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Background: To investigate whether the radiomics signature (Rad-score) of DCE-MRI
images obtained in triple-negative breast cancer (TNBC) patients before neoadjuvant
chemotherapy (NAC) is associated with disease-free survival (DFS). Develop and validate
an intuitive nomogram based on radiomics signatures, MRI findings, and
clinicopathological variables to predict DFS.

Methods: Patients (n � 150) from two hospitals who received NAC from August 2011 to
May 2017 were diagnosed with TNBC by pathological biopsy, and follow-up through May
2020 was retrospectively analysed. Patients from one hospital (n � 109) were used as the
training group, and patients from the other hospital (n � 41) were used as the validation
group. ROIs were drawn on 1.5 T MRI T1W enhancement images of the whole volume of
the tumour obtained with a 3D slicer. Radiomics signatures predicting DFS were identified,
optimal cut-off value for Rad-score was determined, and the associations between DFS
and radiomics signatures, MRI findings, and clinicopathological variables were analysed. A
nomogram was developed and validated for individualized DFS estimation.

Results: The median follow-up time was 53.5 months, and 45 of 150 (30.0%) patients
experienced recurrence and metastasis. The optimum cut-off value of the Rad-score was
0.2528, which stratified patients into high- and low-risk groups for DFS in the training
group (p＜0.001) and was validated in the external validation group. Multivariate analysis
identified three independent indicators: multifocal/centric disease status, pCR status, and
Rad-score. A nomogram based on these factors showed discriminatory ability, the
C-index of the model was 0.834 (95% CI, 0.761–0.907) and 0.868 (95% CI,
0.787–949) in the training and the validation groups, respectively, which is better than
clinicoradiological nomogram(training group: C-index � 0.726, 95% CI � 0.709–0.743;
validation group: C-index � 0.774,95% CI � 0.743–0.805).
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Conclusion: The Rad-score derived from preoperative MRI features is an independent
biomarker for DFS prediction in patients with TNBC to NAC, and the combined radiomics
nomogram improved individualized DFS estimation.

Keywords: radiomics, neoadjuvant chemotherapy, nomogram, triple-negative breast cancer, disease-free survival

INTRODUCTION

Triple-negative breast cancer (TNBC) is a clinical challenge because
of its invasive nature, high risk of distant metastasis, and poor
prognosis. Compared with other breast cancer patients, TNBC
patients are 2–3.5 times more likely to have distant recurrence
(Fatayer et al., 2016). It has been demonstrated that the probability of
a pathological complete response (pCR) is higher in TNBC patients
who receive neoadjuvant therapy (NAC) (close to 31% at present)
than in patients with other molecular subtypes, suggesting that NAC
improves DFS in this group of patients (Houssami et al., 2012).
However, pCR alone is not enough to predict the long-term
recurrence-free survival rate of patients with TNBC, and an
efficient prognostic biomarker is urgently needed to help stratify
patients and create treatment guidelines.

Recently, some studies have indicated that radiomics can be
used to obtain a series of related parameters to quantify the
heterogeneity of lesions and shows promise for improving
tumour prognosis. In previous studies, the radiomics
nomogram provided a promising prediction of neoadjuvant
chemotherapy efficacy in breast cancer patients based on
pretreatment MRI images (Bian et al., 2020; Chen et al., 2020).
Another study reported that the radiomics signature(Rad-score)
could be used for DFS prediction in HER-2-positive invasive
breast cancer treated with NAC, and the radiomics-
clinicoradiologic-based nomogram may potentially be useful
for personalized treatment strategies (Li et al., 2020). However,
there is no relevant research on TNBC.

Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) has excellent sensitivity and good specificity for
breast cancer diagnosis and plays an important role in
characterizing the heterogeneity of tumours. Most studies
involving radiomics analysis only use the initial enhancement
phase of DCE-MRI, and the additional value of radiomics
calculated from later enhancement images was limited.
Nevertheless, the radiomics features derived from the phases
of multiple DCE-MRI images cannot be ignored, which may
imply more information changing over time points.

The purpose of this study was to investigate whether the
radiomics derived from all DCE-MRI phases obtained in
TNBC patients before NAC are associated with DFS and to
compare the combined radiomics nomogram and the
clinicoradiological nomogram for their abilities in predicting
DFS in patients with TNBC treated with NAC.

MATERIALS AND METHODS

The institutional review board approved this two-institution
study and retrospective radiomics data analysis (approval No:

2004216-14), and the requirement for written informed consent
was waived.

Patients
Between August 2011 and May 2017, a total of 150 patients from
two hospitals were enrolled according to the inclusion criteria.
The inclusion criteria included 1) oestrogen receptor (ER),
progesterone receptor (PR) and human epidermal growth
factor receptor 2 (HER2) were all negative according to a
core-needle biopsy performed before treatment (the HER2
score (2+) obtained based on immunohistochemistry and gene
amplification was confirmed with fluorescence in situ
hybridization), 2) patients who received NAC and underwent
a final surgery, and 3) patients who underwent an examination
using the same machine (Aurora Dedicated Breast MRI System,
USA, Aurora). The exclusion criteria included the following: 1)
patients who did not undergo a magnetic resonance examination
before treatment, 2) patients whose lesions were hardly identified
on breast MR images, 3) patients with confirmed systemic
metastasis, 4) patients with no final pathological results after
treatment, and 5) patients who were lost to follow-up after
operations. Finally, all patients were required to undergo an
MR examination within 30 days before neoadjuvant therapy.
The following information was also recorded for all patients:
age, menopausal status, start date of NAC, clinical stage, pre-
NAC-T stage and N stage, tumour histologic type, Ki67, surgery
type, and date of progression (local recurrence and distant
metastasis) to determine duration (months) of DFS. DFS was
calculated from the date of surgery to the date of breast cancer
recurrence and metastasis, the last confirmation of no evidence of
disease, or the most recent follow-up examination.

Magnetic Resonance Imaging
Before treatment, all MR scans were performed with an
AURORA 1.5T breast magnetic resonance machine (Aurora
Dedicated Breast MRI System, United States, Aurora). The
patients underwent this procedure in the prone position with
both breasts naturally suspended in a dedicated breast coil. The
scanning range included the bilateral breasts and axillary regions.
DCE-MRI was performed using axial T1-weighted fat
suppression (TE/TR � 5 ms/29 ms, slice thickness � 1.5 mm
with no gap, FOV � 360 mm, matrix � 360 × 360) and
consisted of one precontrast and three consecutive
postcontrast dynamic series. Gd-DTPA was injected into the
dorsal hand vein via a bolus injection (0.1 mmol/kg) at a rate of
2.0 ml/s. The scanning time for each phase was approximately
2 min.

All medical images and clinical records were independently
reviewed by two radiologists specializing in breast imaging
diagnosis (with 5 and 15 years of experience, respectively). The
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morphologic manifestations (such as mass or nonmass
enhancement and TIC curve) of each lesion were determined
according to the 2013 Breast Imaging Reporting and Data System
(BI-RADS) MR imaging lexicon standard proposed by the
American College of Radiology.

Tumour Masking and Inter-Observer
Reproducibility Evaluation
ROIs were manually drawn by the radiologist on the whole
volume of the tumours (including the necrotic regions) with
3D Slicer software (https://www.slicer.org). The 3D segmentation
ROIs of the whole tumour were first created on the first post-
contrast DCE images and then propagated to the pre-contrast
and the other two post-contrast series of DCE images. For
multifocal/centric and nonmass enhancement tumours, ROIs
were drawn over all lesions. Examples of 3D segmentation are
shown in Figure 1. Figure 1A is MR images of TNBC with
multifocal/centric masses. The green area represents the scope of
ROI delineation, and each lesion is delineated by layers.

Figure 1B is MR images of TNBC with non-mass lesions.The
green area is delineated by ROI and delineated according to the
scope of enhancement.

Using 50 randomly selected samples, the interobserver
reproducibility of ROI detection and radiomic feature
extraction was measured. Two experienced radiologists (BQX
and QX) described the ROI independently, and then the radiomic
features extracted from the above two ROIs were compared to
obtain the interclass correlation coefficient. An ICC score greater
than 0.8 was interpreted as satisfactory agreement. The ICC for
the radiomic features was defined as high (ICC ≥ 0.8), medium
(0.8 > ICC ≥ 0.5) or low (ICC < 0.5).

Treatment Regimen and Criteria for pCR
and Recurrence
All patients received paclitaxel sequential/combined anthracycline
neoadjuvant chemotherapy with or without platinum. The median
duration of NAC was 4 (range, 4–8) months. pCR was defined as
ypT0/is and ypN0, which indicate the absence of residual invasive

FIGURE 1 | Examples of 3D segmentations of Triple-negative breast cancers.
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carcinoma in breast tissues with or without ductal carcinoma in
situ and the absence of any residual cancer in the sampled axillary
lymph nodes. A pathological response was determined by senior
breast pathologists. Recurrence was defined as local-regional
(confined to the ipsilateral breast or chest wall and/or axillary,
infraclavicular or supraclavicular lymph nodes) and distant
metastasis (to other parts of the body or the contralateral
breast). Breast cancer recurrence was confirmed by biopsy, and
metastasis was confirmed by biopsy when appropriate or on the
basis of an imaging assessment, including PET/CT and other
imaging modalities.

Radiomics Analysis, Feature Selection and
Rad-Score
The radiomics signature included 1316 radiomics features that
were extracted from the training group by the PyRadiomics
package in Python software (v. 3.6, Python Software
Foundation, https://www.python.org/). All these features were
classified into 3 groups (Table 1). To characterize the textural
changes observed on DCE images over time series, we measured
ten new sequential features for each texture feature described in
group b (Supplementary Table S1). All these features have been
applied in previous radiomics studies (Li et al., 2020). Forward
stepwise regression was applied to select features. Rad-score was
calculated for each patient via a linear combination of selected
features that were weighted by their respective coefficients.
Feature selection was achieved using the Statistics Toolbox in
MATLAB (v. R2018a; MathWorks, Natick, MA).

STATISTICAL ANALYSIS

We compared patient characteristics using commercially available
statistical software (IBM SPSS 24.0). When appropriate, significant
differences between the training and validation groups were
assessed by the Chi-square test, Fisher’s test or t-test. A two-
sided p value of less than 0.05 indicates a significant difference. The
Rad-scores were divided into two groups (high-risk vs low-risk)
using receiver operating characteristic (ROC) curve analysis
according to optimal cut-off value determined by maximizing
the Youden index (sensitivity + specificity-1). Significant

variables in the univariate Cox proportional hazard model (p <
0.05) were included in the multivariate analysis. The combined
radiomics nomogram incorporated the radiomics signature and
various independent risk factors based on multivariate analysis in
the training group and was then validated in the validation group.
The predictive ability and discriminatory performance of each
established model were evaluated using an index of probability of
concordance (C-index), and the C-index between the predicted
probability and actual outcome was calculated to evaluate the
predictive ability and discrimination of the model (Wolbers
et al., 2009). The value of the C-index ranges from 0.5–1.0, with
0.5 indicating random chance and 1.0 indicating perfectly accurate
discrimination. The nomograms were subjected to bootstrapping
validation (1000 bootstrap resamples) to obtain a relatively
corrected C-index.

RESULTS

Patient Characteristics
The clinicopathological and MR imaging characteristics of the
training and validation groups with TNBC are listed in Table 2.
Except for the clinical stage, pre-NAC N stage and pCR status, there
were no differences between the training and validation groups. The
median follow-up time was 54 months (range, 1–101 months)
for the training group and 48 months (range, 1–88 months) for
the validation group. There were 45 (30.0%) recurrences, 30
(20.0%) in the training group and 15 (10.0%) in the validation
group, including 35 patients with distant metastasis (one also
had additional local-regional recurrence), 8 with local-regional
recurrence only, and 2 with contralateral breast cancers.

Radimics Analysis, Rad-Score Building and
Validation
The ICC for radiomic features between the two radiologists BQX
and QX ranged from 0.8732 to 0.9671. Two radiologists generally
reached a consensus on the delineations. To verify the importance
of the new features, two different Radimics models were
delevoped. Model 1 only uses the features derived from the
first postcontrast phase, while Model 2 uses the features
derived from all dynamic phases, including the new features.

TABLE 1 | Three groups of extracted features.

Group Number
(features)

Description

a Shape features on DCE (DCEshape) 14 The 14 shape-based features were calculated based on the first postcontrast DCE images
b Texture features based on DCE images with 4 time

series (DCEtexture)
372 The 93 texture features (including 18 first-order features, 24 grey-level co-occurrence

matrix (GLCM) features, 16 grey-level run length matrix (GLRLM) features, 16 grey-level
size zone matrix (GLSZM) features, 5 neighbouring grey tone difference matrix (NGTDM)
features, and 14 grey-level dependencematrix (GLDM) features) were calculated based on
these four series image sets to yield 372 features

c Sequential features based on DCE images
(DCEsequential)

930 The first six features, including mean, variance, kurtosis, skewness, energy, and entropy,
were extracted for each individual subject. The other four features, including Kendall-tau-b,
conservation, stability, and dispersion, were calculated for the interactive information
between the current subject and the remainder of the subjects. Therefore, a total of 930
DCEsequential features were extracted from 93 texture features
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The results for the two models are shown in Table 3. Model 2
achieved a predictive accuracy of 85.4%, sensitivity of 50.0%,
specificity of 97.6%, PPV of 88.0%, and NPV of 85.0%, which was
more robust than Model 1. Finally, Model 2 was selected for the
following study.

In Model 2, six textural features were selected for predicting
DFS after forward stepwise regression selection, and the Rad-score
calculation formula is presented:y � 0.25688+(−0.12986)×
Skewness_glcm_Imc1+(−0.13965)×Entropy_firstorder_RootMean
Squared+(−0.094626)×Entropy_ngtdm_Busyness+0.10472×Kendall-
tau-b_glcm_Idmn+(−0.23802)×Conservation_glcm_Difference
Average+0.2713×Conservation_ngtdm_Complexity. The above
selected features are all from group c (DCEsequential). There
was a significant difference in Rad-scores between the recurrence
and no recurrence groups (p＜0.001) in the training group. The
median Rad-score was 0.2349 (range, −0.3165 to 0.9846;
interquartile range, 0.1038–0.3812). The optimum cut-off value
generated by the ROC curve was 0.2528, and the AUC was
0.852 (95% CI, 0.773–0.932). Using this threshold value, patients
were classified into a high-risk group (Rad-score ≥ 0.2528) and a
low-risk group (Rad-score < 0.2528). Kaplan-Meier curves showed
that the radiomics signature was associated with DFS in the training
group (p < 0.001), and this finding was confirmed in the validation
group (p < 0.001) (Figure 2).

Univariate and Multivariate Analyses of the
Risk Factors for RFS
The results of the univariate and multivariate analyses of the
risk factors for RFS in the training group are shown in Table 4.
A higher Rad-score, multifocal/centric lesions, nonmass
lesions, ILC/MIPC histological type, non-pCR and
lymphovascular invasion were associated with worse DFS.
Furthermore, in the multivariate Cox analysis, a higher Rad-
score (DFS odds ratio 26.685; 95% CI 6.654–107.010; p �
0.000), multifocal/centric lesions (DFS odds ratio, 2.522; 95%
CI, 1.160–5.481; p � 0.020), and pCR status (DFS odds ratio,
0.285; 95% CI, 0.100–0.810; p � 0.019) remained independent
prognostic factors (Table 4).

Radiomics Nomogram Building and
Validation
The C-index of the two kinds of nomogram models for the
prediction of DFS in the training group and validation group
is shown in Table 5. A combined radiomics nomogram was
developed based on multifocal/centric disease status, pCR

TABLE 2 | Comparison of clinical and pathological and pretreatment MR imaging
characteristics between training and validation groups.

Characteristics Training
group (n = 109)

Validation
group (n = 41)

p

Age, mean (SD), y 47.3 ± 11.1 48.6 ± 13.3 0.545
Menopausal status 0.322
Premenopausal 63(57.8) 20(48.8)
Postmenopausal 46(42.2) 21(51.2)
Clinical Stage 0.007a

II 83(76.1) 22(53.7)
III 26(23.9) 19(46.3)
Pre-NAC T-stage 0.061
T1 10(9.2) 4(9.8)
T2 68(62.4) 16(39.0)
T3 22(20.2) 14(34.1)
T4 9(8.3) 7(17.1)
Pre-NAC N-stage 0.032a

N0 38(34.9) 10(24.4)
N1 55(50.5) 21(51.2)
N2 7(6.4) 9(22.0)
N3 9(8.3) 1(2.4)
Pathological type 0.575
IDC 105(96.3) 41(100.0)
ILC,IMPC 4(3.7) 0(0.0)
KI-67 0.090
≤14% 6(5.5) 6(14.6)
＞14% 103(94.5) 35(85.4)
Surgery type 0.075
Breast conservation 21(19.3) 3(7.3)
Mastectomy 88(80.7) 38(92.7)
Features at MR imaging 0.455
Mass 86(78.9) 30(73.2)
Nonmass 23(21.1) 11(26.8)
Kinetics 0.684
Washout 104(95.4) 38(92.7)
Plateau or persistent 5(4.6) 3(7.3)
Multi-focal/centric disease 0.695
Present 31(28.4) 13(31.7)
Absent 78(71.6) 28(68.3)
pCR 0.022a

Yes 46(42.2) 9(22.0)
No 63(57.8) 32(78.0)
Lymphovascular invasion 0.052
Present 23(21.1) 15(36.6)
Absent 86(78.9) 26(63.4)
Disease-free survival 0.280
Yes 79(72.5) 26(63.4)
No 30(27.5) 15(36.6)

Data are expressed as n(%) unless otherwise specified.
The p values for age were determined by t test, while other p values were determined by
Chi square or Fisher exact tests, as appropriate.
aindicate statistical significance (p＜0.05).
IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; IMPC, invasive
micropapillary carcinoma; pCR, pathological complete response.

TABLE 3 | Summary of radiomics model1 and model2 results.

Accuracy Sensitivity Specificity PPV NPV

Model1 (1st PC phase) 76.6%(74.3–78.0) 17.4%(10.7–21.4) 97.1%(95.1, 98.8) 68.1%(50.0–83.3) 77.3%(76.0–78.2)
Model2 (All phases, 1pre-contrast and 3 PC phases 85.4%(84.4–86.2) 50.0%(46.4–50.0) 97.6%(96.3–98.8) 88.0%(82.4–93.3) 85.0%(84.8–85.1)

Confidence intervals are in parenthesis. Above two models were performed using a fine Gaussian support vector machine and conducted using 5-fold cross validation to overcome
overfitting. The procedure was repeated for ten rounds to average the estimates of performance.
PC, post-contrast; PPV, positive predictive value; NPV, negative predictive value.
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status, and Rad-score to predict the DFS rate for NAC among
TNBC patients (Figure 3). A total score was obtained by
adding each single score to estimate the 2-/3-/5-years DFS
probability. The C-index was 0.834 (95% CI, 0.761–0.907) and

0.868 (95% CI, 0.787–0.949) in the training and validation
groups, respectively, indicating that the combined radiomics
nomogram had better discriminatory capability than the
clinicoradiological nomogram.

FIGURE 2 | Kaplan–Meier survival analyses according to the radiomics signature with low-risk and high-risk patients in training and validation groups.

TABLE 4 | Univariate and multivariate analysis of disease-free survival in training group.

Characteristics Univariate analysis Multivariate analysis

OR 95% CI p value OR 95% CI p value

Age,＜35 years versus ≥35 years 1.775 0.538–5.855 0.346
Menopausal status, premenopausal versus postmenopausal 1.661 0.810–3.404 0.166
Clinical Stage, II versus III 1.529 0.700–3.340 0.287
Pre-NAC Tstage(T1 reference) 0.306
T2 3 0.354–25.439 0.314
T3 5.143 0.547–48.365 0.152
T4 7.2 0.622–83.342 0.114
Pre-NAC Nstage(N0 reference) 0.248
N1 1.322 0.512–3.41 0.564
N2 4.296 0.806–22.9 0.088
N3 0.403 0.044–3.669 0.42
Pathologic type, IDC versus ILC, IMPC 5.330 1.602–17.735 0.006a 0.851 0.210–3.445 0.821
KI-67, ≤20% versus ＞20% 0.452 0.137–1.493 0.193
Surgery type, Breast conservation versus Mastectomy 2.252 0.683–7.426 0.182
Features at MR imaging, Mass versus Nonmass 2.454 1.145–5.262 0.021a 1.565 0.639–3.832 0.327
Kinetics, Washout versus Plateau or persistent 0.659 0.090–4.84 0.682
Multi-focal/centric disease, Present versus Absent 3.177 1.549–6.517 0.002a 2.522 1.160–5.481 0.020a

pCR, Yes versus No 0.232 0.089–0.608 0.003a 0.285 0.100–0.810 0.019a

Lymphovascular invasion, Present versus Absent 2.254 1.054–4.820 0.036a 0.995 0.402–2.461 0.991
Rad-score 52.829 14.821–188.300 0.000a 26.685 6.654–107.010 0.000a

OR, odds ratio; CI, confidence interval; pCR, pathological complete response.
aindicate statistical significance (p ≤ 0.05).

TABLE 5 | Performance of the two nomogram for prediction of disease-free survival.

Nomogram Training Validation

C-index 95%CI C-index 95%CI

Combined Radiomoics nomogram 0.834 0.761–0.907 0.868 0.787–0.949
Clinicoradiological nomogram 0.726 0.709–0.743 0.774 0.743–0.805

C-index,index of probability of concordance; CI, confidence interval.
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DISCUSSION

In our study, we demonstrated the prognostic value of multiphase
CE-MRI radiomics features for patients with TNBC treated with
NAC. In addition, we developed a combined radiomics model that
incorporates the radiomics signature and MRI and pathology
findings for the individualized prediction of DFS in TNBC
patients who underwent NAC. Compared with the
clinicoradiological nomogram, the combined radiomics
nomogram had superior prognostic performance in DFS estimation.

For feature extraction and selection, we measured ten new
sequential features to characterize the textural changes observed on
DCE images over time series. These features have not previously
been used or described in the domain of breast radiomics except in
Li et al. (2020) and Xie et al. (2019) studies, who used new features
to differentiate different subtypes of breast cancer and predict DFS
in patients with HER2-positive breast cancer treated with NAC.
We compared two models to investigate whether the accuracy of
the radiomics model was significantly improved after adding new
features. Roberto et al. (LoGullo et al., 2020) andGibbs et al. (2019)
both demonstrated that delayed postcontrast phases did not add
any significant discriminative value to the analysis, which is
inconsistent with our research results. The reason may be that
we added new sequential features, but they did not include them,
and the subjects of their study were subcentimetremasses that were
much smaller than ours lesions. Furthermore, the sequential
texture features derived from dynamic phases may capture
information on both spatial heterogeneity and tumour
perfusion, which is more valuable in predicting DFS than
differentiating benign and malignant lesions.

In our study, the final Rad-score calculation formula included six
potential features all from the new sequential features. The six
selected radiomics features comprised one from skewness, two
from entropy, one from Kendall-tau-b and two from

conservation. Among them, other studies have also emphasized
the importance of skewness and entropy in reflecting the
heterogeneity of tumours. Kendall-tau-b and conservation were
calculated from interactive information between the current
subject and the remainder of the subjects, which means that if
the changes increased, the Rad-score increased, indicating a worse
prognosis. One possible interpretation is that this change may be
related to the high perfusion of the tumours, and tumours with
abundant blood supply tend to be more heterogeneous and have a
worse prognosis. Attentionally, three of the six selected features were
GLCM (grey level cooccurrence matrix), and two were NGTDM
(neighbourhood grey-tone difference matrix). At present, GLCM is
themost widely used texture extractionmethod, which has also been
confirmed in assessing tumour heterogeneity and plays a very
important role in various fields. The basic principle of the GLCM
is based on spatial correlation between neighbouring pixels.
NGTDM represents contrast, which is determined by changes in
intensity between a target voxel and the surrounding neighbours
and then enables the calculation of the apparent difference between
neighbouring regions of voxel intensities. Contrast is also related to
tumour heterogeneity; tumours with poor prognosis tend to have
higher contrast (Sun andWee, 1983). Our results also showed that
the Rad-score had a promising high value for predicting DFS,
which was confirmed by Kaplan–Meier survival curves in the
training group (p < 0.0001) and in the validation group (p <
0.0001). Interestingly, the cut-off value (Rad-score � 0.2528. for
predicting DFS was similar to QL’s study (Rad-score � 0.2523),
regardless of TNBC or HER2-positive breast cancer with NAC.

There were differences in clinical stage, pre-NAC N stage and
pCR status between the training and validation groups, which
might be associated with differences in study populations with
different hospitals. In the validation group, the later the clinical
stage, the more difficult it was to achieve pCR. Various previous
studies have confirmed that a tumour’s response to neoadjuvant

FIGURE 3 | The developed nomogram for predicting disease-free survival in triple-negative breast cancer patients after neoadjuvant chemotherapy.
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therapy provides prognostic information. The attainment of a
pCR after NAC and surgical resection improved the DFS rate of
patients (Houssami et al., 2012), (Cortazar et al., 2014; Chen et al.,
2017; Symmans et al., 2017), consistent with our study. However,
42.2% of the patients in the training group received pCR after
NAC, and this rate is higher than those reported in other studies
(Houssami et al., 2012), potentially because we ruled out patients
who did not undergo surgery and did not finish a complete NAC
regimen. Interestingly, in the training group, multifocal/centric
lesions were identified as independent predictors for the DFS of
TNBC after NAC. Many studies (Duraker and Çaynak, 2014;
Lang et al., 2017) have demonstrated that multifocal/centric foci
exhibit more biologically aggressive behaviour than has been
observed for unifocal breast cancer, and this could influence
DFS and OS. Although the multifocal/centric lexicon was not
included in BI-RADS, these patients should receive more
attention during postoperative follow-up. While Park et al.
(2018a) found that N-stage was a predictor of DFS in breast
cancer, our analysis failed to support these findings, possibly due
to differences in study populations. In addition, the features at
MR imaging(mass vs nonmass) was not associated with DFS in
multivariate analysis of variance in our study, which was
consistent with the study of Tahmassebi et al. (2019).

The prognostic ability of radiomics signatures has been
demonstrated in many studies. For example, Li et al. (2016)
suggested that image-based radiomics features may be helpful in
assessing the risk of breast cancer recurrence. Park et al. (2018b)
demonstrated that Rad-scores generated from radiomics
signatures based on preoperative MRI have prognostic value.
In our study, we analysed preoperative MRI findings in TNBC, a
special pathological type of breast cancer, and supported the
notion that the Rad-score helps stratify patients, and patients
from high-risk groups need more careful follow-up management.

In this study, we developed a radiomics signature-based
nomogram for the individualized prediction of recurrence in
patients with TNBC after NAC. The nomogram incorporates
three components of a radiomics signature with six selected
features, including pCR status and MR findings indicating
multifocal/centric lesions, which is promising to facilitate
individualized predictions and the prediction of follow-up
needs in patients with poor outcomes with regard to DFS.

Our study has several limitations. First, this is a retrospective
study. Second, most of the patients were examined usingMR after
a biopsy, which might have affected assessments. Third, we
discuss only DCE images in our study, and further prospective
studies should include a variety of breast MR imaging protocols,
such as T2W, DWI, and DCE-MRI.

CONCLUSION

In conclusion, the results of our study show that the identified
Rad-score has the potential to be used as a biomarker for risk
stratification for DFS in patients with TNBC after NAC. In
addition, our results show that a radiomics nomogram that
incorporates a radiomics signature and MRI and
clinicopathological findings can be used to facilitate the
individualized prediction of recurrence in patients with TNBC
after NAC and surgery. This type of quantitative radiomics
prognostic model of breast cancer could be useful for
precision medicine and could affect patient follow-up strategies.
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