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INTRODUCTION: The COVID-19 crisis has ex-
posed major inequalities between communi-
ties. Understanding the societal risk factors
thatmake some groups particularly vulnerable
is essential to ensure more effective interven-
tions for this and future pandemics. Here, we
focus on socioeconomic status as a risk factor.
Although it is broadly understood that social
and economic inequality has a negative im-
pact on health outcomes, the mechanisms by
which socioeconomic status affects disease
outcomes remain unclear. These mechanisms

can be mediated by a range of systemic struc-
tural factors, such as access to health care and
economic safety nets. We address this gap by
providing an in-depth characterization of dis-
ease incidence and mortality and their depen-
dence on demographic and socioeconomic
strata in Santiago, a highly segregated city
and the capital of Chile.

RATIONALE: Combining publicly available data
sources, we conducted a comprehensive anal-
ysis of case incidence andmortality during the

first wave of the pandemic. We correlated
COVID-19 outcomeswith behavioral andhealth
care system factors while studying their in-
teraction with age and socioeconomic status.
To overcome the intrinsic biases of incomplete
case count data, we used detailed mortality
data. We developed a parsimonious Gaussian
process model to study excess deaths and
their uncertainty and reconstructed true
incidence from the time series of deaths
with a new regularized maximum likelihood
deconvolution method. To estimate infec-
tion fatality rates by age and socioeconomic
status, we implemented a hierarchical Bayes-
ian model that adjusts for reporting biases
while accounting for incompleteness in case
information.

RESULTS:We find robust associations between
COVID-19 outcomes and socioeconomic sta-
tus, based on health and behavioral indicators.
Specifically, we show in lower–socioeconomic
status municipalities that testing was almost
absent early in the pandemic and that human
mobility was not reduced by lockdowns as
much as it was inmore affluent locations. Test
positivity and testing delays were much high-
er in these locations, indicating an impaired
capacity of the health care system to contain
the spread of the epidemic. We also find that
73%more deaths than in a normal year were
observed between May and July 2020, and
municipalities at the lower end of the socio-
economic spectrum were hit the hardest, both
in relation to COVID-19–attributed deaths and
excess deaths. Finally, the socioeconomic gra-
dient of the infection fatality rate appeared
particularly steep for younger age groups,
reflecting worse baseline health status and
limited access to health care in municipal-
ities with low socioeconomic status.

CONCLUSION: Together, these findings high-
light the substantial consequences of socio-
economic and health care disparities in a
highly segregated city and provide practical
methodological approaches useful for char-
acterizing the COVID-19 burden andmortality
in other urban centers based on public data,
even if reports are incomplete and biased.▪

RESEARCH

Mena et al., Science 372, 934 (2021) 28 May 2021 1 of 1

The list of author affiliations is available in the full article online.
*Corresponding author. Email: gonzalo.mena@stats.ox.ac.uk
(G.E.M.); pamelapm@illinois.edu (P.P.M.)
†These authors contributed equally to this work.
‡These authors contributed equally to this work.
This is an open-access article distributed under the terms
of the Creative Commons Attribution license (https://
creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
Cite this article as G. E. Mena et al., Science 372, eabg5298
(2021). DOI: 10.1126/science.abg5298

READ THE FULL ARTICLE AT
https://doi.org/10.1126/science.abg5298

30

0–20
20–40
40–60
60–80
80–100

Municipalities of the Greater 
Santiago area of Chile

0

400

800

1200

April May June July August
Date

To
ta

l d
ea

th
s

COVID-19 attributed
COVID-19 confirmed

Excess deaths

Comparison of COVID-19 deaths with excess 
deaths for the Greater Santiago area

0.01

0.10

1.00

10.00

20 40 60 80
Socioeconomic status

Age group: 0–40 40–60 60–80 80+

Socioeconomic
status 

0

km

Inferred infection fatality rate by age 
and socioeconomic status

In
fe

ct
io

n 
fa

ta
lit

y 
ra

te
 (%

)

Effect of socioeconomic inequalities on COVID-19 outcomes. The map on the left shows the
municipalities that were included in this study, colored by their socioeconomic status score. For the
comparison between COVID-19 deaths and excess deaths (top right), COVID-19–confirmed deaths are
shown in light green and COVID-19–attributed deaths in dark green. Excess deaths, shown in gray,
correspond to the difference between observed and predicted deaths. Predicted deaths were estimated
using a Gaussian process model. The shading indicates 95% credible intervals for the excess deaths. The
infection fatality rates (bottom right) were inferred by implementing a hierarchical Bayesian model, with
vertical lines representing credible intervals by age and socioeconomic status.
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The COVID-19 pandemic has affected cities particularly hard. Here, we provide an in-depth characterization
of disease incidence and mortality and their dependence on demographic and socioeconomic strata in
Santiago, a highly segregated city and the capital of Chile. Our analyses show a strong association
between socioeconomic status and both COVID-19 outcomes and public health capacity. People living
in municipalities with low socioeconomic status did not reduce their mobility during lockdowns as much
as those in more affluent municipalities. Testing volumes may have been insufficient early in the pandemic
in those places, and both test positivity rates and testing delays were much higher. We find a strong
association between socioeconomic status and mortality, measured by either COVID-19–attributed
deaths or excess deaths. Finally, we show that infection fatality rates in young people are higher in
low-income municipalities. Together, these results highlight the critical consequences of socioeconomic
inequalities on health outcomes.

T
heCOVID-19 pandemic is anongoingpub-
lic health crisis. Although many studies
have described the transmission of se-
vere acute respiratory syndrome corona-
virus 2 (SARS-CoV-2)—the virus that

causes COVID-19—in North America, Europe,
and parts of Asia (1–5), the characterization of
the pandemic in South America has received
less attention, despite the severe impact in
many countries during the Southern Hem-
isphere winter season. Although confirmed
COVID-19 cases are an important public
healthmeasure to estimate the level of spread
of infections caused by SARS-CoV-2, theymay
not be a reliable indicator of incidence be-
cause of biases due to population-level health-
seeking behavior, surveillance capacities, and
the presence of asymptomatic individuals
across regions (6). Analyses of COVID-19–
related deaths as well as excess mortality pro-

vide an alternative and potentially less biased
picture of epidemic intensity (7, 8). This is in
part because ascertainment biases may be less
pronounced for deaths than for confirmed
cases, because people dying from COVID-19
are more likely to have experienced severe
symptoms and thus are more likely to have
been documented as COVID-19–positive cases
by health surveillance systems. Age-specific
death data may also help explain the hetero-
geneity in COVID-19 burden and COVID-19–
attributable deaths in different countries (9).
However, the role of other factors—such as
socioeconomic status, which is correlated with
health care access—on fatality and disease
burden remains a particularly important open
question (10) for cities with substantial eco-
nomic disparities.
Here, we analyzed incidence and mortality

attributed to SARS-CoV-2 infection and its
association with demographic and socioeco-
nomic status across the urban metropolitan
area of the capital of Chile, known as “Greater
Santiago.”Unlikemany other countries, Chile
set up a notably thorough reporting system
and made many key datasets publicly availa-
ble. To understand spatial variations in dis-
ease burden, we estimated excess deaths and
infection fatality rates across this urban area.
To understand disparities in the health care
system, we analyzed testing capacity and delays
across municipalities. We then demonstrate
strong associations of these health indicators
with demographic and socioeconomic factors.
Together, our results show that socioeconomic
disparities explain a large part of the variation
in COVID-19 deaths and underreporting and
that those inequalities disproportionately af-
fected younger people.

Association between socioeconomic status
and disease dynamics
The Greater Santiago area is composed of
34 municipalities—defined as having more
than 95% of its area urbanized—and is home
to almost 7 million people. Although this ur-
ban center accounts for 36% of the country’s
population, it has reported 55% of the con-
firmedCOVID-19 cases and 65%of the COVID-
19–attributed deaths before epidemiological
week 36 (end of August 2020). Socioeconom-
ic status (SES) in the municipalities varies
widely, with Vitacura having the highest value
(SES = 93.7) and La Pintana the lowest (SES =
17.0; Fig. 1A), and this difference is reflected
in the impact of the pandemic during the
SouthernHemispherewinter of 2020. Themax-
imum incidence in Vitacura was 22.6 weekly
cases per 10,000 individuals during themiddle
of May, whereas La Pintana reported a maxi-
mum of 76.4 weekly cases per 10,000 individ-
uals during the first week of June (Fig. 1B). As
shown in Fig. 1C and fig. S1, the attributed
COVID-19 deaths follow a similar (yet lagged)
temporal pattern to the number of reported
COVID-19 cases. For instance, the highest
rate of 4.4 weekly deaths per 10,000 individ-
uals is observed in San Ramon, a municipality
with a SES of 19.7, whereas Vitacura reported
a maximum of 1.6 weekly deaths per 10,000
in June. These social inequalities affect the
overall COVID-19 mortality rates, as shown
in Fig. 1D.
Changes in human mobility—a proxy for

physical distancing—during lockdown periods
follow a similar trend. Using human mobility
indicators, inferred from anonymized mobile
phone data obtained from the Facebook Data
for Good Initiative, we show that the two mu-
nicipalities with highest SES exhibited a re-
duction in mobility by up to 61% during the
full lockdown (dark green regions in Fig. 1E)
compared with the ones with lowest SES,
which, on average, reduced their mobility to
40% during the this period (dark pink regions
in Fig. 1E). This relationship between reduc-
tions in mobility and SES was present during
all time periods considered for this study (Fig.
1F) and supports the hypothesis that people in
poorer regions cannot afford to stay at home
during lockdowns. Our result is consistent with
analyses of New York City neighborhoods (11)
andwith findings fromother studies conducted
in Santiago that used different socioeconomic
and mobility metrics (12–14).

Epidemic reconstruction reveals early
transmission dynamics

To examine the possible bias present in the
incidence data, we reconstructed SARS-CoV-2
infections over time by implementing a meth-
od called regularizedmortalityMAP (RmMAP).
RmMAP back-calculates the most likely infec-
tion numbers given the temporal sequence
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of deaths, the onset-to-death distribution, and
the demography-adjusted infection fatality rate
(IFR). Figure 2A shows the outcomes of this
inference process, where the reconstructions
from our approach and other methods are able
to capture themain peak observed inMay and
June, with an estimate of the number of in-
fected individuals that is 5 to 10 times greater
than the reported values.
The reconstructions also reveal important

differences in the inferred number of infec-
tions duringMarch 2020, themonth inwhich
the virus was introduced in Chile by travelers
from affluentmunicipalities.We analyzed the
number of tests performed between 8 March
and 9 April and find a significantly higher
number of tests performed in municipalities
with high SES (Fig. 2B), especially during the
first 2 weeks of March (Fig. 2D). In addition,
an early peak of reported cases was only ob-
served in high-SESmunicipalities during the

middle of March (Fig. 2C), even though sev-
eral COVID-19 deaths, which are lagged with
respect to infection by up to several weeks,
were reported in low-SESmunicipalities during
the same period. These findings suggest that an
early first wave of infections occurred during
March and quickly spread through the rest of
the city without being captured by the official
counts. Our RmMAP estimates at the munic-
ipality level support this claim, because they
capture a high volume of early infections in
most municipalities (Fig. 2E), a scenario that
largely deviates from the official tallies (Fig. 2C).
To further validate the hypothesis of an

early underreporting in low-SES municipal-
ities, and to rule that these early activity es-
timates are not an artifact of our method, we
performed experiments on a synthetic ele-
mentary model of two peaks of different sizes
separated in time (supplementary materials).
These experiments confirm that RmMAP is

capable of recovering this bimodal phenomena,
whereas other methods fail to do so; they over-
smooth the true signal, and the earlier peak
is typically not recovered. This early under-
reporting signal suggests that the patterns of
mortality and testing observed across Greater
Santiago are partially explained by an early
failure of health care systems in informing
the population with sufficient situational
awareness about the real magnitude of the
threat (15).

Excess deaths match
COVID-19–attributed deaths

Excess deaths, defined as the difference be-
tween observed and expected deaths, can pro-
vide a measure of the actual impact of the
pandemic in mortality by quantifying direct
and indirect deaths related to COVID-19
(7, 8, 16). We estimated the expected deaths
for 2020 by fitting a Gaussian process model
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Fig. 1. SES, COVID-19 cases and deaths, and mobility data in Greater
Santiago. (A) Municipalities that are part of Greater Santiago are colored
according to their SES, where a lower score is indicative of a lower SES.
(B) COVID-19 cases normalized by population size per municipality. Municipalities
are sorted by SES, starting with the one that has the highest SES at the top.
(C) COVID-19–attributed deaths normalized by population size per municipality.
(D) Age-adjusted COVID-19–attributed death rate and its association with SES.
The dots and the whiskers represent the median and the 95% confidence

intervals, respectively, reflecting uncertainty on the standard population
used for weighting. R2, coefficient of determination. (E) Daily reduction in
mobility by municipality colored by its SES value. (F) Average reduction in
mobility during the full lockdown period and its association with SES. The
urban and the business centers, Santiago and Providencia, respectively,
experienced a greater reduction in mobility than expected based just on their
socioeconomic profile. In (D) and (F), the shaded area indicates 95%
regression confidence interval.
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(17) to historical mortality data from the past
20 years and used them to identify the in-
creased mortality during the pandemic, con-
trolling for population growth and seasonality.
As shown in Fig. 3A, the number of deaths
observed betweenMay and July 2020 is more

than 1.73 (confidence interval 1.68 to 1.79) times
the expected value, with a peak surpassing 2110
death counts in epidemiological week 24 (first
week of June 2020) compared with an expected
value of 802 deaths and an average number of
deaths of 798 between 2015 and 2019.

When comparing the number of deaths by
age in the year 2020 with our model’s pre-
dictions, we observe pronounced patterns.
Although people younger than 40 years old
have an overall lowermortality rate than those
from older age groups as expected, they still
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Fig. 2. Inferred cases and reported tests conducted for the Greater
Santiago area. (A) Inferred and reported cases over time. For our RmMAP
reconstructions, we considered the log-normal onset-to-death distribution
described in (38) and two age-stratified IFR estimates, one from the Diamond
Princess cruise ship (39) and another from a seroprevalence study in Spain
(40). For comparison, we also present reconstructions based on the Covidestim
method (41) and by the rescaling of case counts by the underreporting
of estimates obtained with the method of Russell et al. (42). (B) Association

between average daily tests and SES during the early peak. The early peak is
defined as those cases reported between 8 March and 4 April. The shaded area
indicates 95% regression confidence interval. (C) Reported cases per 10,000
by municipality during the early peak. (D) Tests per 10,000 by municipality
during the early peak. (E) Inferred cases obtained from the RmMAP-Spain model
per 10,000 by municipality during the early peak. For (C) to (E), the record of
at least one COVID-19–confirmed or COVID-19–attributed death for that
particular week is highlighted with solid or dashed boxes, respectively.
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Fig. 3. Excess deaths and its association with demographic and
socioeconomic factors. (A) Observed deaths (solid dark blue line) in Greater
Santiago compared with predicted deaths for 2020 (solid light blue line
and its confidence intervals shaded in lighter color), using a Gaussian process
regression model built with historical mortality data from 2000 to 2019
(dashed blue lines). The values contain all the possible causes of deaths.
(B) Age-specific trends of the observed deaths compared with the predicted
deaths for 2020. (C) COVID-19 deaths versus excess deaths. COVID-19–
confirmed deaths are shown in light green, whereas COVID-19–attributed

deaths are shown in dark green. Excess deaths correspond to the difference
between observed and predicted deaths. (D) Comparison of excess deaths
and COVID-19–attributed deaths per municipality colored by SES and
normalized by population size. (E) Monthly average of z scores of observed
deaths between April and July by age group. The z scores correspond to
the standard deviations over expected values. (F) Historical deaths due to
influenza and pneumonia (teal dashed lines) and cancer (pink dashed lines)
compared with the observed deaths during 2020 (solid lines). In (B), (C),
and (E), the shaded region indicates 95% regression confidence interval.
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exhibit a nearly twofold increase in the total
deaths, with a peak in the observed deaths
occurring 2 weeks earlier than that for those
older than 60 years of age (Fig. 3B). For the age
groups 40 to 60, 60 to 80, and older than 80,
the observed deaths are 2.8, 3.2, and 2.4 times
higher than expected, respectively. Even though
the age group 80+ exhibits the highest expected
mortality values for 2020, the group that con-
tains people between 60 and 80 years old dis-
plays the highest weekly count (936 during
epidemiological week 24), the biggest devia-
tion from the predicted values, and the highest
values of excess deaths (645 more deaths than
expected; Fig. 3B).
COVID-19–attributed deaths for the entire

Greater Santiago area fall withing the cred-
ible intervals of excess deaths until late June,
when the attributed deaths increase to rates
that are even higher than the excess deaths,
suggesting that underreporting in COVID-19–
attributed deaths is unlikely (Fig. 3C). COVID-
19–confirmed deaths—those with a polymerase
chain reaction (PCR)–confirmed SARS-CoV-2
test—follow a similar temporal pattern, and the
difference between confirmed and COVID-19–
attributed deaths gets smaller toward the end
of August, indicative of an improved testing
capacity. This pattern is consistent when com-
pared with normalized deaths by population
size for eachmunicipality (Fig. 3D), which also
shows COVID-19–attributed deaths higher
than the excess deaths in most of the cases.
The anomalies in the observed versus pre-
dicted deaths for 2020 across different age
groups also display a significant negative asso-
ciation with SES, except for the 80+ group
(Fig. 3E), suggesting a higher death burden

in lower-SES municipalities, independent of
their age composition. Furthermore, the two
municipalities with a SES higher than 80 (Las
Condes and Vitacura) had z scores of much
smaller magnitude (with the exception of the
oldest age group), indicating that in those
areas, patterns of mortality did not deviate
much from what would have been expected
for a normal year in people younger than
80 years old.
Although the observation that COVID-19–

attributeddeaths are greater than the estimated
excess deaths might be counterintuitive (Fig.
3D), it may indicate the presence of changes in
overall mortality patterns due to other causes,
including a lower number of deaths attribut-
able to a reduction in mobility. In addition,
lower numbers of deaths were reported for
respiratory infectious diseases, such as influ-
enza and pneumonia, and cancer during July
and August 2020 compared with the period
from 2015 to 2019 (Fig. 3F). Changes in mor-
tality from respiratory diseases can be ex-
plained by a mild influenza season in the
Southern Hemisphere during the winter of
2020 (18), which is consistent with our ob-
servation that far fewer cases of respiratory
viruses have been detected in Chile during
the 2020 season (supplementary materials).
A decrease in the number of cancer-attributed
deaths can be explained by mortality displace-
ment (19, 20), but additional analyses need
to be conducted to establish this hypothesis.
Alternative explanations for changes in all-
cause mortality should also consider possible
changes in external and behavioral causes of
mortality.We do not observe a substantial con-
tribution from these causes (see supplemen-

tary materials, along with additional detailed
analyses).

More testing with lower waiting times in
wealthy areas

To further understand the consequences of in-
sufficient early testing, we conducted a deeper
analysis of different testing metrics at the
municipality level. We first looked at testing
capacity measured as weekly positivity rates,
the fraction of tests that are positive for SARS-
CoV-2. Our results show that the positivity
signal tracked the course of the epidemic,
peaking at times of highest incidence between
May and July and suggesting a highly satu-
rated health care system during this period
across the entire city (Fig. 4A). A strong nega-
tive association between positivity and SES
(Fig. 4B) further denotes difficulties in access
to health care that is even more pronounced
in lower-SES municipalities. Despite changes
in positivity rates over time, this testingmetric
also significantly correlatedwith the number of
cases (Fig. 4C) and number of deaths (Fig. 4D).
Our findings on the number of tests con-

ducted show a rather paradoxical association
with SES andmortality.Manymonths into the
epidemic, the early positive association be-
tween tests per capita and SES (Fig. 2B) re-
versed (Fig. 4E), indicative of an improvement
in testing capacity over time, so thatmore tests
were performed in the most affected areas.
Similarly, the number of tests started to posi-
tively correlatewith deaths (Fig. 4F), suggesting
that the number of tests are strong predictors
of mortality.
We also analyzed testing capacity by esti-

mating the delays in obtaining test results.
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Fig. 4. Testing capacity and waiting times. (A) Positivity over time. Positivity
is defined as the proportion of PCR tests that are positive in a given week.
(B) Association between average positivity and SES. (C) Association between
positivity and weekly number of cases per 10,000. (D) Association between the
overall age-adjusted number of deaths per 10,000 and the average positivity over
the same period. (E) Association between average daily tests per 10,000 and SES.
(F) Association between tests per 10,000 and deaths per 10,000. (G) Timeliness
over time. Timeliness is defined as the proportion of PCR tests that appear in the
public records within 1 week from the onset of symptoms. Two weeks in June

(shaded in gray) were excluded from the analysis because of inconsistencies in data,
leading to unreliable delay estimates. (H) Association between average timeliness
and SES. (I) Association between timeliness and weekly number of cases per 10,000.
(J) Association between the overall age-adjusted number of deaths per 10,000
and the average timeliness. (K) Association between timeliness and positivity.
Dots are representative of weekly data per municipality. (L) Association between
tests per death (age-adjusted) and SES. Figures with different dot colors illustrate
the SES value according to the reference presented in (A). In (B) to (F) and (H) to
(L), the shaded region indicates 95% regression confidence interval.
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We inferred the distribution of the delay be-
tween onset of symptoms and report of the
results, from which we obtained the propor-
tion of cases that are publicly reported within
1 week of the onset of symptoms or “time-
liness” (21). As shown in Fig. 4G, timeliness
follows a similar temporal course as test posi-
tivity during May and part of June, but in the
opposite direction. This metric is associated
with SES, suggesting that municipalities with
low SES, on average, get their test results later
than the ones with high SES (Fig. 4H). Time-
liness also negatively correlates with the num-
ber of cases (Fig. 4I), the total number of deaths
(Fig. 4J), and positivity (Fig. 4K). When look-
ing at tests per death, ametric that can be used
as a faithful proxy of testing capacity (22), we
observe a positive correlation with SES (Fig.
4L), indicating that testing disparities per-
sisted during the epidemic, with low-SES areas
being affected the most. In the supplementary
materials, we further discuss the associations
between our metrics and case counts.

IFR depends on SES

In the absence of serological surveys, a direct
inference of an IFR is challenging. The degree
of ascertainment depends on many factors,
including testing capabilities and the likelihood
of having symptomatic infections. Also, unlike
deaths, age information of reported cases is not
available at the municipality level, making this
inference more challenging. To address these
hurdles and to have estimates of the IFR, we
implemented a hierarchical Bayesian model
that considers the relationship between deaths,
observed cases, and true infections across loca-
tion, time, and age group. We first estimated
the case fatality rate (CFR) by assigning total
cases into age groups in a simple way that
projects the overall age distribution of cases to
particular municipality demographics (Fig. 5A;

see supplementary materials for details). With
the exception of the oldest age group, CFR
shows a negative association with SES. Simi-
larly, our resulting IFRestimates once corrected
for underascertainment display a similar pat-
tern (Fig. 5B) but on an order of magnitude
lower than theCFRestimates.We then grouped
the municipalities into four categories of sim-
ilar sizes and categorized them as either low,
mid-low, mid-high, or high SES. When com-
paring the IFR ratio between the low- and the
high-SES categories, the results show a signif-
icantly higher IFR in the low-SES group in
people younger than 80 years old (Fig. 5C).
The age groups 60 to 80 and 40 to 60 exhibit
IFRs that are 1.4 and 1.7 times higher, respec-
tively, in the low-SES category comparedwith
the high-SES one. The difference is evenmore
pronounced in the younger age group (0 to
40 years old), which shows values of IFR that
are 3.1 times higher for themunicipalitieswith
the lowest SES. Altogether, these results are
in line with the analyses of excess deaths
presented in Fig. 3E. The lack of association
between IFR and SES in the oldest age group
can be attributed to a lower life expectancy
(23), which is factored into the estimation of
SES (seemethods for details), and the fact that
elderly people might be, in general, healthier
enough to survive until that age.

Discussion

To understand the true burden of COVID-19, it
is critical to consider demographic and socio-
economic factors and their consequences for
the public health response. Here, we analyzed
data from the capital of Chile, a highly segre-
gated city. Our results align with the recent
literature on uneven health risks globally,
which has highlighted how socially and eco-
nomically deprived populations are more vul-
nerable to the burden of epidemics (24, 25).

Mounting evidence suggests that such differ-
ences have also manifested in the context of
the COVID-19 pandemic (26, 27). Because the
pathways modulating these differential out-
comes are not well understood, comprehen-
sive accounts are urgently needed (28) so that
more resilient and socially aware public health
strategies can be planned in advance of future
pandemics. In Chile, recent studies have sug-
gested a link between SES and the effective-
ness of nonpharmaceutical interventions such
as stay-at-home orders (12, 13, 29). Our work
further explores this topic by providing a ho-
listic perspective about how the interplay be-
tween behavioral, social, economic, and public
health factors modulates the observed hetero-
geneity in infection incidence and mortality.
Along with the main findings, we also intro-
duced several methodological innovations. Our
Bayesian method for joint inference of IFRs
and underreporting is a new contribution in
this field. We show that it may not be nec-
essary to have complete epidemiological data-
sets (here, age) to draw valid inferences as long
as the solution space is constrained enough by
meaningful priors and demographic structure.
Our results show a strong link between

socioeconomic and demographic factors with
COVID-19 outcomes and testing capacity of
COVID-19 in Santiago. This association isman-
ifested as a reinforcing feedback loop, as high-
lighted by our findings. First, our analysis of
human mobility indicates that municipalities
with lower SESwere less compliant with stay-
at-home orders, possibly because people from
lower-SES areas are unable towork fromhome,
which leaves them at a higher disease risk. Sec-
ond, our analyses revealed an underreporting
of infections in low-income areas at the start
of the outbreak. Because public health mea-
sures were taken in response to nominal case
counts, these places were underprepared, with
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Fig. 5. Inference of CFRs and IFRs by age and SES. (A) Estimates of CFR by age and SES based on a simple assignment of cases to age groups. Our estimates of
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a poor health care response that resulted in
higher death counts. Third, anomalies in the
overall excess deaths are higher in low-SES
areas, particularly in people younger than
80 years old, suggesting that more vulnera-
blemunicipalitieswere hit the hardest. Fourth,
the analyses of test positivity rates, timeliness,
and tests per death indicate an insufficient
deployment of resources for epidemiological
surveillance. Higher positivity rates in health
care centers suggest the need for greater test-
ing and detection. At the same time, slower
turnaround in test results can lead to greater
potential for transmission, because even small
delays between the onset of symptoms, test-
ing, and final isolation substantially hinder the
capability of public health systems to contain
the epidemic (30). Finally, IFRs were higher
in lower-SES municipalities, especially among
younger people.
We propose two complementary explana-

tions for the association between IFR and SES.
First, a higher IFR may reflect limited access
to health services during the pandemic, and
the strong association between the number
of tests per death and SES supports this claim.
We also show in the supplementary materials
that the South and West zones (based on
health coverage division) have four times fewer
beds per 10,000 people and four times lower
proportion enrolled in the private health sys-
tem than the East zone, which contains all the
municipalities with an SES of 60 or higher.
Notably, more than 90% of the COVID-19–
attributed deaths in the South andWest zones
occurred in places other than health care fa-
cilities, compared with 55% in the East zone.
Second, more vulnerable communities may
experience a higher prevalence of the comor-
bidities (31) that are associated with more
severe presentations of COVID-19. People in
low-SES municipalities are more likely to be
overweight and to live in overcrowded con-
ditions (supplementarymaterials), factors that
ultimately can put these populations at higher
disease risk. The interaction of these two ex-
planations can lead to a high disparity among
different socioeconomic groups.
Our findings need to be considered in light

of the following limitations.Mobility data from
mobile phones are likely to be biased because
of differentialmobile phoneownership indiffer-
ent demographic groups. Although Facebook
mobility data can be biased in this way, our
results are consistent with other studies in
Santiago that used different socioeconomic
and movement measurements [see (12–14)
and supplementary materials]. Our methods
depend on several assumptions. The back-
calculated RmMAP estimates rely on a choice
of the infection-to-death distribution and
assume that the IFRs do not change over time,
and the excess mortality estimates depend on
the choice of a kernel. Our IFR estimates are

derived from a complex Bayesian model and
are based on assumptions regarding report-
ing rates and age distribution of infections.
Extensive sensitivity analyses suggest that
our results are stable to deviations from these
assumptions (supplementary materials).
This study highlightsmajor consequences of

health care disparities in a highly segregated
city and provides new methodologies that
account for incomplete data for studying in-
fectious disease burden andmortality in other
contexts.

Materials and methods
Data
SES

We define the socioeconomic status index
(SES) as SES = 100 − SPI, where SPI is the
social priority index (or “indice de prioridad
social” in Spanish) estimated for 2019. The
SPI index varies between 0 and 100 and has
been reported yearly since 1995 by the Chilean
Ministry of Social Development and Family.
The SPI value denotes the priority of each
municipality for the social programs of the
regional government, and thus, municipalities
with lower SES have higher social priority. The
SPI index equally weights three components:
(i) income and poverty, (ii) access and quality
of education, and (iii) health factors such as
access to health care and life expectancy. For
each component, the values are standardized
on a common scale from 0 to 100, where the
value 100 represents the worst relative situa-
tion (highest priority) and 0 the best situation
(least priority).

COVID-19

At the end of January 2020, the Chilean gov-
ernment determined that all suspected cases
of COVID-19 must be notified in a manda-
tory and immediate manner to the respective
Health Epidemiology Unit and the Ministry
of Health, through the specific form on the
EPIVIGILA platform. In addition to the sus-
pected cases that are identified in health care
facilities, the government also implemented an
active testing surveillance program to identify
asymptomatic and presymptomatic cases. The
criteria for the active testing are (i) people who
have not been identified yet as confirmed or
suspected COVID-19 or (ii) living in vulnerable
areas and (iii) individuals who have lived for a
long time in institutions such as jails, nursing
homes, the National Service forMinors, among
others. Symptom-onset dates are reported by
the patient to a physician, in the case that the
person attended a health institution, or by the
volunteers that are conducting surveillance in
the community through a survey.
The Chilean Ministry of Science, Technol-

ogy, Knowledge, and Innovation has made
possible access to aggregated data collected
through the EPIVIGILA platform, which are

available in the format of multiple reports.
These reports also contain data on popula-
tion projections for 2020, testing, positivity,
and other metrics used in the study. One of
the reports tracks the number of cases for
which onset of symptoms started at a given
epidemiological week, for each municipality.
Given that they are published twice a week
(typically Monday and Friday), we were able
to analyze the history of such reports to esti-
mate the delays. Timeliness is thus defined as
the probability of getting a retrospective delay
smaller than 7 days, based on the Monday’s
reports. More details can be found in the sup-
plementary materials.

Mortality

The Vital Statistics System in Chile is contin-
uous, mandatory, and centralized. It is com-
posed of the Civil Registry and Identification
Service (CRIS), the National Institute of Sta-
tistics, and the Ministry of Health through
the Department of Health Statistics and In-
formation (DHSI). When a person dies, amed-
ical death certificate is generated by the CRIS
and distributed to health institutions. The
mortality database is built with the death
certificates, which are subjected to a rigorous
validation process, to guarantee the reliabil-
ity and validity of the information. The DHSI
standardizes the clinical terms in the format
of the International Statistical Classification
of Diseases (ICD-10). Since March 2020, the
DHSI has implemented the recommendations
of the World Health Organization for coding
the deaths resulting from COVID-19. In this
study, confirmedCOVID-19 deaths correspond
to deaths for which the virus has been iden-
tified with a positive PCR test and have been
coded as U07.1. Similarly, attributed COVID-19
deaths correspond to confirmed deaths and
deaths in which the virus was not identified
but were clinically diagnosed as a probable
or suspected COVID-19 case and have been
coded as U07.2.

Human movement

Facebook’s Data for Good has provided access
to their Geoinsights portal in response to the
COVID-19 crisis, from where it is possible to
obtain aggregated data of their users (32).
These datasets are anonymized and contain
the information of Facebook users who have
a smartphone with location services enabled.
Themovement vector from tile i to j (with i≠ j)
at time t is defined as the transition from the
modal location i at the preceding 8-hour bin
to the modal location j in the current 8-hour
bin. Facebook also provides a baseline value,
defined as the average number of users who
transit from tile i to j at a given day of week
and time of day during a baseline period. The
baseline period corresponds to the 45 days
before the initiation of the movement data
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for that particular location (for Chile, the data
collection was initialized on 25 March 2020).
Using this dataset, we calculated the percent-
age change compared with baseline for each i
to j transition at a given 8-hour period and
then estimated the average percentage change
for each municipality and epidemiological
week. We only used the starting location
(municipality) for the average percentage
change estimation. The size of the side of the
tile is about 2.4 km.

Models
Inference of SARS-CoV-2 infections
with RmMAP

We aim to estimate the number of infected
individuals over time Is given a series of ob-
served COVID-19–attributed deathsDt and a
known onset-to-death distribution T. We use
a Poisson deconvolution model for deaths
given I and T:

Dt jT ; I ∼ Poisson
X

s
Tt�sIs

� �
ð1Þ

whereTs ¼ P T ¼ sð Þ is the probability that the
onset-to-death time equals s days. Estimates of
Imaximizing Eq. 1 can be obtained with an
expectationmaximization algorithm (6, 33–35),
but the outcome is typically unstable (36).
RmMAP overcomes this issue by adding a
quadratic penalty to the log-likelihood. The
iterations of RmMAP write as

Î
new ¼ 1

4l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8lIold

p
� 1 ð2Þ

Inews ¼ Î s
new 1X

t
Tt�s

X
t

DtTt�sX
s′
Tt�s′Î s′

new ð3Þ

By scaling the final series Inew by the inverse
IFR, we obtain the inferred values of infected
individuals over time. A detailed discussion
of this method along with sensitivity analysis
and comparison with existing methodology
are presented in the in the supplementary
materials.

Estimation of excess deaths

We used Gaussian processes (GP) regression
(17) to estimates excess deaths for 2020. GPs
can be understood as an infinite dimensional
Bayesian regression: In the finite dimensional
case, one fits yi ¼

X
i
wixi þ Di , where Di are

Gaussian independent identically distributed
errors,xi are covariates, andwi are coefficients
sampled from a priorp wð Þ. Likewise, with GPs
we fit yi ¼ f xið Þ þ Di where f is a function
sampled from a prior over function p fð Þ. GPs
are appealing because the level of complexity
is automatically adjusted by the complexity of
data and because they are computationally
tractable.

Priors over f are specified through a kernel
K, which encodes the correlational structure
of data so that K x; x′ð Þ is simply the “prior”
covariance between f xð Þ and f x′ð Þ. K depends
on a finite number of unknowns q (soK ¼ Kq)
that have to be inferred as well.
We used a GP to account for both long-term

trends inmortality as well as seasonality. As in
(17), we consider kernels of the form

Kq ¼ K 1
q þ K2

q ð4Þ

where K 1
q is an exponential kernel represent-

ing the long-term variation and is given by

K 1
q x; x′ð Þ ¼ q21 exp

�ðx � x′Þ2
2q22

 !
ð5Þ

and K2
q is a periodic times exponential kernel

representing seasonal variation

K2
q x; x′ð Þ ¼

q23exp
�ðx � x′Þ2

2q24
� 2sin2 p x � x′ð Þð Þ

q25

 !

ð6Þ

We considered an additional source of un-
structured randomness through the term Di ∼
N 0; s2ð Þ . We performed Bayesian inference
(Markov chain Monte Carlo) over the joint dis-
tribution parameters q;s2ð Þ and death counts
for each time period of the 2020 year, based
on 2000–2019 all-cause mortality data and
suitable priors for the parameters. In the sup-
plementary materials, we comment on more
specific aspects and provide an extensive eval-
uation of our model.

IFRs

We deployed a hierarchical Bayesian joint
model for reporting rates (and, hence, IFR)
per age group (a taking values 0 to 40, 40
to 60, 60 to 80, and 80 +) and municipality
m, collapsing over the temporal dimension.
We infer the number of infected individuals
(and, hence, IFR) based on reported cases C,
positivity rates over time (t, month), munic-
ipality, and COVID-19–attributed deaths D.
The main appeal of this framework is that
although most of the components are not
identifiable (e.g., if reporting rates and true
cases are both unknown, the same observed
case counts can be achieved by multiplying
both by the same factor) (37), we can borrow
from better-known quantities (e.g., rough es-
timates of prevalence, reporting, etc.) to en-
hance identification while propagating the
appropriate levels of uncertainty over the
parameters.
Specifically, the reporting rate rm;t links to

the observed positivity rates posm;t (in log-
scale) through a logistic-linear relation (with

parameters b), and we have included random
effects Dm;t to represent unobserved causes of
reporting:

logit rm;t

� � ¼ b0 þ b1 � posm;t þ Dm;t ð7Þ

Total infections bymunicipality and age Im;a

are a fraction pm of the total population Pm;a,
that is

Im;a ∼ Binomial Pm;a;pm

� � ð8Þ

An implicit assumption in Eq. 8 is the exist-
ence of an underlying municipality-specific
proportion infected pm so that on each age
group, the number of infected people is (on
average) pm � Pm;a . We also assumed the fol-
lowing relation for pm:

logit pmð Þ ¼ p0 þ mm ð9Þ

where p0 represents a baseline of the propor-
tion infected andmm is a municipality-specific
random effect.
We use parameters gm;t∈ 0; 1½ � to represent

the temporal spread of infections;
X

t
gm;t ¼ 1

so that Im;a;t ¼ gm;t Im;a. Infections, cases, attri-
buted deaths, and age-stratified population
sizes are linked through a cascade of binomial
models. We relate infections, cases, and report-
ing rates through

Cm;t ∼ Binomial Im;t ; rm;t

� � ð10Þ

Infection fatality rates IFRm;a relate to in-
fections and deaths through another bino-
mial model

Dm;a ∼ Binomial Im;a; IFRm;a

� � ð11Þ

where the IFRs follow a stratified logistic-
linear relation with SES and age mediated by
parameters a, h, d:

logit IFRm;a

� � ¼ a0 þ a1 þ hað Þ
� SESm þ da ð12Þ

A comprehensive explanation of this hier-
archical Bayesian methodology, including a
discussion of its assumptions and several sen-
sitivity analyses, appear in the supplementary
materials.
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