

Article

Sangiangols A and B, Two New Dolabellanes from an Indonesian Marine Soft Coral, *Anthelia* sp.

Novriyandi Hanif^{1,*}, Anggia Murni² and Junichi Tanaka³

- ¹ Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
- ² Tropical Biopharmaca Research Center, IPB University, Bogor 16128, Indonesia; anggia_murni@apps.ipb.ac.id
- ³ Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan; jtanaka@sci.u-ryukyu.ac.jp
- * Correspondence: nhanif@apps.ipb.ac.id; Tel.: +62-251-862-4567

Academic Editor: Vassilios Roussis Received: 20 July 2020; Accepted: 18 August 2020; Published: 21 August 2020

MDF

Abstract: A new, rare trinor-dolabellane diterpenoid, sangiangol A (1), and one new dolabellane diterpenoid, sangiangol B (2), together with known cembranes and dolabellanes (3–8), were isolated from the ethyl acetate layer of an extract of an Indonesian marine soft coral, *Anthelia* sp. Compounds 1–8 exhibited moderate cytotoxicity against an NBT-T2 cell line (0.5–10 μ g/mL). The structures of the new compounds were determined by analyzing their spectra and a molecular modelling study. A possible biosynthetic pathway for sangiangols A (1) and B (2) is presented. Cytotoxicity requires two epoxide rings or a chlorine atom, as in 4 (stolonidiol) and 5 (clavinflol B).

Keywords: soft coral; dolabellane; cytotoxicity; NMR; molecular modelling

1. Introduction

Soft corals produce numerous, structurally diverse, biologically active terpenoids [1]. More specifically, Indonesian alcyonaceans are rich sources of diterpenoids with a variety of molecular skeletons. From 1970–2017, eight diterpenoid skeletons (briarane, cladiellane, *seco*-cladiellane, cembrane, *nor*-cembrane, dolabellane, flexibilane, and xenicane) were discovered in 11 genera of Indonesian alcyonaceans [2]. Among them, cembrane and briarane skeletons comprise a majority of the known diterpenoids in soft corals globally [2,3]. To date, soft corals of the genus *Anthelia*, family Xeniidae, have been shown to contain one type of sesquiterpenoid [4], three types of diterpenoids (xenicane [5], dolabellane [6], a C₂₄-acetoacetylated diterpenoid [7,8]), and one type of steroid [9] with cytotoxic activity against various cell lines [4–9]. Moreover, the dolabellane stolonidiol (4), was identified as a promising candidate against Alzheimer's disease after its mode of action in HEK293 cells was determined [10]. In our continuing study of metabolites of Indonesian *Anthelia* [4,6], we isolated known diterpenoids **3–8** and new dolabellanes, named sangiangols A (**1**) and B (**2**), the structures of which are the subject of this article.

2. Results and Discussion

A sample of the soft coral *Anthelia* sp., collected at Banten (BTN) in northwestern Java, was thoroughly extracted with acetone. After concentration, the residue was partitioned between EtOAc and H₂O. The EtOAc extract showed significant cytotoxicity against NBT-T2 cells at 1 μ g/mL. Thus, it was chromatographed on silica gel, followed by normal or reversed phase HPLC to afford two new molecules, **1** and **2**, along with known compounds **3–8** (Figure 1).

Figure 1. Chemical structures of dolabellane-type molecules (1–5) and cembrane-type molecules (6–8).

Sangiangol A (1) was obtained as an optically active oil, $[\alpha]_D^{27} + 20$. Its molecular formula is $C_{17}H_{26}O_3$ by HRESIMS and NMR (Table 1), indicating five degrees of unsaturation. Two compounds were identified as olefins (δ_C 153.0 (C); 127.0 (CH) (δ_H 5.88 brt, J = 2.5); 150.1 (C); 111.4 (CH₂) (δ_H 4.70 s, 4.76 s)) and three others were assigned to a trisubstituted epoxide (δ_C 61.3 (CH) (δ_H 3.06 t, J = 6.5); δ_C 63.7 (C)) and a bicyclic structure. IR absorption at 3310 cm⁻¹ and at 1714 and 1040 cm⁻¹ suggested the presence of hydroxy and exomethylene groups, respectively.

Four spin systems **i**–**iv** (**1a**; Figure 2) were disclosed by inspecting ${}^{1}H{-}^{1}H$ COSY cross peaks: (**i**) a trisubstituted double bond next to two methylenes (δ_{H} 5.88, 2.31, 2.10, 1.84, 1.63; H-12 to H-14), (**ii**) an oxymethine connected to a methylene (δ_{H} 2.20, 4.40; H-9 to H-10), (**iii**) the epoxide methine next to two methylenes (δ_{H} 2.42, 2.22, 1.73, 3.06; H-5 to H-7), and (**iv**) two methylenes (δ_{H} 1.63, 1.50, 2.10, 1.73; H-2 to H-3). A small coupling (${}^{4}J_{H-H}$ 1.3 Hz) between H-10 and H-12 with a COSY cross peak supported the presence of an allylic alcohol in Figure 2 (**1a**). HMBC correlations for H-10/C-8, 9, 11, 12 and H-12/C-1, 10, 11, 13, 14 confirmed the connection of spin systems **i** and **ii**. The trisubstituted epoxide was placed at C-7 and C-8, connecting spin systems **ii**, **iii**, and a primary alcohol (δ_{H} 3.38, 4.07) by observing HMBC correlations for H-7/C-6, 17; H-10/C-8; H-9/C-7, 8, 17; H-17a,b/C-7, 8, 9. Spin systems **iii** and **iv** were connected through an exomethylene (δ_{H} 4.70 s, 4.76 s; δ_{C} 153.0, 111.4) placed at C-4, as HMBC correlations H-16a,b/C-3, 4, 5 were observed. Finally, correlations from H₃-15 to C-1, 2, 11, 14 supported the connection of spin systems **i** and **i** runcture of **1** as a trinor-dolabellane diterpenoid.

Position	Sangiangol A (1)				Sangiangol B (2)			
1 051001	δ _C *	mult.	$\delta_{\rm H}$ **	J in Hz	δ _C *	mult.	$\delta_{\rm H}$ **	J in Hz
1	50.2	С			44.7	С		
2a	38.4	CH_2	1.63	m ***	42.8	CH_2	1.97	m
2b			1.50	ddd (14.4, 11.6, 7.2)			1.25	m ***
3a	29.6	CH ₂	2.10	m ***	25.0	CH_2	2.09	dt (15.4, 10.0)
3b			1.73	m ***			1.64	dd (13.3, 10.0)
4	150.1	С			149.3	С		
5a	30.8	CH ₂	2.42	dt (14.6, 5.4)	34.3	CH_2	2.45	td (13.6, 4.6)
5b			2.22	dd (14.6, 7.7)			2.29	brdd (13.6, 4.6)
6a	24.4	CH ₂	1.73	m ***	27.4	CH_2	1.79	m
6b			1.73	m ***			1.50	m
7	61.3	CH	3.06	t (6.5)	72.9	CH	3.56	d (11.4)
8	63.7	С			75.3	С		
9a	36.0	CH ₂	2.20	dd (15.7, 3.0)	33.6	CH ₂	1.95	dd (4.5, 2.7)
9b			2.00	dd (15.7, 6.3)			1.92	dd (5.5, 1.6)
10	65.1	CH	4.40	dd (6.3, 1.3)	54.5	CH	3.02	dd (5.4, 2.7)
11	153.0	С			76.7	С		
12	127.0	CH	5.88	brt (2.5)	50.2	CH	2.18	d (10.8, 2.0)
13a	29.7	CH_2	2.31	m ***	27.8	CH ₂	1.89	m
13b			2.10	m ***			1.60	m
14a	36.7	CH_2	1.84	ddd (12.7, 9.0, 7.1)	39.0	CH ₂	1.79	m
14b			1.63	m ***			1.74	m
15	27.4	CH_3	1.09	s	24.0	CH_3	0.84	S
16a	111.4	CH ₂	4.76	s	112.7	CH ₂	4.96	S
16b			4.70	s			4.79	S
17a	67.2	CH ₂	4.07	d (12.2)	67.2	CH ₂	3.89	d (11.4)
17b			3.38	d (12.2)			3.52	d (11.4)
18					75.2	С		
19					29.6	CH ₃	1.21	s
20					26.0	CH ₃	1.26	S

Table 1. ¹H NMR data for compounds **1** and **2** in CDCl₃.

* Assigned by DEPT and 2D NMR (HSQC and HMBC) experiments. ** Assigned by 2D NMR (COSY, HSQC, and HMBC) experiments. *** Overlapping signals.

Figure 2. Cont.

IH-¹H COSY → ¹H-¹³C HMBC → Long range ¹H-¹H COSY → NOE → Distance in Å → Coupling Constant (⁴J_{H-H})

Figure 2. Key: COSY (**1a**), HMBC (**1b**), NOE (**1c**), correlations and a long-range coupling constant $({}^{4}J_{\text{H-H}})$, as well as the distance between atoms (**1d**), with **a** computer-generated model of **1** (energy minimized: $1S^*$, $7S^*$, $8S^*$, $10R^*$ for (**1c**); $1S^*$, $7S^*$, $8S^*$, $10S^*$ for (**1e**); $1R^*$, $7S^*$, $8S^*$, $10S^*$ for (**1f**); $1R^*$, $7S^*$, $8S^*$, $10R^*$ for (**1g**), obtained from calculations with molecular mechanics MMFF).

The relative stereochemistry of **1** was tentatively assigned as follows, based on positive NOEs (**1c**; Figure 2). By observing a strong NOE between H-7 and H-17b (**1c**; Figure 2), chirality at the epoxide was revealed to be 7*S**, 8*S**, as in similar structural units [6,11]. Therefore, four possible stereoisomers—**1c** ($1S^*$, $7S^*$, $8S^*$, $10R^*$), **1e** ($1S^*$, $7S^*$, $8S^*$, $10S^*$), **1f** ($1R^*$, $7S^*$, $8S^*$, $10S^*$), and **1g** ($1R^*$, $7S^*$, $8S^*$, $10R^*$)—were further considered. Figure 2 shows the energy-minimized conformations of **1c** and **1e–1g** after molecular mechanics (MMFF) calculation. Of four possibilities, **1c** was the most likely structure because a positive NOE was observed between H-17a and H-12 within a reasonable distance (Figure 2), while other candidates were expected to have longer distances (~5 Å). The angular methyl H-15 at $\delta_{\rm H}$ 1.09 partially supported this conformation, showing NOEs for H-15/H-2b, 10 (Figure 2). The more downfield-shifted signal for the C-15 (δ 1.09) of **1** compared to that (δ 0.85) of the stolonidiol of **4** [6,11] may be due to the absence of the epoxide ring and the presence of an olefin at the ring junction.

Using HRESIMS and NMR, it was determined that sangiangol B (2), $[\alpha]_D^{27} + 15$, has the molecular formula C₂₀H₃₄O₅, with an additional oxygen and two hydrogen atoms compared to stolonidiol (4). Furthermore, four degrees of unsaturation in 2 indicated a similarity to clavinflol B (5) [6,12], a chlorohydrin analog. A detailed 2D NMR (Figure 3) analysis of 2 revealed that the major differences between 2, 4, and 5 were the chemical shifts at C-7 (δ_H 3.56, d (11.4); δ_C 72.9 for 2 and δ_H 3.96, d (11.5); δ_C 67.2 for 5) [6,12] and at C-8 (δ_C 75.3 for 2 and 63.2 for 4) [6,11] (Figure 4). With the NMR chemical shifts and high-resolution mass spectrometry (HRMS) data, compound 2 contained 1,2-diol at C-7 and C-8 for an epoxide in stolonidiol (4) or for a chlorohydrin in clavinflol B (5) [6,12]. Key HMBC correlations for H-7/C-8, 17; H-17/C-7, 8; H-9/C-7; H-10/C-8 further confirmed the position of the diol, establishing the planar structure.

Figure 3. Key: COSY (**2a**), HMBC (**2b**), NOE (**2c**), correlations and distance between atoms (**2d**) with **a** computer-generated model of **2** (energy-minimized 1*S*, *7R*, *8R*, 10*R*, 11*R*, 12*S* for (**2c**); 1*S*, *7S*, *8S*, 10*R*, 11*R*, 12*S* for (**2e**); 1*S*, *7R*, *8S*, 10*R*, 11*R*, 12*S* for (**2e**); 1*S*, *7R*, *8S*, 10*R*, 11*R*, 12*S* for (**2e**); 0 btained from calculations with MMFF).

Figure 4. Comparative analysis of ¹³C chemical shifts between 2 and 3, 4, 5.

Of the six stereocenters of sangiangol B (2), three can be confirmed as 1*S*, 11*R*, and 12*S* by comparing the ¹³C-NMR data for the cyclopentane moiety (C-1, C-11~14) with those of **3**, **4**, and **5** (Figure 4) [6,11,12] and by observing the rotation value $[\alpha]_D$ -37.9 of co-isolated stolonidiol (4) and the value $[\alpha]_D$ -31 of that reported in **4**, the absolute stereochemistry of which was established by X-ray crystallography [11]. Chirality at C-10 was shown to have the same *R* configuration as stolonidiol (4), based on a positive NOE between H-10 and H-15. Among the four possible structures—**2d**: *7R*,*8R*, **2e**: *7S*,*8S*, **2f**: *7R*,*8S*, and **2g**: *7S*,*8R*—the distances for H-10/H-7 and H-10/H-17b with energy-minimized conformations were compared, as in Figure 3. Both **2e** and **2f** were eliminated due to the relatively long distances of H-10/H-17b. However, as two candidates, **2d** and **2g**, accorded with the spectral data, the configuration at C-8 was then revealed, while only C-7 remained to be solved.

Furthermore, the biosynthesis of stolonidiol-related molecules can be proposed, as in Figure 5. Geranylgeranyl pyrophosphate (GGPP) is a well-known starting material for diterpenoids [13]. Sangiangol A (1) could be derived from stolonidiol (4) through a series of degradation and epoxide ring-opening reactions, while sangiangol B (2) could be derived from sangiangol C (3) through an epoxidation reaction. Moreover, sangiangol C (3) could be the precursor of stolonidiol (4). Unfortunately, attempts to prepare α -methoxy- α -trifluoromethylphenylacetic acid (MTPA) esters for the determination of the absolute configurations of both molecules failed because of their instability and the small quantities of these compounds available.

Figure 5. A possible biosynthetic pathway for sangiangols A (1) and B (2).

All isolated compounds (1–8) were evaluated for cytotoxicity against NBT-T2 rat bladder epithelial cells (Table 2). New entities 1 and 2 showed weak toxicity at 5 and 10 μ g/mL, respectively, while known molecules 3–8 showed moderate and weak toxicity at 10, 1, 0.5, 10, 1, and 10 μ g/mL, respectively. From the structure–activity relationship of stolonidiol derivatives, two epoxide rings or a chlorine atom are required for their cytotoxicity, as in 4 (stolonidiol) and 5 (clavinflol B).

Compound	Concentration (µg/mL)
1	5
2	10
3	10
4	1
5	0.5
6	10
7	1
8	10

 Table 2. Cytotoxicity of compounds 1–8 against NBT-T2 rat bladder epithelial cells.

3. Materials and Methods

3.1. General Methods

The optical rotations were obtained with a JASCO P-1010 digital polarimeter. The ¹H and ¹³C-NMR spectra were recorded on a JEOL α 500 FT NMR spectrometer. The chemical shifts were expressed in δ (ppm) and the coupling constants (*J*) in Hz. The electrospray ionization mass spectrometry (ESIMS) data were obtained on a PE QSTAR mass spectrometer and the infrared (IR) spectra were recorded on a DR 8020 Shimadzu spectrophotometer. The HPLC was performed on a Hitachi L-6000 pump equipped with a Shodex RI-101 monitor and a Hitachi L-4000 UV detector, using a Cosmosil 5C₁₈AR-II (5 µm) or a Mightysil RP-18 (5 µm) column. Merck silica gel 60 (0.063–0.20 mm) was used for column chromatography. The analytical thin layer chromatography (TLC) was performed on commercial silica gel 60 F₂₅₄ visualized with vanillin–EtOH-1% H₂SO₄. All solvents used were reagent grade.

3.2. Animal Material

A marine soft coral (AA-C31) was collected from Krakatau Island, Banten, Indonesia at 10–15 m depth by hand, while scuba diving. It was then stored in EtOH. The specimen was identified as *Anthelia* sp. by one of us (J.T.).

3.3. Extraction and Isolation

The fresh soft coral specimen (wet weight, 121 g) stored in EtOH was extracted four times using Me₂CO (4 × 150 mL). The four solutions were pooled and concentrated under vacuum, and the resulting residue was partitioned between EtOAc and H₂O to obtain a cytotoxic lipophilic extract (1.57 g, NBT-T2 1 µg/mL). The whole extract was separated on a Si gel 60 column by eluting stepwise with hexane–EtOAc–MeOH to afford 19 fractions. The second fraction (9.7 mg) was further separated using normal phase silica HPLC (hexane 100%) to give cembrane A (6) [13] (2.3 mg). The eighth fraction was purified on reversed phase HPLC to give sangiangol C (3) [14] (1.0 mg). The ninth fraction was repeatedly separated by HPLC (first, reversed-phase C₁₈ (RP₁₈), MeOH–H₂O, 5:2; second, Si 60, CH₂Cl₂–EtOAc, 7:3) to afford kericembrenolide E (7) [15] (2.7 mg), stolonidiol (4) [6,11] (3.5 mg), and clavinflol B (5) [6,12] (1.3 mg). The tenth fraction was subfractionated on RP₁₈ HPLC to give cembrenolide (8) [16] (1.7 mg), sangiangol A (1) (1.3 mg), and stolonidiol (4) (103.7 mg). Finally, the most polar fraction was repeatedly separated on reversed-phase HPLC (first, RP₁₈: MeOH–H₂O, 2:1 second, RP₁₈, MeOH–H₂O, 4:5) to give sangiangol B (2) (1.4 mg).

3.3.1. Sangiangol A (1)

Colorless oil; $[\alpha]_D^{27}$ + 20 (*c* 0.09, CHCl₃); IR (KBr) ν_{max} 3418, 2965, 1683, 1645, 1456, 1378, 1168, 1064 cm⁻¹; ¹H and ¹³C-NMR (see Tables 1 and 2); HRESIMS *m*/*z* 301.1658 [M + Na]⁺ (calculated (calcd) for C₁₇H₂₆O₃Na 301.1779).

3.3.2. Sangiangol B (2)

Colorless oil; $[\alpha]_D^{27}$ + 15 (*c* 0.14, CHCl₃); IR (KBr) ν_{max} 3418, 2965, 1645, 1456, 1378, 1168, 1064 cm⁻¹; ¹H and ¹³C-NMR (see Tables 1 and 2); HRESIMS *m*/*z* 377.2230 [M + Na]⁺ (calcd for C₂₀H₃₄O₅Na 377.2304).

3.4. Cytotoxicity Assay

NBT-T2 rat bladder epithelial cells (BRC-1370) purchased from RIKEN (Tsukuba, Ibaraki, Japan) were cultured under a standard protocol using Dulbecco's modified Eagle's medium (DMEM). The cells were seeded in 1 mL of modified Eagle's media supplemented with 10% heat-inactivated fetal bovine serum, streptomycin, amphotericin B, and glutamic acid. The cells were exposed to graded concentrations of the new and known compounds, as well as their fractions at 37 °C, for 72 h and observed under a microscope to observe the effects at 48 and 72 h.

Author Contributions: Conceptualization, N.H., A.M. and J.T.; methodology, N.H., A.M. and J.T.; validation, N.H., A.M. and J.T.; investigation, N.H., A.M. and J.T.; data curation, N.H., A.M. and J.T.; writing—original draft preparation, N.H., A.M. and J.T.; writing—review and editing, N.H., A.M. and J.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by the Ministry of Research and Technology-National Research and Innovation (RISTEK–BRIN) of the Republic of Indonesia grant number (1769/IT3.11/PN/2018, 4175/IT3.L1/PN/2019, 4014/IT3.L1/PN/2020) and Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Acknowledgments: We thank the Ministry of Research and Technology–National Research and Innovation (RISTEK–BRIN) of the Republic of Indonesia for its support of N.H. through its excellent basic university research program (1769/IT3.11/PN/2018, 4175/IT3.L1/PN/2019, 4014/IT3.L1/PN/2020). We also thank Masaki Kita of Nagoya University for performing a database search.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Caroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. *Nat. Prod. Rep.* 2020, *37*, 175–223. [CrossRef] [PubMed]
- 2. Hanif, N.; Murni, A.; Tanaka, C.; Tanaka, J. Marine natural products from Indonesian waters. *Mar. Drugs* **2019**, *17*, 364. [CrossRef] [PubMed]
- 3. Berrue, F.; Kerr, R.G. Diterpenes from gorgonian corals. *Nat. Prod. Rep.* **2009**, *26*, 681–710. [CrossRef] [PubMed]
- 4. Hanif, N.; Murni, A.; Yamauchi, M.; Higashi, M.; Tanaka, J. A new trinor-guaine sesquiterpene from and Indonesian soft coral *Anthelia* sp. *Nat. Prod. Commun.* **2015**, *10*, 1907–1910. [PubMed]
- 5. Coval, S.J.; Scheuer, P.J.; Matsumoto, G.K.; Clardy, J. Two new xenicin diterpenoid from the octocoral *Anthelia edmonsoni*. *Tetrahedron* **1984**, 40, 3823–3828. [CrossRef]
- 6. Murni, A.; Hanif, N.; Tanaka, J. A new cytotoxic dolabellane from the Indonesian soft coral *Anthelia* sp. *Indones. J. Chem.* **2013**, 13, 216–220. [CrossRef]
- 7. Green, D.; Carmely, S.; Benayahu, Y.; Kashman, Y. Antheliolide A & B: Two new C24-acetoacetylated diterpenoids of the soft coral *Anthelia glauca*. *Tetrahedron Lett.* **1988**, *29*, 1605–1608.
- 8. Smith, A.B.; Carrol, P.J.; Kashman, Y.; Green, D. Revised structure of antheliolides A and B. *Tetrahedron Lett*. **1989**, *30*, 3363–3364. [CrossRef]
- 9. Sjsstrand, U.; Bohlin, L.; Fisher, L.; Colin, M.; Djerassi, C. Minor and trace sterol from marine invertebrate 28: Novel polyhydroxylated sterol from soft coral *Anthelia glauca*. *Steroids* **1981**, *38*, 347–354. [CrossRef]
- Mason, J.W.; Schmid, C.L.; Bohn, L.M.; Roush, W.R. Stolonidiol: Synthesis, target identification, and mechanism for choline acetyltransferase activation. *J. Am. Chem. Soc.* 2017, 139, 5865–5869. [CrossRef] [PubMed]
- 11. Mori, K.; Iguchi, K.; Yamada, N.; Yamada, Y.; Inouye, Y. Stolonidiol, a new marine diterpenoid with a strong cytotoxic activity from the Japanese soft coral. *Tetrahedron Lett.* **1987**, *28*, 5673–5676. [CrossRef]

- 12. Shen, Y.; Pan, Y.; Ko, C.; Kuo, Y.; Chen, C. New dolabellanes from the Taiwanese soft coral *Clavularia inflate*. *J. Chin. Chem. Soc.* **2003**, *50*, 471–476. [CrossRef]
- Ireland, C.; Faulkner, D.J.; Finer, J.; Clardy, J. A novel diterpene from *Dollabella californica*. J. Am. Chem. Soc. 1976, 98, 4664–4665. [CrossRef] [PubMed]
- 14. Vanderah, D.J.; Rutledge, N.; Schmitz, F.J.; Ciereszko, L.S. Marine natural products: Cembrene-A and cembrene-C from a soft coral, *Nephthea* species. *J. Org. Chem.* **1978**, 43, 1614–1616. [CrossRef]
- Kobayashi, M.; Son, B.W.; Kyogoku, Y.; Kitagawa, I. Kericembrenolides A, B, C, D, and E, five new cytotoxic cembrenolides from the Okinawan soft coral *Clavularia koellikeri*. *Chem. Pharm. Bull.* **1986**, 34, 2306–2309.
 [CrossRef] [PubMed]
- 16. Iwashima, M.; Matsumoto, Y.; Takahashi, H.; Iguchi, K. New marine cembrane-type diterpenoids from the Okinawan soft coral *Clavularia koellikeri*. *J. Nat. Prod.* **2000**, *63*, 1647–1652. [CrossRef] [PubMed]

Sample Availability: Sample Availability: Not available.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).