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Background: DNA methylation (MET)–mediated transcriptomic disturbance and copy
number variations (CNVs) exert a significant influence in stimulating the heterogeneous
progression of stomach adenocarcinoma (STAD). Nevertheless, the relation of DNA MET
with CNVs, together with its impact on tumor occurrence, is still unclear.

Methods: The messenger RNA (mRNA) expression (EXP) profiles, DNA MET, and DNA
copy numbers, together with STAD mutation data, were collected from the TCGA official
data portal. We employed circular binary segmentation algorithm in “DNAcopy.” library of R
package for mapping DNA CNV data at genetic level for all samples based on the
segmented CNV data. Stable clusters of samples were recognized using negative
matrix factorization cluster analysis based on 50 iterations and the “brunet” method
using the MET-correlated (METcor) and CNV-correlated (CNVcor) genes. The R package
“iCluster” method was utilized to comprehensively analyze the EXP, MET, and DNA CNV
profiles.

Results: A total of 313 STAD samples were isolated for checking DNA copy numbers and
MET and for measuring EXP. In accordance with our results, we discovered obvious co-
regulation of CNVcor genes and METcor counterparts. Apart from that, these genes were
subject to multi-omics integration. Meanwhile, three subtypes of STAD were detected and
confirmed based on independent data. Among them, the subtype with increased
aggressiveness was related to decreased mutation frequencies of ARID1A, PIK3CA,
ZFHX3, SPECC1, OBSCN, KMT2D, FSIP2, ZBTB20, TTN, and RANBP2, together with
the abnormal levels of JPH3, KCNB1, and PLCXD3.

Conclusion: According to the results, these aforementioned genes exerted crucial roles in
the development of invasive STAD. Our findings on transcriptomic regulation genomically
and epigenetically facilitate the understanding of the STAD pathology from different
aspects, which help to develop efficient anti-STAD therapy.
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BACKGROUND

Gastric cancer (GC), the cancer with high malignancy rate,
accounts for about 7.7% of cancer-related deaths in the world
in 2020. Related treatments have been developed for GC.
However, it is still the fatal malignant tumor that ranks the
fourth place in terms of its mortality globally, which is ascribed to
its advanced diagnosis and high morbidity (Sung et al., 2021).
Typically, the overall survival (OS) rate of GC at 5 years is less
than 25%, especially for the recurrent and advanced types (Bray
et al., 2018). Stomach adenocarcinoma (STAD) takes up about
90% of global GC cases (Bu and Ji, 2013; Karimi et al., 2014). Most
STAD patients among western countries are diagnosed at the
metastatic or advanced stage (Van Cutsem et al., 2011). Although
great advances have been attained in chemotherapy,
radiotherapy, and surgery, prognosis of STAD still remains
dismal. Some GC patients present diverse prognostic outcomes
and therapeutic responses, even though they are at the same TNM
(Tumor Node Metastasis) stage (Shiratsu et al., 2014). Early
STAD diagnosis markedly enhances patient outcomes. As a
result, the biomarkers for diagnosis and prognosis are in
urgent need to improve the STAD diagnosis and to predict
the outcomes for patients.

Markers for diagnosis and prognosis can be used to closely
monitor and treat the high-risk patients, so as to extend their OS
time. The common STAD biomarkers applied in clinic are mainly
the clinicopathological parameters, such as tumor stage, age,
chemotherapy response, and infection with Helicobacter pylori
(Ye et al., 2004). Developing new biomarkers can introduce and
design new therapeutic strategies for improving the survival for
patients. Therefore, comprehensive examination of the disease
molecular characteristics is of crucial necessity.

In recent years, the huge multi-omics greatly contributes to
comprehensively displaying disease dysregulation at genomic and
epigenetic levels (Woo et al., 2017). Genomic alternations induced
by cancer filing, such as DNA mutations and copy number
variations (CNVs), are common during tumor genesis, which
promote cancer progression (Shi et al., 2016). In addition,
cancer genomic regulation via DNA methylation (MET) at an
epigenetic level exerts a crucial part in the behaviors of various
cancers, including STAD (Peng et al., 2020; Song et al., 2020).
Genomic profiling research suggests that genomic and epigenomic
dysregulation is highly heterogeneous. DNA CNVs exert a vital
part in STAD for regulating STAD development; in addition, the
resultant transcriptional dysregulation is potentially a driving event
during the progression of STAD (Feng et al., 2019; Cai et al., 2020).
Besides, research on DNA MET profiling suggests that epigenetic
regulation is highly significant in the development of cancer from
the points of view of biology and clinic (Choi et al., 2017; Ebrahimi
et al., 2020). At the same time, some critical tumor-associated
genes, such as RASSF1A, SAMD14, and SOCS3, can modulate
DNA MET, thereby regulating their functions (Balgkouranidou
et al., 2015; Han et al., 2020; Xu et al., 2020).

Nonetheless, the association between DNA MET and CNVs is
still unknown, even though DNA MET alternations and CNVs
affect the whole genome of cancer. Besides, the impact of this
association during cancer development remains unclear. In the
current work (flowchart is shown in Figure 1), we extracted STAD
samples for analyzing DNA copy numbers andMET, together with
the messenger RNA (mRNA, EXP) expression. In addition, genes
related toDNA copy numbers (CNVcor) andMET (METcor) were
identified according to related gene levels in the aforementioned
samples, separately, so as to recognize genes with genomically and/
or epigenetically modulated expression. Of them, CNVcor genes

FIGURE 1 | The work flow chart of this study.
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suggested transcriptional dysregulation according to DNA copy
numbers, while METcor ones represented transcriptional
dysregulation according to DNA MET. CNVcor gene levels
were evidently related to METcor gene levels, which indicated
cancer transcriptomic co-regulation via genomic DNA CNVs and
epigenetic DNAMET abnormalities. Besides, we conducted multi-
omics integration of METcor and CNVcor genes, so as to examine
the typical molecular subtypes to predict the prognosis of STAD.
Furthermore, we also supplied the differential and correlation
analyses on tumor microenvironment and immune infiltration
among different subtypes and different samples, which have
improved the guiding significance for the individualized
immunotherapy for GC patients. Novel specific targets and
biomarkers to distinguish different subtypes of cancer were
identified through intensive systematic analysis.

METHODS

mRNA Expression Patterns, DNA MET, and
DNA Copy Numbers
A STADdataset was downloaded fromTCGA for analyzing related
results. ThemRNA expression profiles, DNAMET, andDNA copy

numbers, together with STAD mutation data, were collected from
the TCGA official data portal. Each sample mark was matched in
every platform; afterwards, altogether 313 datasets were utilized
(Supplementary Table S1), which had corresponding datasets for
mRNA expression profiles, DNA MET, and DNA copy numbers.
In addition, gene expression patterns were standardized through
log2 transformation and quantile normalization, followed by
HUGO official symbol aggregation. The expression profiles were
subsequently standardized through eliminating the average values
from each probe within non-cancer tissues, which stood for the
fold change in tumor samples relative to healthy samples.
Thereafter, we utilized the R package circular binary
segmentation algorithm in “DNAcopy.” library for mapping
DNA CNV data at the genetic level for all samples based on
the segmented CNV data (Zhang et al., 2017). With regard to the
DNA MET profiles, the β-values of the probe were filtered for
eliminating probes positioned on the sex chromosomes. Later,
probes located in the regions associated with the CpG islands were
mapped to associated genes, such as Shore regions, CpG islands,
Shelf, differentially methylated regions, first-exon regions, 5′UTR,
and the gene promoter areas that contained 2,500 upstream basic
groups fromTSS.We eliminated probes that had over 30%missing
values among the samples from every processed pattern.

FIGURE 2 | Recognition of DNA methylation–correlated (METcor) and DNA copy number–correlated (CNVcor) genes of STAD. (A) Correlation coefficient
distribution of mRNA expression with DNAMET or DNA copy numbers among different specimens is presented, respectively. (B) The Venn diagram displays theMETcor
and CNVcor gene numbers. Overlapped gene number betweenMETcor and CNVcor genes is indicated. (C) Proportions of CNVcor genes in the total number of genes in
every chromosome arm. (D)METcor gene proportions in the overall number of genes in every chromosome arm. (E,F)Genomic locations of DNAMET probes were
classified according to the relationships with genes (left) and CpG islands (right) in positions, separately.
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The “liftOver,” library of R package was utilized for every
dataset, so as to restore the genomic coordinates of probe against
human reference genome hg38. Afterwards, we matched the
probes to related ones from EXP profiles. Cancer-specific
alterations were computed through eliminating the mean
probe intensity within non-cancer tissues. Then, probes on the
sex chromosomes and those that had over 50% missing values
were eliminated, and related information was input with the sk-
nearest neighbor algorithm. Thereafter, we calculated the
pairwise Pearson’s correlation coefficients of all genes across
the matched EXP and CNV profiles, as well as EXP and MET,
respectively. If over one probe was mapped to one gene, the probe
that had the average or the smallest correlation coefficient was
utilized to be the typical pair-matched probes of MET and CNV
profiles, separately.

Cluster Analysis on the Genomic Patterns at
Different Levels
Stable clusters of samples were recognized by cluster analysis of
negative matrix factorization (NMF) based on 50 iterations and the
“brunet” method through CNVcor and METcor genes, separately
(Zeng et al., 2019). Notably, we set k as 2–10 and calculated the best
k according to the observed consensus map, together with the
cluster cophenetic correlation. At the same time, to examine
consensus membership matrix, the mean silhouette width was
computed by “NMF.” of R package. Regarding all membranes, we

set the lowest k as 10. Then, we utilized R package “iCluster”
method for comprehensively analyzing the EXP, MET, and DNA
CNV profiles; besides, 20 iterations and the default parameters
were utilized (Shen et al., 2012).

Evaluation and Identification of Immune Cell
Infiltration
In this study, we identified and evaluated the abundance of
immune infiltrates by the TIMER algorithm, which is a
resource for systematic and extensive analysis of immune
infiltrates (totally six cell types, namely: B cells, CD4+ T cells,
CD8+ T cells, neutrophils, macrophages, and dendritic cells)
across diverse cancer types.

RESULTS

Transcriptomic Alternations in DNA Copy
Number or DNA MET
DNA CNVs and MET at genetic and epigenomic levels, as well as
gene EXP patterns, were collected from 313 STAD specimens.
Then, the raw materials were preprocessed according to the
method described previously in “Methods”. Later, the
correlation coefficients of DNA CNV or MET profiles with
corresponding mRNA EXP data were computed, so as to
evaluate the influence of epigenomic and/or genomic

FIGURE 3 | Identification of STADmolecular subtypes by METcor and CNVcor genes. (A,B) Plots displaying cluster results of NMF of CNVcor gene from CNV data
(A) and METcor genes fromMET data (B), separately. (C,D) OS Kaplan–Meier curves for subtypes stratified based on NMF cluster analysis on CNVcor (C) and METcor
(D) genes, separately. (E,F) Subtypes identified according to CNVcor show marked overlaps with those identified by METcor.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 7780954

Chen et al. Multi-Omics Analyses on Stomach Adenocarcinoma

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 4 | STAD molecular subtypes identified through iCluster analysis. (A) OS Kaplan–Meier curves for subtypes stratified based on iCluster (iC1–iC3). (B) OS
Kaplan–Meier curves for iC1 and iC2. (C,D) Subtypes identified based on iCluster analysis showed evident overlaps with CNVcor (C) and METcor (D) gene–identified
subtypes. (E) The distribution of samples of iC1–3 subtypes in four molecular subtypes of TCGA database.
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abnormalities. Thereafter, we standardized the correlation
coefficient r according to Fisher’s Z-transformation for
variance stabilization.

Consistent with a prior study, correlation coefficient
distribution of DNA CNV with related EXP data markedly
skewed to the right (skewness = 1.2352, p < 1e−5). In
comparison, the correlation coefficients of DNA MET with
related EXP data skewed to the left (skewness = −0.37363, p <
1e−5) (Figure 2A), which indicated that DNA CNVs and MET
abnormalities positively and negatively modulated transcription,
respectively.

A great number of genes participated in the two
aforementioned gene sets (CNVcor and METcor genes,
Supplementary Tables S2, S3); as a result, we selected genes
that were markedly correlated with OS for later analyses (log rank
p < 0.05). Then, we screened gene signatures showing positive
correlation to examine DNA copy number (CNVcor, n = 368)
and those showing negative correlation for DNA MET (METcor,
n = 348). CNVcor genes indicated that transcriptional
dysregulation was dependent on DNA CNVs, but METcor
genes suggested that it was dependent on MET. CNVcor genes
were not overlapped with METcor ones; of them, 116 overlapped
genes were identified, which suggested that CNVcor and METcor
genes specifically regulated transcriptional dysregulation
(Figure 2B).

CNVcor genes preferred DNA CNVs within some genomic
regions, especially on chromosomes 10, 17, 18, and 21 (Figure 2C
and Supplementary Table S4). Consistent with prior research,

CNVcor genes were abundant on chromosomes 10 and 17, which
suggested that gene expression was sensitive to DNA level in
certain regions (Arakawa et al., 2017). In addition, METcor genes
were found within desired chromosomal regions, like
chromosome 19 (Figure 2D and Supplementary Table S5),
most of which were genes that encoded proteins (Figure 2E)
and were distributed in the CpG islands (Figure 2F). This study
suggested that CNVcor and METcor genes were remarkably
effective on transcriptional dysregulation of STAD, which
required to be further examined in future studies.

Different CNVcor and METcor
Gene–Dependent Molecular Subtypes
Subsequently, the effects of CNVcor andMETcor gene expression
on predicting prognostic subgroups were explored. NMF cluster
analysis was performed for all gene set data, and we set k as 2–10;
later, k value was calculated for each profile (k = 3 for CNV and
MET, respectively) (Figures 3A,B). Surprisingly, CNVcor
gene–identified subtypes were remarkably overlapped with the
METcor gene–identified ones (p < 1e−5 upon χ2 test), and such
results were consistent with CNVcor and METcor gene
regulation in STAD (Figures 3E,F). In addition, Kaplan–Meier
(KM) curve results suggested that CNVcor or METcor
gene–identified subtypes predicted the OS of patients (Figures
3C,D), separately (p < 0.05).

Molecular subtypes associated with CNVcor and METcor
gene expression were identified at various aspects. iCluster, the

FIGURE 5 | Coordinated DNA MET abnormalities and DNA CNVs in STAD. (A,F) DNA CNV or DNA MET abnormalities were identified at the threshold fold change
of >0.2 relative to the means in normal tissues, respectively. Directional DNA CNV-gain (CNVgain) and CNV-loss (CNVloss), together with DNA hypomethylation
(METhypo) and hypermethylation (METhyper), in all samples are presented, respectively. (B–E) Plots display pairwise occurrence rates of CNVloss, CNVgain, METhypo,
and METhyper genes in each sample.
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integrated cluster method, was employed to integrate genomic
data on mRNA EXP, DNA CNVs, and MET. Afterwards, cluster
analysis was carried out with the cluster number k of 2–4.
Altogether, 20 cluster iterations at K = 4 (category 5), K = 3
(category 4), and K = 2 (category 3) were carried out separately to
assess the best iCluster cluster results. According to our findings,
stable cluster results were obtained at K = 2 relative to those at K =
3 or 4 (Supplementary Figures S1, S2). As a result, all samples
were clustered into three subclasses of iC1–iC3 (n = 93, 100, and
120, respectively). Supplementary Figures S3A,B display the
cluster results of those three subclasses, and Supplementary
Table S6 presents those of all samples.

KM analysis results suggested that iC1 attained the optimal OS
across those three subtypes (p < 0.05, Figure 4A). The OS of
patients in iC1 subgroup was compared with that of the other two
subgroups (Figure 4B and Supplementary Figure S4), and the
results suggested that the difference in prognosis between iC1 and
iC2 subgroups was statistically significant (p < 0.001). Notably,

those icluster-identified subtypes remarkably overlapped with
CNVcor and METcor gene–identified counterparts (p < 1e−5,
χ2 test, Figures 4C,D). In addition, we have explored the
distribution of samples of iC1-3 subtypes in four molecular
subtypes of TCGA database, and the results (Figure 4E)
suggested that samples of iC3 subtype were mainly distributed
into C1 and C2 subtypes, while samples of iC2 subtype were
mainly distributed in C3 and C4 subtypes. According to the
aforementioned findings, comprehensive analysis on CNVcor
and METcor genes facilitated to detect various molecular
subtypes, and all of them showed heterogeneous combinations
of genomic and epigenomic features associated with prognosis
and transcriptional dysregulation.

Comparisons of DNA CNV and MET
Abnormalities
The frequencies between genome-wide DNAMET abnormalities
and DNA CNVs were compared after batch effect correction. In
addition, DNA copy-number gain (CNVgain, β > 0.3) and loss
(CNVloss, β < −0.3), together with DNA hypermethylation
(METhyper, β > 0.8) and hypomethylation (METhypo, β <
0.2), were computed according to the determined threshold
(fold change of 0.3), which were subsequently compared with
the level of every probe. Our results indicated that
(Supplementary Table S7) CNVgain frequency showed
marked correlation with CNVloss frequency (p < 1e−5,
Figure 5A). Besides, METhyper frequency displayed evident
correlation with METhypo frequency (p < 1e−5, Figure 5F).
Directional METhyper and CNVgain were tightly correlated
with CNVloss, which indicated that all correlations were
directional abnormality free (Figures 5B–E, p < 0.05). In
conclusion, our results suggested that STAD patients with
increased frequency of DNA CNVs had elevated frequency of
DNA MET abnormality. Correlations between the frequency of
abnormal METcor and CNVcor genes indicated the close
correlation of DNA MET with DNA CNVs.

Identification of STAD Subtype Key
Features
First, clinical features (including TNM, stage, gender, and
primary site) were compared across those three subtypes.
Supplementary Figure S5 and Table 1 indicated that the
differences in clinical characteristics were not statistically
significant among three STAD subtypes. Nonetheless, as for
stage distribution, III and IV samples mainly belonged to iC2
subtype that had the poorest prognosis. In addition, considering
the significance of TCGA to study the infiltration and the
complex interaction of immune cells within tumor
microenvironment (TME) (El-Arabey et al., 2020), tumor
immune microenvironment (TIME) status of samples across
these three subtypes were also calculated and determined
according to the tumor immune estimation resource (TIMER)
method (Li et al., 2016) (Supplementary Table S8) (Li et al.,
2016). As observed, differences in the 5/6 immune cell scores
[CD4+ T, CD8+ T, macrophages, dendritic cells (DCs),

TABLE 1 | Clinical information of STAD patients across the three subtypes were
compared

Event Total iC1 iC2 iC3

Alive 188 69 47 68
Dead 125 22 49 49

T
T1 14 7 5 2
T2 63 17 26 20
T3 146 41 47 58
T4 81 26 18 37

N
N0 90 35 24 31
N1 80 20 25 35
N2 65 20 22 23
N3 62 14 23 25
NX 7 2 2 3

M
M0 275 87 86 102
M1 18 2 5 11
MX 11 2 5 4

Stage
I 39 14 14 11
II 99 34 27 38
III 129 36 40 53
IV 28 3 13 12
Un 9 4 2 3

Grade
G1 8 2 3 3
G2 107 37 49 21
G3 180 51 40 89
GX 9 1 4 4

Age (years)
0–50 27 9 7 11
50–60 72 15 20 37
60–70 91 23 33 35
70–80 99 38 32 29
80–100 15 6 4 5

Gender
Female 101 29 27 45
Male 203 62 69 72
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neutrophils] of samples across these three subtypes were
statistically significant (Figures 6A,B, p < 1e−5). The
aforementioned results indicated that immunocyte infiltration
degree or the immune microenvironment of STAD was
correlated with DNA CNV or MET level.

Besides, differences in gene EXP, DNA CNVs, and MET
between samples of iC2 and iC1 subtypes were compared. Later,
DNAMET and CNV levels were classified as three types, including
Normal, Gain, and Loss (for CNV), as well as Normal, HyperMethy
and HypoMethy (for MET). DNA CNVcor or METcor genes with
marked difference between iC2 and iC1 subtypes were obtained
through Fisher’s exact test. These findings can be observed from
Supplementary Tables S9 and S10. As for EXP patterns, we
acquired DEGs of iC1 versus iC2 subtypes through DESeq2
(Love et al., 2014) (p < 0.05), and the results are presented in
Supplementary Table S11. In addition, to illustrate the crucial
prognostic features across various subtypes, altogether five genes
with distinct difference between iC1 and iC2 samples at all the three
(MET, CNV, and EXP) levels were screened to carry out univariate
survival analysis. According to our findings, two genes (PLCXD3
and KCNB1) were related to overall survival (OS) (log-rank p <
0.05), suggesting that the two aforementioned genes in iC2 subtype
(with poorer prognosis) had greater CNV and hypermethylation

levels than iC1 subtype (with positive prognosis), and their levels
within iC1 subtype were downregulated compared with those in the
iC2 subtype. Afterwards, PLCXD3 and KCNB1 expression was
divided as low,moderate, and high (L1–L3). Our findings suggested
that L1–L3 groups with regard to PLCXD3 and KCNB1 expression
levels showed positive correlation with OS (Figures 7A,B). The
aforementioned findings indicated that the distinct PLCXD3 and
KCNB1 expression was related to DNAMET or CNV level as well
as the patient prognostic outcome. Moreover, the GEO GSE62254
(Cristescu et al., 2015) STAD dataset (n = 266) was utilized for
analyzing the relation of those five genes with patient prognosis.
The expression levels of JPH3 and KCNB1 were available,
suggesting that only JPH3 in GSE62254 STAD dataset (Oh
et al., 2018) showed marked correlation with prognosis.
Supplementary Figure S6 displays the results. The relationship
between JPH3 expression and sample OS in multiple GEO cohorts
was also measured (http://kmplot.com/analysis/, Supplementary
Figure S7). In addition, we determined the relationships of JPH3,
PLCXD3, and KCNB1 levels with infiltrating degrees of immune
cells within TME. As shown in Supplementary Figure S8, these
three genes showed significant positive correlationwith enrichment
levels of most immune cells (CD4+ T, CD8+ T, macrophages, DCs,
neutrophils).

FIGURE 6 | Key STAD immune features. Sample immune scores among the three subtypes were computed and analyzed by the tumor immune estimation
resource (TIMER) method. Scores of six immune cells in all samples were determined (B) and analyzed compared with those in samples of other subtypes (A).
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Eventually, the STAD mutation profiles were determined for
exploring the associations with the sub-classification. Specifically,
the synonymous mutations were eliminated to obtain the
missense and nonsense mutations. Overall, the mutation
frequency of genes in different subtypes showed statistically
significant differences. In addition, some distinctly different
mutant genes (ARID1A, PIK3CA, ZFHX3, SPECC1, OBSCN,
KMT2D, FSIP2, ZBTB20, TTN, RANBP2) between iC1 and iC2
subtype were selected upon Fisher’s test, as presented in Figure 8
and Supplementary Table S12 (FDR < 0, one upon Fisher’s test).
The different mutational spectra were analyzed, which suggested
that the 10 genes in iC1 subtype had remarkably increased
mutation frequencies compared with those in iC2 and iC3
subtypes (p < 0.01). Interestingly, mutation frequencies of
these 10 genes in iC3 subtype with common prognosis also
increased relative to iC2 subtype (p < 0.05). Collectively, the

aforementioned findings indicated that the STAD molecular
subtypes related to DNA copy numbers and DNA MET
showed correlation with mutations in the 10 genes, and they
might modulate the progression of STAD subtypes.

DISCUSSION

Prior studies indicate that comprehensive analysis on tumor
genomic characteristics at different levels contributes to
identifying various molecular subtypes, which can thereby
shed new light on tumor clinical and mechanical differences,
and reveal the potential biomarkers and therapeutic targets (Woo
et al., 2017). Nonetheless, illustrating the complex STAD genomic
data is still challenging. In this study, CNVcor and METcor gene
dysregulation genomically and epigenetically was determined

FIGURE 7 | Key STAD molecular features. (A) The KCNB1 EXP or DNA CNV or DNA MET levels for iC1/iC2 subtypes are presented on the left. The gene
expression of KCNB1 was divided into low, moderate, and high groups (L1–L3), and Kaplan–Meier curves for L1–L3 groups are displayed on the right. (B) The LCXD3
EXP or DNA CNV or DNA MET levels for iC1/iC3 subtypes are presented on the left, and the Kaplan–Meier curves for L1–L3 groups are displayed on the right.

FIGURE 8 | Differentially mutated genes across various STAD subtypes.
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through the TCGA database. It is a strategy to integrate genomic
and epigenomic data at different levels (Yeoh and Tan, 2021).
According to our results, the aforementioned correlated genes
contributed to identifying STAD subtypes, which reflected
different molecular characteristics and genes correlated with
immunity at different aspects, and prognostic outcomes. In
addition, STADs that had increased frequency of abnormal
CNVcor were associated with increased aberrant METcor
frequency, which indicated the increased aberrant DNA MET
frequency among cases showing DNA CNV frequency. The
aforementioned results indicated that it was necessary to
consider the aberrant DNA CNVs andMET during data analysis.

Fortunately, the current comprehensive analysis using CNVcor
and METcor genes identified the new critical molecular features
indicating novel STAD biomarkers and therapeutic targets.
Analysis results of mutation types across different subtypes
indicated that the differences in these 10 genes were significant
in terms of the mutation frequency. Particularly, genes in iC1
subtype with optimal prognosis were associated with the gene
mutation frequency. Five of the above 10 genes were reported to
participate in STAD progression, pathogenesis, immune
microenvironment, and malignant transformation, which were
PIK3CA, SPECC1, ARID1A, ZBTB20, and KMT2D (Wang
et al., 2011; Shi et al., 2017; Xiong et al., 2018; Ashizawa et al.,
2019; Chen et al., 2019; Seo et al., 2019), and were related to the
prognosis and survival for patients. Based on the aforementioned
results, the bioinformatic mining results were highly reliable and
accurate. Nonetheless, the associations of the five other genes with
STAD have not been verified in fundamental or clinical study,
which is the point that we are interested in. Among these five genes,
ZFHX3 and RANBP2 are associated with an alternative mutation
frequency among various malignant tumors (such as endometrial
cancer and prostate cancer) (Packham et al., 2015; Walker et al.,
2015; Hu et al., 2019). Nonetheless, it is still unknown about the
underlying mechanism for modulating cancer genesis and
development. Besides, the association of gene expression and
mutation frequencies with STAD remains unknown. In this
study, our results indicated that mutations in RANBP2 and
PIK3CA partially mediated the favorable prognosis of STAD
patients in iC1 subtype. Nonetheless, further protein–protein
interaction analysis and molecular biological experiments are
needed to verify these results.

Furthermore, JPH3, PLCXD3, and KCNB1 are the possible
crucial regulating factors in the initiation and development of
STAD. KCNB1 (Kv2.1), a major voltage-gated potassium channel
(Kv), is recognized to be the new prognostic factor to predict the
survival for some cancers, including glioma, and it plays a tumor-
suppressing role via inducing autophagy (Wang et al., 2016;
Wang et al., 2017). JPH3 belongs to a member of junctional
membrane complex (JMC) protein family, which can stabilize the
JMC between plasmamembrane and endoplasmic reticulum, and
maintaining the cellular ultrastructure between intracellular ionic
channels and cell surface. JPH3 is recognized as the new tumor
suppressor gene with methylation within colorectal cancer, thus
enhancing apoptosis mediated by mitochondria. In addition, it is
the candidate biomarker for survival and metastasis for digestive
tract cancers (Coleman et al., 2015; Hu et al., 2017). Yet, further

studies are needed to illustrate the role of PLCXD3 in STAD. Our
results suggested that expression of JPH3, PLCXD3, and KCNB1
showed marked correlation with DNA MET.

CONCLUSION

To sum up, the current comprehensive analysis based on gene
expression at genomic and epigenomic levels reveals coordinated
STAD genomic alternations at distinct points of view. Our results
facilitate to determine the STADmolecular subtypes and to reveal
accurate STAD clinical and mechanical diagnosis and treatments.
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