × 10−1 1.61 1.50
aExperiments carried out at 350 and 750 μE/(m2s) have been used for mCRM model validation.

Table 5. Values of Growth Rate Constant and Coefficient of
Determination R2 Obtained from the Linear Regression of
the Growth Curves, Reported in a Semilog Scalea

I [μE/(m2s)] μ (h‑1) R2

45 0.0126 0.976
120 0.0212 0.998
150 0.0215 0.987
250 0.019 0.954
350 0.0152 0.953
550 0.0144 0.984
750 0.0145 0.975
1000 0.0107 0.875

aData points used for the growth rate constant determination are
reported in Table 4.

Table 6. Measured Value of Parameter q and Its Normalized
Value qnorm at Different Light Intensity (Normalization
Factor Set to 0.65, the Value of q Corresponding to Fully
Active PSUs)a

I [μE/(m2s)] q qnorm

0 0.650 1.00
46 0.645 0.992
120 0.611 0.940
150 0.592 0.911
250 0.533 0.820
350 0.509 0.783
550 0.503 0.773
750 0.516 0.794
1000 0.499 0.769

aThe measurements taken at 350 and 750 μE/(m2s) have been used
for model validation.
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parameters α̅ and α̅2, if at least three experiments are carried
out at different light intensities.
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