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Identifying disease progression through enhanced decision support tools is key to chronic management in cystic fibrosis at both the
patient and care center level. Rapid decline in lung function relative to patient level and center norms is an important predictor of
outcomes. Our objectives were to construct and utilize center-level classification of rapid decliners to develop an animated dashboard
for comparisons within patients over time, multiple patients within centers, or between centers. A functional data analysis technique
known as functional principal components analysis was applied to lung function trajectories from 18,387 patients across 247
accredited centers followed through the United States Cystic Fibrosis Foundation Patient Registry, in order to cluster patients into
rapid decline phenotypes. Smaller centers (<30 patients) had older patients with lower baseline lung function and less severe rates of
decline and hadmaximal decline later, compared tomedium (30–150 patients) or large (>150 patients) centers. Small centers also had
the lowest prevalence of early rapid decliners (17.7%, versus 24% and 25.7% for medium and large centers, resp.). )e animated
functional data analysis dashboard illustrated clustering and center-specific summaries of the rapid decline phenotypes. Clinical
scenarios and utility of the center-level functional principal components analysis (FPCA) approach are considered and discussed.

1. Introduction

)e analysis of patient registry data is an established cor-
nerstone for epidemiologic surveillance of disease progres-
sion, assessment of treatment effectiveness, clinical trial
design, and quality improvement initiatives [1]. )e Cystic
Fibrosis Foundation Patient Registry (CFFPR), which has
been tracking outcomes on patients with cystic fibrosis (CF)
for more than 40 years, successfully exemplified these pro-
cesses [2]. As the most common lethal genetic disease in
Whites, there are currently 30,000 individuals in the United
States (US) and nearly 70,000 individuals worldwide living
with CF [3, 4]. )e disease typically manifests as progressive

loss of lung function that results in respiratory failure;
therefore, maintaining lung function is essential to quality of
life and long-term survival. Modern survival statistics dem-
onstrate that the advent of novel therapeutics and effective
care management strategies have improved the longevity of
individuals with CF; over half of babies born today with CF
are projected to survive into their fifth decade of life [5].
Forced expiratory volume in 1 second of % predicted based on
age, height, sex, and race (hereafter, FEV1) is the strongest
predictor of survival [6] and the most widely used marker to
monitor change in lung function over time for CF patients [7].

Despite gains in life expectancy, the clinical course of CF
is still marked by periods of steep decline in FEV1 of variable
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patterns, primarily during adolescence and early adulthood
[8]. )is prolonged drop in lung function relative to patient
or center-level norms, clinically termed “rapid decline,” has
been heavily studied in recent years using various CF patient
registries. Having real-time FEV1 trajectory data alongside
information on risk factors for rapid decline significantly
improved lung function in CF through empowerment of
patients and families and standardizing care processes [9]. A
host of risk factors for rapid decline in CF exist [10], with
some being modifiable (e.g., number of clinic visits). To that
end, quality improvement efforts by clinicians and re-
searchers are focused on identifying the onset of rapid
decline to intervene prior to onset of irreversible lung
damage. Meanwhile, there are numerous epidemiologic
studies using advanced biostatistical models demonstrating
heterogeneity of lung function trajectories in the CF pop-
ulation. Timing and degree of rapid decline in lung function
are highly variable between patients [11, 12]. Little research
has characterized differences in rapid decline by CF center.
Epidemiologic studies using CF registries in the United
Kingdom (UK) and US found that centers with higher
average lung function treated patients more frequently with
intravenous antibiotics [13, 14].

In a single-center study, clinical algorithms successfully
identified rapid declines as a means to trigger interventions
and slow FEV1 loss by addressing modifiable risk factors,
including untreated/newly identified infectious organisms,
gaps in prescribed pulmonary therapies, and secondary
diagnoses (e.g., gastroesophageal reflux disease) [15]. Fol-
low-up studies of this algorithm showed that real-time risk
assessment of rapid decline individualized at the patient level
can be implemented in a graphical user interface prototype
[16] and that this dynamic approach can detect this event an
average of 8 months earlier [17]. Another single-center study
developed a quality improvement algorithm to treat acute
drops in FEV1, which resulted in an improvement in both
absolute FEV1 (87% predicted to 110% predicted) and
change in FEV1 (a drop of 34% predicted, compared to 14%
predicted) over a 5-year period [18].

A national longitudinal cohort study using the CFFPR by
our group established three phenotypes of rapid lung
function decline in CF using longitudinal FEV1 trajectories
in patients between 6 and 21 years of age [19]. By applying a
functional data analysis technique known as functional
principal components analysis (FPCA) and accounting for
noisy, irregularly observed longitudinal FEV1 and serial
correlation, three patient clusters were discovered corre-
sponding to early, middle, and late rapid decline of lung
function based on the first and third quartiles of the scores
from the first functional principal component. Early de-
cliners commonly experienced maximal loss around 12.9
years of age according to the average velocity of their FEV1
trajectories. Middle decliners, who comprised 50% of the
cohort, had a peak decline at age 16.3 years. Late decliners
had the mildest decline, which occurred at 18.5 years of age;
however, this cohort experienced the most significant loss of
lung function (roughly 6% predicted over the age range).

Despite the use of several algorithms for earlier detection
and treatment to intervene to delay or prevent lung function

decline, little has been done outside of descriptive reporting
to leverage the CF data as indexed by individual care centers
for improving care processes. )e advent of such algorithms
alongside a patient registry with electronic health records
presents a unique opportunity, because both CF care and
registry reporting are organized by center [3, 20]. )is study
aimed to (1) construct a center-level classification of rapid
decliners in CF, expanding the prior approach which only
classified decliner phenotypes at the national level; (2) utilize
these novels, localized classifications of rapid decline to
develop a graphical user interface for detection of decline,
and comparison between centers, thereby enhancing point-
of-care management.

2. Methods

2.1. Dashboard Design. Research methodology (Figure 1)
proceeded as (1) designing the dashboard for center-specific
benchmarking of rapid decline; (2) performing the classification
approach in R software and importing results into SAS; (3)
implementing the predictive data in SAS as a clinical dashboard.
)e dashboard was designed assuming downstream imple-
mentation on an html website platform. Preliminary layouts
were developed by using images from the previously published
study on phenotypes of rapid decline [19] and the format of the
CFFPR Annual Report on center-specific outcomes [3].

2.2. Data Source

2.2.1. Variables Used from the CFFPR. )is study used the
aforementioned CFFPR, which contains demographic and
clinical variables from the majority of the CF population in
the US who receive clinical care at accredited CF care
centers. Data from clinical encounters and care episodes for
each patient are included in the CFFPR. )e timeframe for
the current analysis was January 1, 1997, to December 1,
2013. Variables included age (in years) and lung function
(FEV1, % predicted) at each clinical encounter. )e %
predicted values for FEV1 based on age, height, sex, and race
were acquired using the Wang equations [21] for lung
function on individuals aged 6 to 18 years and the Han-
kinson equations for those with encounter age older than 18
years [22]. Lung function data observed at encounter ages
below 6 years were excluded because of potential unreli-
ability [23]. Given the interest in rapid decline, which pri-
marily occurs during childhood [8, 12, 24], the study
included patients aged 6–21 years. Deidentified variables
from the CFFPR were used to index both patients and
centers. Center designation for each patient is recorded
annually in the CFFPR.)e center in which the patient spent
the most years of follow-up over the analysis period was
considered primary.

2.3. Missing Data. Patients with less than 7 observed FEV1
measurements were excluded, as having too few observa-
tions led to estimation difficulties. )is study assumed that
FEV1 data were “missing at random” [25], implying that
one’s ability to observe FEV1 on a given patient was related
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to their previously observed FEV1. Prior work found this to
be a reasonable assumption for estimating CF lung function
decline, especially in pediatric cohorts with low attrition due
to death (4.1%) [26].

2.4. Clustering Approach

2.4.1. Sparse FPCA. FEV1 measurements generated over
time, expressed in this study as encounter age in years, may
be considered longitudinal functional data. A branch of
statistics known as functional data analysis offers a host of
techniques to characterize curves resulting from these data
[27]. FPCA is a particular functional data analysis technique
used to cluster observed trajectories and acquire predicted
values as smooth curves. Sparse FPCA works by segmenting
variation in FEV1 trajectories in irregularly sampled lon-
gitudinal functional data according to eigenvectors, which
correspond to functional principal components (FPCs) [27].
)is approach utilizes a specialized estimation procedure
known as restricted maximum likelihood [28]. Additional
details on the approach are provided as supplemental ma-
terial (Section S1).

2.5. Center-Level Aggregation. To conduct sparse FPCA, the
“fpca” package in R was employed [29]. Implementation
details are provided as supplemental material (Section S2).
Each tracing was classified as corresponding to early, middle,
or late decline based on the patient’s score for the first
functional principal component (denoted as FPC1). Higher
scores coincided with more rapid decline. Patients with
FPC1 scores less than the first quartile were considered late

decliners; those with scores between the first and third
quartiles were classified as middle decliners; finally, those
whose scores exceeded the third quartile were considered
rapid decliners. )is quartile-based classification approach
has been applied in prior biomedical studies [19, 30].

To estimate the center-level trajectory, the functional
mean was taken across trajectories of patients who primarily
received care at the given center according to their classified
category of decline. Calculations are provided as supple-
mental material (Section S3). As a result of the computa-
tions, there were two data frames created in R. Both data
frames were saved as csv files and imported into SAS v9.4 for
html dashboard development.

2.6. Dashboard Implementation

2.6.1. File Development. Once files from FPCA in R were
imported into SAS, steps were taken to create html output
for the clinical dashboard. Static images and animation
frames were created using the SGPLOT procedure. Simul-
taneously, gif files were compiled using the SGPLOT pro-
cedure and ODS PRINTER destination. All image and gif
files were converted to html format using the ODS HTML
destination and DATA _NULL_ blocks containing PUT
statements. To facilitate dashboard display, a total of nine
centers were selected. )ree centers per category were
randomly chosen according to size (number of patients),
defined as small (<30), medium (30 to 150), or large (>150).

2.7. Core Animations. A multistage sequence of transitions
was programmed as animations for each center: (1) Given
each patient’s designation as an early, middle, or late

Design dashboard

Registry data into R

Perform FPCA in R; output 
results as csv 

Import resulting csv into SAS

Create static images and animation
frames in SAS Compile gif files in SAS

Convert image and gif files to html

Create html file to display 
dashboard according to design 

Figure 1: Dashboard design and implementation process.
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decliner, their observed trajectories of FEV1 and rate of
change over age were color-coded for the web tool as red,
yellow, or green, respectively, for each type of image; (2) each
observed FEV1 trajectory over age was converted to a
smooth curve, fi(t), meant to depict the true underlying
lung function without measurement error; (3) within a given
category of decline, the individual smooth curves were
converted to the functional mean, fc d(t). Notation for each
function, f, aggregated is explained in the supplement
(Section S3).

For the center-level rate-of-change animations, a similar
sequence was programmed. )e individual smooth curves
representing lung function for patients receiving care at a
given center, estimated as f′ic d

(t), were (1) presented on a
graph; (2) shaded according to decline classification; (3)
averaged within their given category of decline to yield three
distinct estimated rate-of-decline curves.

2.8. Summary Curves. )umbnail graphs showing center-
specific functional means according to lung function trajectory
were created. Similar graphs were generated for rate-of-change
curves. Each set of graphics was generated to provide a snapshot
of overall lung function and degree of rapid decline across
centers. )ese results represented the end stage of the above
core animations.

2.9. Web Page Structure. )e html file was structured
according to the preconceived dashboard design to include a
landing page with distinct links for animated and summa-
rized graphics of clinical interest. Links corresponded to
center-level animations. A multimedia recording of the
dashboard illustrating each of its segments is available upon
request to the corresponding author.

2.10. Ethics. Cincinnati Children’s Hospital Institutional
Review Board approved the study [IRB: 2015–4518]. )e
requirement to obtain informed consent was waived given
the study’s retrospective nature. )e CFFPR Committee
provided data, which were stored on a password-protected,
secure network. Patient and Center IDs from the CFFPR
were deidentified and encrypted prior to data transfer. All
CF Center IDs on the dashboard are deidentified, and no
demographic or clinical data on patients are displayed,
thereby minimizing reidentification risk. )e dashboard has
not been publicly launched online.

3. Results

3.1. Classifying Rapid Decline within Center. A total of 247
CF centers and 18,347 patients contributed data to our
analysis cohort. Median center size was 52 patients, and the
first and third quartiles of the size distribution were 21 and
100 patients, respectively. Patients receiving care at small
centers tended to be older and experienced more rapid lung
function decline (Table 1).

FEV1� forced expiratory volume in 1 s of % predicted;
FPC1� first function principal component; FPCA� functional

principal components analysis. ∗Results reported as n (%) or
mean (SD) where the latter set of statistics is based on center-
specific data obtained by averaging over patient-specific data.
∗∗Higher scores imply more rapid lung function decline.
∗Reported asmean (SD) of the percentages of each decline type
across centers in a given category. Based on two-sample Welch
t-test comparing center categories for each variable, P< 0.0001
for 1small versus medium; 2medium versus large; 3small versus
large after Bonferroni adjustment; NS� not significant
(statistically).

FPCA fit information is described in the supplement
(Section S4). )ere were fewer early rapid decliners among
the small centers, compared to medium and larger centers
that had similar percentages of rapid decliners, on average.
While mean prevalence of middle decliners per center was
similar regardless of center size, there were proportionally
fewer late rapid decliners at the medium and large centers,
compared to small centers.

Peak decline analysis, performed post hoc using FPCA
model fits, showed that patients typically experienced
maximal loss at a slightly older age (about 6 months older,
on average) than patients receiving care primarily at me-
dium or large centers (Table 1). )e extent of maximal
decline, defined as the lowest point on the derivative of the
fitted FEV1 trajectory, was also lower at the small centers,
compared to the medium and large centers.

3.2. Clinical Dashboard Attributes. )e landing page in-
cludes an overview of links with the first four links showing
separate graphs by center (Figure 2). A 5th link was created
for additional displays, in the event that extra animations or
other displays are developed. A point-and-click video of the
dashboard display is available as previously mentioned by
request to the corresponding author. A link to view a video
file of the animation is provided in the supplement (Section
S5).

3.3. Animated FPCA of Lung Function Trajectories. )e link
“Center-Level FPCA Animations” contains scatterplots
from the nine selected centers (Figure 2, center scatter-
plots). )e opening segment of the link demonstrates the
variability at multiple levels. )ere is substantial vari-
ability between patients and within an individual patient
over time. Furthermore, there is heterogeneity between
centers as depicted by the multiple graphic tiles. Clicking
on any single tile containing a center’s graph isolates the
dashboard to viewing only the observed FEV1 trajectories
from that center. At that point, the animation begins with
highlighting individual observed trajectories from late
decliners, smoothing those trajectories into fitted curves
(green lines, Figure 3(a)), and collapsing them into a
single mean curve. Once trajectories are highlighted, the
variability between patients who are within the same type
of decline is still noticeable. Next, the middle decliners’
trajectories are classified using the same process (yellow
lines, Figure 3(b)), followed by the trajectories of early
decliners (Figure 3(c), observed trajectories shown in red
prior to smoothing). )e resulting three mean profiles of
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rapid decline for early, middle, and late groups are shown
as the final result of the animation (Figure 3(d)). Each
animated graph shows the observed and predicted FEV1
over age (in years).

3.4. Rate-of-Change Animations. )is set of animations,
shown under the link “Center-Level Rate-of-Change Ani-
mations,” demonstrates how clustering of rapid decline is
achieved and how this attribute is assessed with a rate of
change of the smoothed FEV1 trajectories. Consistent with
the link above, clicking this link leads to an interface dis-
playing the smoothed rate-of-decline curves observed across
centers, where each center is represented with a distinct
graph of rate of change in FEV1 (% predicted per year) over
age (in years). )ere is also variability between patients with
regard to the smoothed curves, as well as between centers.
)e clustering process for a selected center graph begins with
individual smoothed curves of the rate of change in FEV1

trajectories (Figure 4(a), gray curves). Animation proceeds
first by collapsing the curves of late decliners into a single
mean curve; hence, gray curves are being collapsed
(Figure 4(b), also showing collapsing green curves). )en,
yellow curves are highlighted and clustered into a single
mean curve (Figure 4(c)). Finally, red curves of early de-
cliners are highlighted and clustered (Figure 4(d)), even-
tually resulting in three separate curves corresponding to
early, middle, and late.

3.5. Static Graphical Summaries. Aligned with previously
described links for the observed FEV1 trajectory and rates of
change, summary links are available through the dashboard.
)ese links circumvent the animation processes, in the event
that a clinician prefers an immediate overview of the average
trajectories across centers. )e link “Center-Level Mean
Predicted Trajectories” includes the smoothed average tra-
jectories of lung function corresponding to early, middle, and

Figure 2: Landing page for dashboard with the blue arrow showing contents after clicking on the first link.

Table 1: Features of rapid lung function decline summarized by primary care center∗.

Features
Center type

Small (<30) Medium (30–150) Large (>150)
Center characteristics
No. of centers, n (%) 78 (31.6%) 133 (53.8%) 36 (14.6%)
No. of patients per center 13.3 (8.1) 72.7 (31.0) 213.3 (60.5)
No. of patients across centers 1036 (5.6%) 9674 (52.6%) 7677 (41.8%)

Patients within centers
Age at baseline, years 13.5 (2.9)1 10.0 (1.8)2 8.6 (0.5)3

FEV1 at baseline, % predicted 75.7 (13.9)1 82.9 (6.3)2 85.6 (5.2)3

Trajectories
FPCA
FPC1 score∗∗ 5.3 (10.9)1 2.3 (5.7)2 1.1 (5.3)3

Decline types by center, %∗∗∗
Early 17.7 (17.1)1 24.0 (20.7)2 25.7 (22.7)3

Middle 49.9 (9.7)NS 49.8 (7.6)NS 49.7 (9.9)NS

Late 32.4 (9.1)1 26.2 (6.6)2 24.6 (8.2)3

Peak decline
Extent, % predicted/year −5.8 (1.3)1 −6.5 (0.7)2 −6.4 (0.6)3

Age of occurrence, years 15.6 (2.2)1 15.1 (0.8)2 15.0 (0.5)3

Journal of Healthcare Engineering 5



late rapid decliners (Figure 5). )e rows are organized by
center size, so that the top, middle, and bottom rows coincide
with small, medium, and large centers, respectively. Similarly,
the link “Center-Level Mean Predicted Rate of Change” is set
up to show a snapshot of the severity of decline based on the
rate of change in lung function (Figure 6).)e curves indicate
increased fluctuation in decline for the smaller centers, which
have fewer patients. For example, one of the small centers has
no late decliners, as depicted by the absence of a green curve.

3.6. Benchmarking Centers to Assess Rapid Decline. For
purposes of quality improvement or patient-centered care,
the dashboard facilitates clinically relevant benchmarking of
rapid decline through assessments of individual patient
progression, patient trajectories within a single center, and
summarized trajectories between centers. Clinically relevant
scenarios are provided (Table 2).

4. Discussion

)is is the first study to translate a statistical model for center-
level assessment of rapid disease progression in individuals with
CF. Prior CF studies enabled strides in clinical research and care
by demonstrating that lung function could be improved
through implementation of FEV1-guided decision rules. For
example, the rule instituted byMcPhail and colleagues required
that the patient experience at least a 10-point drop from the
maximumFEV1 observed in the past year before being classified
as a rapid decliner [9, 15, 31]. Schechter’s study instituted a
stratified quality improvement algorithm, wherein slight (<5
point) decreases in FEV1 from baseline warranted routine
therapy and follow-up; decreases from 5 to 10 points with no
change in symptoms would lead to adherence assessments and
more stringent follow-up; new signs and symptoms or FEV1
drop exceeding 10 points signaled adherence assessment, an-
tibiotics regimens, and more aggressive follow-up [18].
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Figure 3: Predicted lung function trajectories by center clustered using FPCA phenotypes and animated on the dashboard (screenshots).
Animation sequence shown for an example center on the interface beginning clockwise: (a) the clustering and smoothing of late decliners
(green); (b) middle decliners (yellow); (c) early decliners (red); (d) finalized and smoothed phenotypes. Full animation available from link
“Center-Level FPCA Animations” on interface.
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Decision rules from these past studies have been shown
to be effective but are aimed at intervening on lung function
loss once it has already occurred. )e proposed approach
with FPCA provides predicted FEV1 trajectories, which
could enable risk assessment of future lung function decline,
thereby allowing proactive patient-focused management. Of
statistical and ultimately clinical relevance is the reduction of
measurement error allowed by mixed-modeling approaches
[32], for which FPCA is an example. Measurement error is a
well-studied issue with pulmonary function testing when
collecting FEV1, showing that this measure of lung function
varies considerably within a single testing session [33].
Indeed, FEV1 variability is an emerging marker of CF lung
disease severity [34].

Another important distinction of our work is that
previously published decision rules and accompanying al-
gorithms have been limited to their centers of origin, which
can hinder generalizability and add center bias. Our com-
parative analysis by center size indicates that small centers

may have more frequent rapid decline, yet the average peak
decline is lower given the older ages at these centers,
compared to larger-size centers (Table 1). While our study
focused on a pediatric cohort, the approach could be ex-
tended to monitor adult CF lung function trajectories. Al-
though the most rapid decline tends to occur in adolescence
and early adulthood [8], bouts can be experienced
throughout the lifespan [17]. Our clinical dashboard enables
comparison between centers, offering the opportunity for
accelerated, multicenter quality improvement research while
reducing center-specific bias that may exist. Real-time as-
sessment of lung function trajectories with this dashboard
could be integrated into electronic medical record systems as
healthcare centers. )ese implementations may be useful for
previsit planning processes and monitoring of home spi-
rometry data that are becoming more commonplace in CF
care as a result of COVID-19 impacts to outpatient visits
[35]. )e dashboard could be updated at a given center with
electronic medical record systems through weekly updating,
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Figure 4: Rate-of-change curves projected and clustered by FPCA phenotypes, animated on dashboard (screenshots). Animation sequence shown
for an example center on the interface beginning clockwise with (a) showing scatterplot of smoothed curves prior to clustering in gray; (b) late
decliners already clustered (green curve) and initial clustering of middle decliners (yellow curves); (c) early decliners (red); (d) finalized and
smoothed phenotypes. Full animation available from link “Center-Level Rate-of-Change Animations” on interface.
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for example, every Sunday evening, which would enable up-
to-date projection for outpatient visits scheduled for the
coming week.

Findings from this study on the feasibility of a multi-
center dashboard complement ongoing efforts of the Cystic
Fibrosis Foundation to establish quality improvement ini-
tiatives and a learning network across a consortium of CF
Care Centers in the US, motivating European efforts [36].
Using a novel approach characterizing the timing and extent
of rapid lung function decline across CF centers, our
dashboard is innovative in promoting the portability of
interventions across the CF center network. While a recently
published study provides a dashboard and retrospective
validation for forecasting rapid lung function decline using
the CFFPR, the modeling approach and resulting dashboard
do not account for center variation or cluster rapid decline

[17]. While the FPCA approach has established rigor, the
animated dashboard developments are preliminary and
require additional input from clinicians and patients prior to
implementation and future research to further validate our
current findings. )ese inputs will be vital to optimizing
provider utility and share decision-making between the
clinician and patient.

An important factor in rapid lung function decline in the
CF population is the contribution of the pulmonary exac-
erbation. Without a consensus on the definition, the con-
tribution of the CF pulmonary exacerbation is poorly
understood. )is acute respiratory event can permanently
lower an individual’s lung function trajectory [37]. Clinical
diagnosis criteria for a pulmonary exacerbation widely vary,
but an acute reduction in FEV1 is universally present [38].
Our approach allows assessment of the rate of change in
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Figure 5: Predicted lung function trajectory classified by FPCA phenotype shown according to select centers. )e smoothed mean curves
represent phenotypes of rapid decline according to early (red), middle (yellow), and late (green). Static image taken from link “Center-Level
Mean Predicted Trajectories” on the interface.
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FEV1 over the continuum of age, enabling clinicians to select
the extent and timing of rapid decline for intervention
(Figure 4). Furthermore, the missing-at-random assumption
within the FPCA applied here using the mixed model
framework accounts for irregular sampling bias [39]. In this
context, the bias refers to patients who are “sicker” as defined
by clinical characteristics being more likely to have frequent
encounters, compared to other patients. In turn, these pa-
tients contribute to more FEV1 and other data, which can
yield misleading study results in the form of misclassifying
rapid decliners. )e use of our dashboard may further
categorize rapid decliners according to the frequency and
severity of pulmonary exacerbations, but that requires
further study. As previously discussed with dynamic
updating, accruing new data on a given patient would enable
continued classification of their rapid decline status.

Findings from this study have important implications for
CF clinical research and care and other chronic diseases.
Perhaps the most prominent is the ability to further mitigate
Type I and Type II errors of rapid decline interventions
(Table 3). )e dashboard could aid in avoiding unnecessary
exposure to antibiotics, for example, as decisions could be
made according to the rate of change in the patient’s tra-
jectory, thereby minimizing Type I errors (Table 3, upper
right quadrant with false positives). Incorrectly deciding that
a patient is not experiencing rapid decline and foregoing
treatments could lead to irreversible lung damage; a Type II
error that could be decreased (Table 3, lower left quadrant
with false negatives). As a corollary to this result, examining
a single patient’s lung function trajectory alongside overall
severity profiles at the center level could improve person-
alized intervention while maintaining quality improvement
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Figure 6: Predicted rate of decline in lung function trajectory classified by FPCA phenotype shown according to select centers. )e
smoothed mean curves represent phenotypes of rapid decline according to early (red), middle (yellow), and late (green). Static image taken
from link “Center-Level Mean Predicted Rate of Change” on the interface.
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goals. For example, a center’s care episode capacity could be
examined against the total number of patients allocated for
intravenous antibiotics hospitalization according to the al-
gorithm. )e dashboard presented here could be used to
compute projected totals, allowing the center care team to
balance sensitivity and specificity as part of determining a
cut point or, more specifically, their patients’ FPC1 scores
(Table 1) or degree of rapid decline projected at a given time
(Figure 4). )e process outlined here could be adapted for
other chronic diseases and disorders relying on observing
longitudinal outcomes, such as glycemic control and
management for patients with type 1 diabetes, an area in
which FPCA has been applied but not translated for
dashboard development or implementation [30, 40]. An-
other implication is the potential utility of this approach for
selecting subpopulations within centers who may benefit
from new treatments. Ninety-one CF care centers recorded
through the CFFPR are clinical research centers belonging to

the )erapeutics Development Network; thus, the dash-
board could optimize clinical trial planning and recruitment
according to rapid decline severity.

)is work has several limitations. Although FEV1 is a
prominent surrogate endpoint [6] and past values alone
accurately predict CF disease progression [17], there are
established risk factors for rapid decline, such as biological
sex and respiratory infections [10], as well as secular changes
that are typically accounted for by including a covariate for
birth cohort [12], not studied that could be incorporated into
FPCA to perform supervised clustering of FEV1 trajectories.
)is FPCA implementation does not include measures of
variability around the estimated curves, but this could be
added in the future as confidence intervals by conducting
bootstrapping as in prior work [19]; these could be con-
structed for both the absolute and rate-of-change trajecto-
ries. Current methods, however, are still in experimental
stages, for example, allowing only one covariate/factor at a

Table 2: Point-of-care scenarios and animated FPCA dashboard utility.

Scenario Decision support offered by dashboard

Small center clinician benchmarking

Clinicians at Center 9138, one of the smaller centers, would like to examine the extent of rapid
decline at their center and compare it to a larger center, for example, Center 9078. )e
clinicians can acquire an overview of these two centers on the static images’ link of the

dashboard (Figure 6). While the late decline phenotype appears similar at the centers (green
curves), there are differences between centers with respect to both early and middle decliners
(red and yellow curves, respectively). )e clinicians can also compare their center to other
centers. Variability at each center may be examined by selecting the first link on the landing

page and selecting animation for the smaller center and any comparative centers.

Patients who receive care within a single
large center

For clinicians and care teams at a larger center, such as Center 9062, it may be of interest to
examine trajectories of lung function for patients within their center and how they cluster
according to rapid decline. Clinicians can select the graphics tile corresponding to their center

using the first link on the landing page.

Identifying at-risk patients for
implementation research

For researchers preparing to initiate a new algorithm to improve lung function at their center,
the dashboard could be used to select patients at the highest risk of rapid decline by examining

the profiles and prevalence of early decliners within a given center. Furthermore, the
dashboard could be used to examine the prevalence of early decliners across centers, if the
researchers are planning to implement the algorithm at multiple sites. For this case, the

dashboard enhances comparisons between centers.

Individual patient monitoring

At a single center, a clinician is preparing for outpatient visits in the coming week. )e
dashboard could be used to track his specific outpatients and their status as early, middle, or

late decliners. )ose classified by the algorithm as early decliners could be tagged and
additional care regimens could be implemented, for example, psychosocial assessments and
checking adherence [15]. It is also possible that these patients could be offered clinical trial

participation based on their trajectories.
FPCA� functional principal components analysis.

Table 3: Clinician decision-making and consequences regarding rapid decline at the center level.

Condition of rapid decline (true underlying state)
Positive Negative Total

Clinician
decision
(diagnosis)

Positive True positive (TP): correctly
classified as rapid decliner

False positive (FP): incorrectly
classified as rapid decliner

TP+ FP� total number of patients
allocated for rapid decline

intervention

Negative
False negative (FN): incorrectly
classified as not experiencing

rapid decline

True negative (TN): correctly
classified as not experiencing

rapid decline

FN+TN� total number of patients
who will not receive rapid decline

intervention

Total TP + FN� true number of rapid
decliners

FP + FN� true number of
patients not experiencing rapid

decline

N� total number of patients at the
care center

10 Journal of Healthcare Engineering



time [41], which would be critical so that the impact of
highly effective modulator therapies could be considered a
covariate effect [42, 43]. A recent update aimed at covariate
adjustment on the marginal covariance in FPCA, enabling
more efficient estimation in instances with several covariates
[44], but the extension in the context of longitudinal data
was not addressed. A notably difficult problem with rapid
decline classification is the lack of a “gold standard” when
using rate-of-change estimates as in the current study. Many
past studies have relied on the occurrence of an intravenous
hospitalization for pulmonary exacerbation diagnosis in
retrospective modeling, such as a recent joint longitudinal
FEV1 and exacerbation model [45], but this approach does
not consider the variability involved in making such a di-
agnosis. An alternative is to utilize short-term drops in FEV1
on the original scale of % predicted, but it does not account
for measurement error and lacks interpretation as rapid
decline since it is not expressed as % predicted/year.)e data
presented with this dashboard were sampled from 1997 to
2013 prior to the broad initiation of modulator therapies that
treat the underlying defect of CF. However, the dashboard
generated from our study could be updated with new data as
it is implemented for real-time monitoring. Trajectory levels
may also change if using Global Lungs Initiative (GLI)
equations to calculate ppFEV1 but the impact on rate-of-
decline estimates appears to be minimal [46]. Finally, the
current dashboard utilized deidentified and encrypted IDs.
Some degree of unblinding would be necessary for real-
world implementation and between-center testing.

5. Conclusion

We clustered and predicted rapid lung function decline at
the center level by adapting a novel statistical approach.
Moreover, we implemented our approach as a dashboard
that can enhance quality improvement efforts through
center benchmarking and research by identifying at-risk
subpopulations for new treatments aimed at improving
rapid decline. Our study findings and clinical dashboard
with animated FPCA clustering provide a basis for chronic
disease management in CF with the potential translation of
this technology to other patient populations who may
benefit from personalized management of rapid disease
progression.
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