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Abstract: Sirtuins (SIRTs) are class III histone deacetylases (HDACs) that play important roles in
aging and a wide range of cellular functions. Sirtuins are crucial to numerous biological processes,
including proliferation, DNA repair, mitochondrial energy homeostasis, and antioxidant activity.
Mammals have seven different sirtuins, SIRT1–7, and the diverse biological functions of each sirtuin
are due to differences in subcellular localization, expression profiles, and cellular substrates. In this
review, we summarize research advances into the role of sirtuins in the pathogenesis of various kidney
diseases including acute kidney injury, diabetic kidney disease, renal fibrosis, and kidney aging along
with the possible underlying molecular mechanisms. The available evidence indicates that sirtuins
have great potential as novel therapeutic targets for the prevention and treatment of kidney diseases.

Keywords: sirtuins; kidney; acute kidney injury; diabetic nephropathy; chronic kidney disease;
aging kidney

1. Introduction

Sirtuins (SIRTs) are a family of nicotinamide adenine dinucleotide (NAD)+-dependent class
III histone deacetylases (HDACs) that use the coenzyme NAD+ to deacetylate lysine residues in
histone and non-histone proteins. Due to their ability to target post-translational acyl modifications of
various cellular substrates, sirtuins are crucial to numerous biological processes including proliferation,
DNA repair, mitochondrial energy homeostasis, and antioxidant activity [1]. Silent information
regulator 2 (SIR2) was the first sirtuin discovered and was originally found in Saccharomyces cerevisiae [2].
SIR2 is critical for transcriptional silencing in budding S. cerevisiae and extension of the lifespan of
mother cells through suppression of toxic recombinant DNA circle formation, as well as other processes
including the management of molecules damaged by oxidative stress [3]. Seven different sirtuin proteins
localized to different subcellular compartments have been identified in mammals [4]. SIRT1 and SIRT2
are distributed in both the nucleus and cytoplasm. SIRT3, SIRT4, and SIRT5 are mainly present in the
mitochondria, while SIRT6 and SIRT7 are primarily found in the nucleus [1,5]. The diverse biological
functions of the various sirtuins are attributed to differences in subcellular localization, expression
profiles, and cellular substrates.

2. Molecular Targets of Sirtuins

SIRT1, as the first sirtuin identified in mammals, has been the most widely investigated.
Although SIRT1 is mainly present in the nucleus, it can translocate into the cytoplasm under
specific conditions, such as ischemic stress or embryonic development [6,7]. In the kidney, SIRT1 is
widely expressed in tubular cells and podocytes [8]. At the cellular level, SIRT1 may play
important roles in several biological processes, including energetic homeostasis [9], apoptosis [10],
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mitochondrial biogenesis [11], and autophagy [12]. SIRT1 mediates the longevity effect of caloric
restriction through regulation of glucose and lipid metabolism [9,13]. Caloric restriction increases the
NAD+/NADH ratio and subsequently SIRT1 activity [14]. Using the coenzyme NAD+, SIRT1 enhances
chromatin silencing and transcriptional repression through deacetylation of histones [15]. SIRT1 can
directly deacetylate histone lysines H4K16 (H4 Lys16), H3K9 (H3 Lys9), H3K14 (H3 Lys14), and H1K26
(H1 Lys26) upon recruitment to chromatin [16]. SIRT1 acts as the key transcriptional modulator of cell
survival via regulation of p53 [17], nuclear factor-κB (NF-κB) p65 [18], signal transducer and activator
of transcription 3 (STAT3) [19], and the Forkhead boX class O (FoxO) family [20]. SIRT1 regulates the
cellular response to hypoxic stress through deacetylation of hypoxia-induced factor 1α (HIF-1α) [21,22].
SIRT1 also activates peroxisome proliferator-activated receptor gamma (PPARγ) through deacetylation
of PPARγ coactivator-1α (PGC-1α) [23,24]. In addition, SIRT1 regulates cellular homeostasis through its
activation of adenosine monophosphate-activated protein kinase (AMPK) via liver kinase B1 (LKB1) and
inhibition of the mammalian target of rapamycin (mTOR) [25,26]. SIRT1 also accelerates deacetylation
and nuclear translocation of β-catenin and regulates the Wnt/β-catenin transcriptional pathway [27].

SIRT2 is a cytoplasmic sirtuin that is co-localized with microtubules and deacetylates the
major component of microtubules [28]. However, SIRT2 has also been observed in the nucleus
and mitochondria, and its translocation to the nucleus may indicate an important epigenetic
role [29]. SIRT2 has been shown to deacetylate several substrates including histone lysines
H4K16 [30], H3K56 (H3 Lys56) [31], α-tubulin [28], PR-Set7 [32], phosphoenolpyruvate carboxykinase 1
(PEPCK1) [33], NF-κB p65 [34], and FoxO family proteins [35,36], and is also involved in the regulation
of the cell cycle, DNA repair, and stress responses [30]. SIRT2 regulates binding of p65 to the promoters
of anti-inflammatory chemokines such as C-X-C motif chemokine ligand 2 (CXCL2) and CC motif
chemokine ligand 2 (CCL2) [34]. SIRT2 also regulates insulin-induced protein kinase B (PKB/AKT)
activation via constitutive phosphoinositide 3-kinase (PI3K) activity, and this regulation is involved in
AMPK-dependent SIRT2 phosphorylation [37]. In addition, SIRT2 is a central regulator of the defense
mechanism against reactive oxidative species (ROS) through FoxO3a deacetylation [36]. In the kidney,
SIRT2 is mainly expressed in proximal epithelial tubular cells [34].

SIRT3 is the best characterized among mitochondrial sirtuins. SIRT3 is normally localized
inside the mitochondria, but can translocate into the nucleus under stressful conditions, along with
overexpression of SIRT5 [38]. SIRT3 is a NAD+-dependent deacetylase in mitochondria that regulates
energy metabolism; the anti-oxidative defense system; lipid metabolism; and longevity via deacetylation
of various substrates including acetyl-coenzyme A synthetase 2 (ACSS2) [39], glutamate dehydrogenase
(GDH) [40], and superoxide dismutase 2 (SOD2) [41]. SIRT3 also reduces levels of ROS through
regulation of NF-κB [42], AMPK [43], PGC-1α [44], and FoxO3a [45]. SIRT3 regulates the acetylation
status of multiple proteins to improve function, including those associated with fatty acid oxidation,
ketogenesis, amino acid catabolism, and urea and tricarboxylic acid cycles, in addition to mitochondrial
regulation [40,46]. In the kidney, SIRT3 has been described as a crucial regulator of mitochondrial
dynamics in proximal epithelial tubular cells [47].

SIRT4, the second mitochondrial sirtuin, has been observed in the mitochondrial matrix
where it binds to proteins in similar pathways to those regulated by SIRT3. SIRT4 exhibits
NAD+-dependent adenosine diphosphate (ADP)-ribosyltransferase activity and inhibits GDH activity
through ADP-ribosylation [48]. SIRT4 is also a lysine deacetylase and can remove multiple derivatives
of methylglutaryl from lysine residues to regulate leucine metabolism [49]. However, reduction of
SIRT4 under conditions of nutrient deprivation coordinates the use of fatty acids as an energy source,
suggesting that SIRT4 might antagonize the dietary restriction-mediated effects of SIRT1 and SIRT3.
SIRT4 also suppresses fatty acid oxidation through inhibition of malonyl CoA decarboxylase (MCD) [50],
peroxisome proliferator-activated receptor α (PPARα) [51], and AMPK signaling [52]. SIRT4 also acts
as a tumor suppressor, regulating the cellular metabolic response to DNA damage via repression of
glutamine metabolism [53]. However, little is known about the role of SIRT4 in the kidney [54].
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SIRT5, the third mitochondrial sirtuin, was thought to localize primarily to mitochondria [55].
However, several studies have demonstrated that SIRT5 is also present in the cytosol, peroxisomes,
and nucleus [56–58]. SIRT5 was initially described as a mitochondrial deacetylase, but it has minimal
deacetylase activity [59]. Recent studies have reported that SIRT5 shows distinct affinity for negatively
charged acyl lysine modifications, and acts as a prominent cellular desuccinylase, demalonylase,
and deglutarylase, thereby regulating various metabolic pathways [59,60]. Pathway analysis identified
multiple target pathways of SIRT5 including fatty acid oxidation, branched-chain amino acid
catabolism, the citric acid cycle, adenosine triphosphate (ATP) synthesis, oxidative phosphorylation
(OXPHOS), stress responses, ketogenesis, and pyruvate metabolism [61]. The absence of SIRT5 led
to hypersuccinylation of mitochondrial proteins in the kidney [62,63] and increased blood ammonia
levels [64], suggesting that SIRT5 may play roles in renal and liver metabolism. A recent study revealed
that SIRT5 is highly expressed in proximal epithelial tubular cells [65]. However, the function of SIRT5
in the kidney remains poorly understood.

SIRT6 is predominantly a nuclear protein and deacetylates diverse proteins, including H3K9 and
H3K56 [66]. SIRT6 exhibits both deacetylase and mono-ADP-ribosyltransferase activities [67]. Like other
sirtuins, SIRT6 regulates longevity via deacetylation of several transcription factors associated with
DNA repair, glucose and lipid metabolism, cellular senescence, and inflammation [68–71]. SIRT6 also
functions as a corepressor of HIF-1α, suppressing glucose uptake and glycolysis [70]. In the kidney,
SIRT6 plays an important role in podocyte injury and renal fibrosis in podocytes and proximal epithelial
tubular cells [72–74].

SIRT7 is localized to the nucleus and has NAD+-dependent HDAC activity [75]. SIRT7 appears to
exhibit relatively weak and substrate-specific deacetylase activity. The known deacetylation substrates
of SIRT7 are only H3K18 (H3 Lys18), p53, polymerase-associated factor 53 (PAF53), the nucleolar protein
nucleophosmin (NPM1), and GA-binding protein-β-1 (GABP-β1) [76]. SIRT7 deficiency is associated
with a high mutation rate, increased sensitivity to DNA damage, and apoptosis. These findings suggest
that SIRT7 regulates genome stability through its effects on transcriptional regulation, DNA replication,
and DNA repair [77,78]. In the kidney, SIRT7 is expressed in proximal tubules and collecting ducts [79].
However, the role of SIRT7 in kidney injury remains unclear.

3. The Role of Sirtuins in Renal Disease

3.1. Sirtuins in Acute Kidney Injury

Interest in the role of sirtuins in the pathophysiology of various renal diseases has grown recently.
Given the tubular expression of sirtuins and their modulating effects on oxidative stress, inflammation,
and mitochondrial dysfunction, they are likely to be involved in the pathogenesis of acute kidney
injury (AKI) [80].

3.1.1. Sirtuins in Ischemia/Reperfusion-Induced Kidney Injury

Greater susceptibility to injury caused by ischemia/reperfusion (I/R) in aging kidneys raises
the possibility that sirtuins may play a role in the pathogenesis of I/R-induced kidney injury.
SIRT1 overexpression was associated with enhanced resistance to kidney injury after I/R, whereas the
loss of one SIRT1 allele aggravated kidney injury following I/R [81]. SIRT1 attenuated I/R-induced
kidney injury along with activation of anti-oxidant pathways such as nuclear factor erythroid
2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling [82] and reduction of p53 expression
and apoptosis [81]. SIRT1 also attenuated I/R-induced kidney injury by stimulating mitochondrial
biogenesis. Treatment with SRT1720, an SIRT1 activator, restored renal ATP levels through reduction of
mitochondrial mass, nitrosative stress, and inflammation, leading to attenuation of I/R-induced kidney
injury [11]. Promotion of mitochondrial biogenesis and PGC-1α activation by activators of SIRT1 has
also been proposed as repair mechanisms after I/R-induced kidney injury [83].
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I/R injury was found to increase SIRT3 expression in the kidney. Given that SIRT3 is mainly
localized in the mitochondrial matrix, SIRT3 may affect the course of I/R-induced kidney injury, which is
associated with mitochondrial dysfunction. SIRT3 overexpression was found to confer renal protection
via the suppression of superoxide generation [84]. Reduced expression of SIRT3 was associated with
increased severity of I/R-induced kidney injury, while restoration of SIRT3 reversed this damage by
modulating mitochondrial homeostasis through the AMPK/PGC-1α pathway [85]. A recent study
reported that SIRT5 was highly expressed in both the mitochondria and peroxisomes of proximal
tubular cells, but the opposite trend was observed in I/R-induced kidney injury compared to other
types of sirtuins, as the loss of SIRT5 function led to renoprotective effects after I/R injury; shifting of
fatty acid oxidation from the mitochondria to the peroxisome under the control of SIRT5 was suggested
as the underlying mechanism. In contrast, SIRT6 expression was negatively correlated with the degree
of hypoxia-induced tubular cell injury and inflammation of tubular epithelial cells [86]. The differing
effect of each sirtuin on I/R-induced kidney injury should be elucidated through future researches.

3.1.2. Sirtuins in Cisplatin-Induced Acute Kidney Injury

Cisplatin-induced kidney injury decreases mitochondrial number and function, and also increases
production of ROS. Given the core role of sirtuins in mitochondrial biogenesis and integrity, the role of
sirtuins has been more extensively studied in cisplatin-induced AKI compared to other causes of AKI.
Renal tubule-specific SIRT1 transgenic mice showed attenuation of functional and histological measures
of kidney injury after cisplatin treatment, which was attributed to decreases in cisplatin-induced
oxidative stress and apoptosis [87]. Pharmacologic activation of SIRT1 was also associated with
the attenuation of cisplatin-induced AKI via modulation of oxidative stress and inflammation
through the NF-κB and p53 signaling pathways [88–90]. Recent studies have highlighted the
renoprotective activity of SIRT3 in cisplatin-induced AKI through modulation of mitochondrial
dysfunction. Loss of SIRT3 function in mice led to aggravation of renal function deterioration after
cisplatin treatment, and attenuation of cisplatin-induced kidney injury through pharmacologic
activation of SIRT3, which was observed in wild-type mice, did not occur in SIRT3-deficient
mice. In tubular cells, reduced SIRT3 expression after cisplatin treatment resulted in mitochondrial
fragmentation, while activation of SIRT3 expression reversed the injury and preserved mitochondrial
integrity [91]. The renoprotective role of SIRT3 in cisplatin-induced AKI through modulation of
mitochondrial dysfunction has been further demonstrated in other studies [92,93]. One of nuclear
sirtuins, SIRT6 knockout mice exhibited aggravation of cisplatin-induced kidney injury, while SIRT6
attenuated renal inflammation and apoptosis by deacetylating H3K9 and inhibiting expression of
extracellular-signal-regulated kinase (ERK)-1/2 [94].

In contrast to SIRT1, SIRT3, and SIRT6, the absence of SIRT2 and SIRT7, not their overexpression,
significantly ameliorated cisplatin-induced AKI by decreasing inflammation and apoptosis through
modulation of p38 and c-Jun N-terminal kinase (JNK) [79,90]. Conflicting findings have been
reported regarding the role of SIRT5 in cisplatin-induced AKI. In one study of renal tubular cells,
SIRT5 overexpression was found to attenuate cisplatin-induced apoptosis and mitochondrial injury
through regulation of Nrf2/HO-1 and B-cell lymphoma 2 (Bcl-2) [95]. However, another study reported
that deficiency of SIRT5 function in mice significantly improved renal function and tubular damage in
cisplatin-induced AKI through peroxisomal fatty acid oxidation of proximal tubules [65]. The exact
role of SIRT5 in cisplatin-induced AKI requires further elucidation.

3.1.3. Sirtuins in Other Types of Acute Kidney Injury

The immunomodulatory function of most sirtuins has been shown to relieve sepsis-induced
AKI. Overexpression of SIRT1 and SIRT6 was associated with alleviation of tubular injury induced by
lipopolysaccharide treatment in an animal model of cecal ligation and puncture [96,97]. Similar results
were obtained from sepsis-induced AKI model treated with resveratrol, a sirtuin activator [98].
The renoprotective effect of sirtuins in sepsis-induced AKI was accompanied by suppression of
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inflammasome activation and promotion of autophagy. However, consistent with cisplatin-induced
AKI, loss of SIRT2 function in mice improved renal function and renal tubular injury after
lipopolysaccharide treatment [34].

The role of sirtuins has been also demonstrated in contrast-induced nephropathy (CIN), which is
the third leading cause of hospital-acquired AKI. It has been reported that oxidative stress associated
with superoxide production and related pathways is involved in the pathogenesis of CIN [99],
which is modulated by the level of sirtuin expression. We previously demonstrated that SIRT1
activation by resveratrol treatment attenuated CIN via modulation of oxidative stress and apoptosis
through activation of PGC-1α/FoxO1 signaling [100]. Another study demonstrated that SIRT3
deficiency aggravated CIN [101], whereas activation of the SIRT3-Nrf2 pathway alleviated CIN [102].
Further investigation into the exact roles of sirtuins in various settings of AKI is warranted.

3.2. Sirtuins in the Aging Kidney

Aging is a multifactorial process characterized by progressive decline in physiological function.
The kidney is a typical target organ of age-associated tissue damage, and the increased incidence of
chronic kidney disease (CKD) in elderly is an emerging health problem worldwide [103]. Various sirtuins
have been demonstrated to mitigate kidney aging. SIRT1 expression was found to be reduced in aging
kidneys, and this change was associated with changes in the expression of other target molecules such
as PGC-1α/estrogen-related receptor-1α (ERR-1α), PPARα, Klotho, and HIF-1α [104–106]. Recently,
podocyte-specific reduction of SIRT1 was found to accelerate kidney injury in aging mice [107].
Therefore, SIRT1 is believed as a potential target for treatment of kidney aging.

Caloric restriction has been shown to extend lifespan and may affect numerous cellular aspects
of kidney aging. Kume et al. demonstrated that long-term caloric restriction from one to two
years in mice promoted SIRT1 expression in aging kidneys, which resulted in attenuation of
hypoxia-induced kidney injury via SIRT1-mediated deacetylation of FoxO3a and activation of
autophagy [12]. Even short-term activation of SIRT1 through caloric restriction promoted autophagy
and reduced mitochondrial oxidative damage in 25-month-old rats [108]. SIRT1 and its target
proteins may play an important role in renoprotection of aging kidneys, which is accomplished
through stimulation of autophagy. Pharmacologically induced SIRT1 activation significantly reduced
tubulointerstitial fibrosis and improved renal function through enhancement of Nrf2/HO-1 signaling
and AMPK/PGC-1α signaling [109].

Along with other sirtuins, SIRT3 has been reported to act as an essential regulator of cell
senescence. SIRT3 is associated with renin–angiotensin–aldosterone system (RAAS) activation,
which is known to play a role in kidney aging. In kidneys of aged mice, angiotensin II (Ang II) type 1
receptor (AT1R) deletion upregulated nicotinamide phosphoribosyltransferase (Nampt) and SIRT3
and resulted in markedly prolonged lifespan. Ang II treatment downregulated SIRT3 expression in
tubular epithelial cells, and this effect was inhibited by AT1 antagonist administration. These findings
suggest a biochemical link between Ang II and SIRT3 through AT1R in aging kidneys [110]. However,
a recent study reported conflicting results: this study found that expression of SIRT1 and Nampt
expression, but not SIRT3, was significantly reduced in the kidneys of aged mice with AT1R-associated
protein (ATRAP) deletion [111]. Although the role of SIRT3 in kidney aging via the Ang II-AT1R
signaling pathway remains unclear, SIRT3 deficiency is known to cause severe renal fibrosis in
aging kidneys associated with increased transforming growth factor-β1 (TGF-β1) expression and
hyperacetylation of glycogen synthase kinase-3β (GSK-3β), resulting in phosphorylation of Smad3,
c-Jun, and β-catenin [112]. SIRT6 activation due to caloric restriction also attenuated age-associated
kidney injury through inhibition of the proinflammatory NF-κB signaling pathway [113]. Together,
these findings indicate that sirtuins play a role in attenuating tissue injury in aging kidneys, likely via
attenuation of oxidative stress and inflammation, and it supports that the investigation of sirtuins
should be done as therapeutic targets for kidney aging.
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3.3. Sirtuins in Diabetic Kidney Disease

Caloric restriction not only slows aging and increases lifespan, but also increases insulin
sensitivity [114,115]. In a clinical study, fasting glucose levels and insulin resistance improved after a
12-week intensive weight reduction program based on caloric restriction among obese individuals
with advanced diabetic nephropathy (DN), and also led to improvement in kidney function [116].
Dietary restriction in diabetic rat models increased SIRT1 expression in the kidneys and improved
renal function including albuminuria, creatinine clearance, and renal histology [117,118]. Thus,
caloric restriction activates sirtuins that may be beneficial in preventing the progression of DN.

Several studies have suggested that SIRT1 decreases mitochondrial oxidative stress and apoptosis
through modulation of p53 [119], the AMPK/PGC-1α pathway [120–122], the Nrf2 pathway [123],
and the FoxO family [124], thereby providing protection against DN. SIRT1 also restrained renal
inflammation and fibrosis under hyperglycemic conditions through HIF-1α signaling in mesangial
cells [125]. Podocyte-specific SIRT1 deletion in diabetic mice led to proteinuria and podocyte
injury, and these changes were associated with renal inflammation due to hyperacetylation of
STAT3/NF-κB [126]. In addition, SIRT1 modulated angiogenesis through downregulation of vascular
endothelial growth factor (VEGF) and Flk-1 (VEGFR-2) expression in high glucose (HG)-treated
podocytes and endothelial cells, but these effects were attenuated by the genetic elimination
of SIRT1 [127].

SIRT1 may participate in the crosstalk between podocytes and tubular cells in DN. Podocyte-specific
SIRT1 deletion caused severe mesangial expansion and podocyte loss [126], while SIRT1 overexpression
in podocytes attenuated renal damage in diabetic mice [128]. SIRT1 deletion in proximal tubules
also increased albuminuria, which upregulated the tight junction protein claudin-1, in streptozotocin
(STZ)-induced diabetic mice [129]. Exposure of podocytes to medium obtained from proximal tubular
cells cultured with HG downregulated SIRT1 and upregulated claudin-1 expression. These effects
were abolished in podocytes exposed to medium from proximal tubular cells overexpressing SIRT1,
even under HG conditions [129]. Based on these findings, Hasegawa et al. proposed a functional
relationship between proximal tubules and podocytes, referred to as ‘proximal tubule–podocyte
communication’ [129].

Recent research has demonstrated a role for SIRT1 in proximal tubule–podocyte communication
in association with sodium–glucose cotransporter 2 (SGLT2). In diabetic kidneys, high glucose levels
around the proximal tubules may trigger glucose transporter 2 (GLUT2)-mediated intracellular glucose
uptake via SGLT2 upregulation, causing a concomitant decrease in SIRT1. An SGLT2 inhibitor recovered
SIRT1 expression in diabetic mice and HG-treated proximal tubular cells [130], as well as AMPK
phosphorylation [131]. Interplay between AMPK/SIRT1 signaling and sodium transport mechanisms
in the kidney may partially explain the role of the SGLT2 inhibitor in ameliorating the development
of DN [132].

The associations of sirtuins other than SIRT1 with DN have also been explored. SIRT3 overexpression
suppressed HG-induced apoptosis by reducing ROS accumulation through modulation of Akt/FoxO
signaling in proximal tubular cells [133]. On the other hand, SIRT3 suppression was associated
with activation of TGF-β/Smad3 signaling and increased HIF-1α accumulation, which subsequently
caused abnormal glycolysis and kidney fibrosis in diabetic mice and proximal tubular cells [134].
SIRT4 overexpression led to downregulated expression of apoptosis-related proteins such as NADPH
oxidase 1 (NOX1), Bcl-2-associated X protein (Bax), and phosphorylated p38, along with upregulated
expression of Bcl-2, which was associated with attenuation of the inflammatory response in
HG-simulated podocytes [135].

SIRT6 deletion exacerbated podocyte injury in diabetic mice, and SIRT6 overexpression with HG
treatment protected against podocyte injury through epigenetic regulation of Notch1 and Notch4
transcription due to deacetylation of H3K9 [73]. SIRT6 was also found to regulate the immune response
by activating M2 macrophages, which are protective against podocyte injury, in STZ-induced diabetic
mice [136]. In a recent study, selective deletion of Nampt in proximal tubule cells of STZ-induced diabetic
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mice led to downregulation of SIRT6, which was accompanied by thickening of the tubular basement
membrane, type IV collagen deposition, enhanced renal fibrosis, and albuminuria. Selective deletion of
SIRT6 in the proximal tubules of diabetic mice caused a phenotype similar to that of Nampt knockout
mice. Therefore, the Nampt–Sirt6 axis in proximal tubules was suggested to be a key player in the
fibrogenic extracellular matrix remodeling associated with DN [137].

3.4. Sirtuins in Chronic Kidney Disease

Renal tubular fibrosis is a major pathognomonic phenomenon in CKD [138], and sirtuins have
been demonstrated to play an important role in tubular fibrosis. SIRT1 knockout mice were found to
have prominent tubular fibrosis in a model of unilateral ureter obstruction (UUO) [139]. Suppression of
SIRT1 expression in mouse renal medullary interstitial cells resulted in substantial reduction of cellular
resistance to oxidative stress [139]. In addition, SIRT1 activation inhibited tubular fibrosis in a 5/6
nephrectomy model and a UUO model [140,141]. SIRT1 expression was also found to be involved in
the pathogenesis of chronic renal allograft dysfunction and chronic cyclosporine A (CsA) nephropathy.
In rat kidneys with chronic allograft dysfunction, decreased SIRT1 was associated with mononuclear
cell infiltration and interstitial fibrosis due to upregulation of inflammatory cytokines [142]. In a
mouse model of chronic CsA nephropathy, SIRT1 expression was reduced according to the degree of
tubulointerstitial fibrosis through the Nrf2 and PI3K/Akt/FoxO1 pathways [143].

Various mechanisms have been suggested to underlie the pathogenetic link between SIRT1 and
the development of renal fibrosis. Endothelial SIRT1 expression may play an important role, as SIRT1
deletion in the endothelium of mice caused spontaneous interstitial fibrosis without glomerular
involvement, even at a young age. Moreover, tubulointerstitial fibrosis after long-term folic acid
treatment was aggravated in mice with endothelium-specific SIRT1 deletion [144]. Endothelial SIRT1
depletion also enhanced the senescence of pericapillary tubular endothelial cells, which manifested
as impaired endothelial proliferation and increased expression of molecules in the Notch1 signaling
pathway [145]. A role for sirtuins in the epithelial-to-mesenchymal transition (EMT) during the
development of renal fibrosis has also been suggested [146]. SIRT1 up-regulation by resveratrol
treatment ameliorated renal fibrosis in proximal tubular cells treated with TGF-β in addition to a
mouse model of UUO; this was found to be due to inhibition of the EMT through deacetylation of
Smad4 and inhibition of matrix metalloproteinase-7 (MMP-7) [147].

Consistent with observations in AKI, pharmacological inhibition of SIRT2 resulted in reduction of
renal interstitial fibrosis in UUO models [148,149], which was accompanied by decreases in expression
of epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor-β (PDGFR-β),
STAT3 [148], and E3-ubiquitin ligase murine double-minute 2 (MDM2) [149]. In contrast, SIRT3 plays
an important role in the endothelial-to-mesenchymal transition (EndoMT) associated with the vascular
pathology of renal fibrosis [150]. EndoMT is a novel mechanism of renal fibrosis and is characterized
by a phenotypic transition from vascular endothelial cells to myofibroblasts [151]. Honokiol,
a pharmaceutical SIRT3 activator, decreased renal inflammation and fibrosis through regulation
of mitochondrial dynamics via the NF-κB/TGF-β1/Smad signaling pathway [152]. SIRT6 knockout
aggravated TGF-β-induced fibrosis in mouse tubular epithelial cells, while pharmacological inhibition
of SIRT6 deacetylase activity by OSS_128167 induced kidney fibrosis in a mouse model of UUO through
modulation of the Wnt/β-catenin signaling pathway [74]. Therefore, various sirtuins appear to be
involved in kidney fibrosis and related processes.

4. Summary and Future Perspectives

Sirtuins play critical roles in cellular homeostasis, and numerous published studies have revealed
that sirtuins participate in various acute and chronic kidney diseases through the regulation of oxidative
stress, apoptosis, inflammation, fibrosis, cell survival, ATP production and mitochondrial biogenesis
(Figure 1, Table 1). Considering the fact that the functions of sirtuins have been well characterized in
animal models, more research into the role of these proteins in human kidney diseases is warranted.
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Development of kidney-specific sirtuin activators will facilitate further investigation of sirtuins as
novel therapeutic targets.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 19 

 

 
Figure 1. Implication of sirtuins in various kidney diseases associated with variable cellular location 
of sirtuins and associated pathways. The types of lines (solid line: attenuation of disease, dotted line: 
aggravation of disease, dash line: controversial) between each sirtuin with kidney disease were based 
on previous studies. 

  

Figure 1. Implication of sirtuins in various kidney diseases associated with variable cellular location of
sirtuins and associated pathways. The types of lines (solid line: attenuation of disease, dotted line:
aggravation of disease, dash line: controversial) between each sirtuin with kidney disease were based
on previous studies.
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Table 1. Pathophysiologic role of sirtuins in kidney diseases (↓: decreases, ↑: increases).

Experimental Models Interventions Renal Outcome/Phenotype Mechanism Ref

SIRT1

AKI

I/R injury SRT-1720 Apoptosis ↓ SIRT1 ↑ → acetylated p53 ↓ [81]

SRT-1720 Mitochondrial biogenesis ↑ SIRT1 ↑ → PPARγ, ATP levels ↑
SIRT1 ↑ → deacetylated PGC-1α ↑

[11]
[83]

Cisplatin Tubule-specific SIRT1 Tg
Apoptosis and ROS production ↓

Function and number of mitochondria
and peroxisome ↑

SIRT1 ↑ → catalase, PGC-1α ↑ [87]

SRT-1720 Apoptosis and inflammation ↓ SIRT1 ↑ → acetylated p53, NF-κB, TNF-α ↓ [88]

Sepsis Resveratrol Oxidative stress ↓, mitochondrial
function ↑ SIRT1 ↑ → acetylated SOD2 ↓ [98]

Contrast Resveratrol Oxidative stress ↓ SIRT1 ↑ → PGC-1α ↑, FoxO1 ↑ [100]

Aging Aging mice
Doxycycline-inducible

podocyte-specific RNAi model for
SIRT1 (Pod-SIRT1 RNAi)

Oxidative stress ↑ SIRT1 ↓ → PGC-1α ↓, PPARγ ↓, acetylated
FoxO3a, FoxO4, NF-κB ↑ [107]

Aging mice Resveratrol Inflammation ↓ SIRT1 ↑ → Nrf2/HO-1 ↑, AMPK/PGC-1α ↑ [109]

DKD

STZ-diabetic rats Resveratrol Apoptosis and oxidative stress ↓
Angiogenesis ↓

SIRT1 ↑ → acetylated p53 ↓
SIRT1 ↑ → Nrf2 ↑

SIRT1 ↑ → phosphorylated FoxO1 ↓
SIRT1 ↑ → VEGF and Flk-1 ↓

[119]
[123]
[124]
[127]

db/db mice Resveratrol Mitochondrial biogenesis ↑
Oxidative stress and apoptosis ↓

SIRT1 ↑ →Mn-SOD↑, AMPK ↑
SIRT1 ↑ → AMPK/PGC-1α ↑, PPARα ↑

[120]
[121]
[122]

db/db mice
Podocyte-specific SIRT1 KO

(Podocin-Cre; SIRT1fl/fl)
Proximal tubule-specific SIRT1 KO

Inflammation and apoptosis ↑
Albuminuria and podocyte injury ↑

SIRT1 ↓ → acetylated p65, STAT3, FoxO4 ↑
SIRT1 ↓ → claudin-1 ↑

[126]
[129]

OVE26 mice Podocyte-specific SIRT1
overexpression (Podocin-SIRT1OV) Podocyte injury ↓ SIRT1 ↑ → PGC-1α ↑ [128]
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Table 1. Cont.

Experimental Models Interventions Renal Outcome/Phenotype Mechanism Ref

CKD

UUO SIRT1 KO in endothelium
(Tie2-Cre with SIRT1F/F)

Apoptosis and fibrosis ↑
Senescence of peritubular capillary ECs ↑

SIRT1 ↓ → renal COX2 ↓
SIRT1 ↓ → Notch1 ↑

[139]
[145]

UUO Resveratrol Interstitial fibrosis ↓, EMT ↓ SIRT1 ↑ → acetylated Smad3 ↓
SIRT1 ↑ →MMP-7 ↓

[140]
[147]

UUO SIRTinol, EX527 Renal fibrosis ↓ SIRT1, SIRT2 ↓ → EGFR ↓, PDGFR ↓ [148]

5/6 nephrectomized mice SIRT1 KO Interstitial fibrosis ↑ SIRT1 ↓ → acetylated Smad3 ↑ [141]

Folic acid nephropathy Endothelial-deleted SIRT1endo-/- Fibrotic response, angiogenesis ↑ SIRT1 ↓ →MMP-14 ↓ [144]

SIRT2

AKI
Cisplatin SIRT2 KO Apoptosis, necroptosis, inflammation ↓ SIRT2 ↓ →MKP-1 ↑ → p38, JNK ↓ [90]

Sepsis Genetic deletion of SIRT2-/- Inflammation ↓ SIRT2 ↓ → CXCL2 ↓, CCL2 ↓, MKP-1 ↑ →
p38, JNK ↓ [34]

CKD
UUO AGK2 Tubulointerstitial fibrosis↓ SIRT2 ↓ →MDM2-p53 ↓ [149]

UUO AGK2 Renal fibrosis ↓ SIRT1, SIRT2 ↓ → EGFR ↓, PDGFR ↓ [148]

SIRT3

AKI
Cisplatin Genetic deletion of SIRT3-/- Oxidative stress ↑, mitochondrial

function ↓ SIRT3 ↓ → DRP1 ↑ [91]

Contrast Genetic deletion of SIRT3-/- Oxidative stress and apoptosis ↑ SIRT3 ↓ →MnSOD, catalase ↓ [101]

Aging Aging mice SIRT3 KO Renal fibrosis ↑ SIRT3 ↓ → acetylated GSK-3β ↑ → Smad3,
c-Jun, and β-catenin ↑ [112]

DKD STZ-diabetic mice SIRT3 siRNA Fibrosis and aberrant glycolysis ↑ SIRT3 ↓ → TGF-β/smad3 ↑, HIF-1α ↑ [134]

CKD
UUO SIRT3 endothelial cell-specific Tg

(SIRT3-TgEC)
Renal fibrosis, EndoMT ↓, Oxidative

stress ↓ SIRT3 ↑ → FoxO3a nuclear translocation ↑ [150]

UUO Honokiol Mitochondrial fusion ↑, Inflammation↓ SIRT3 ↑ → NF-κB/TGF-β1/Smad ↓ [152]

SIRT5

AKI I/R injury, Cisplatin Genetic deletion of SIRT5-/- Peroxisomal fatty acid oxidation ↑ SIRT5 ↓ →mtDNA ↑ [65]
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Table 1. Cont.

Experimental Models Interventions Renal Outcome/Phenotype Mechanism Ref

SIRT6

AKI Cisplatin SIRT6 Tg Apoptosis ↓ SIRT6 ↑ → ERK1/2 ↓ [94]

DKD

STZ-treated
uninephrectomized mice

Podocyte-specific SIRT6 KO
(Podocin-Cre+/SIRT6fl/fl) Podocyte injury ↑, Autophagy ↓ SIRT6 ↓ → acetylated H3K9 ↑, Notch1/4 ↑ [73]

STZ-diabetic rats SIRT6 overexpression Podocyte injury ↓ SIRT6 ↑ →M2 macrophage ↑ [136]

CKD UUO OSS_128167 Renal fibrosis ↑ SIRT6 ↓ → β-catenin ↑, acetylated H3K56 ↑ [74]

SIRT7

AKI Cisplatin Genetic deletion of SIRT7-/- Apoptosis, oxidative stress,
inflammation ↓ SIRT7 ↓ → TNF-α ↓, nuclear NF-κB ↓ [79]

Abbreviations: AKI, acute kidney injury; AMPK, adenosine monophosphate-activated protein kinase; ATP, adenosine triphosphate; CCL2, C-C motif chemokine ligand 2; CKD,
chronic kidney disease; COX2, cyclooxygenase-2; CXCL2, C-X-C motif chemokine ligand 2; DKD, diabetic kidney disease; DRP1, dynamin related protein; Endo or EC, endothelial
cell; EGFR, epidermal growth factor receptor; EMT, epithelial-to-mesenchymal transition; EndoMT, endothelial-to-mesenchymal transition; ERK, extracellular-signal-regulated kinase;
FoxO, forkhead box O; GSK-3β, glycogen synthase kinase-3β; HIF-1α, hypoxia-inducible factor-1α; HO-1, heme oxygenase-1; I/R, ischemia/reperfusion; JNK, c-Jun N-terminal kinase;
KO, knockout; MDM2, E3-ubiquitin ligase murine double-minute 2; MKP-1, Mitogen-activated protein kinase-1; MMP, Matrix metalloproteinase; NF-κB, Nuclear factor-kappa B; NOX,
NADPH oxidase; Nrf2, nuclear factor erythroid 2–related factor 2; mtDNA, mitochondrial DNA; NF-κB, nuclear factor-kappa B; OV, overexpression; PDGFR, Platelet-derived growth
factor receptor; PGC-1α, peroxisome proliferator–activated receptor-γ coactivator 1α; PPAR, peroxisome proliferator-activated receptor; Pod, podocyte; siRNA, small interfering RNA;
SIRT, sirtuin; SOD, superoxide dismutase; STAT3, Signal transducer and activator of transcription 3; STZ, streptozotocin; Tg, transgenic; TGF-β1, transforming growth factor-β1; TNF-α,
tumor necrosis factor-α; UUO, unilateral ureteral obstruction; VEGF, Vascular endothelial growth factor.
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Abbreviations

ACSS2 Acetyl-coenzyme A synthetase 2
ADP Adenosine diphosphate
AKI Acute kidney injury
AMPK Adenosine monophosphate-activated protein kinase
Ang II Angiotensin II
AT1R Angiotensin II type 1 receptor
ATP Adenosine triphosphate
ATRAP AT1R-associated protein
Bax Bcl-2-associated X protein
Bcl-2 B-cell lymphoma 2
CCL2 C-C motif chemokine ligand 2
CIN Contrast-induced nephropathy
CKD Chronic kidney disease
COX2 Cyclooxygenase-2
CsA Cyclosporine A
CXCL2 C-X-C motif chemokine ligand 2
DKD Diabetic kidney disease
DN Diabetic nephropathy
DRP1 Dynamin related protein 1
EGFR Epidermal growth factor receptor
EMT Epithelial-to-mesenchymal transition
EndoMT Endothelial-to-mesenchymal transition
ERK Extracellular-signal-regulated kinase
ERR-1α Estrogen related receptor-1α
FoxO Forkhead box O
GABP-β1 GA-binding protein-β-1
GLUT2 Glucose transporter 2
GSK-3β Glycogen synthase kinase-3β
HDACs Histone deacetylases
HG High glucose
HIF-1α Hypoxia-inducible factor-1α
HO-1 Heme oxygenase-1
I/R Ischemia/reperfusion
JNK c-Jun N-terminal kinase
LKB1 Liver kinase B1
MCD Malonyl CoA decarboxylase
MDM2 E3-ubiquitin ligase murine double-minute 2
MKP-1 Mitogen-activated protein kinase-1
MMP Matrix metalloproteinase
mtDNA Mitochondrial DNA
mTOR Mammalian target of rapamycin
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NAD Nicotinamide adenine dinucleotide
Nampt Nicotinamide phosphoribosyltransferase
NF-κB Nuclear factor-kappa B
NOX NADPH oxidase
NPM1 Nucleolar protein nucleophosmin
Nrf2 Nuclear factor erythroid 2–related factor 2
OXPHOS Oxidative phosphorylation
PAF53 Polymerase-associated factor 53
PDGFR-β Platelet-derived growth factor receptor-β
PEPCK1 Phosphoenolpyruvate carboxykinase 1
PGC-1α Peroxisome proliferator–activated receptor-γ coactivator 1α
PI3K Phosphatidylinositol-3-kinase
PPAR Peroxisome proliferator-activated receptor
RAAS Renin–angiotensin–aldosterone system
ROS Reactive oxygen species
SGLT2 Sodium–glucose cotransporter 2
SIR2 Silent information regulator 2
SIRT Sirtuin
SOD Superoxide dismutase
STAT3 Signal transducer and activator of transcription 3
STZ Streptozotocin
TGF-β1 Transforming growth factor-β1
TNF-α Tumor necrosis factor-α
UUO Unilateral ureter obstruction
VEGF Vascular endothelial growth factor
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