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ABSTRACT: Methanol production has gained considerable interest on the
laboratory and industrial scale as it is a renewable fuel and an excellent hydrogen
energy storehouse. The formation of synthesis gas (CO/H2) and the conversion of
synthesis gas to methanol are the two basic catalytic processes used in methanol
production. Machine learning (ML) approaches have recently emerged as powerful
tools in reaction informatics. Inspired by these, we employ Gaussian process
regression (GPR) to the model conversion of carbon monoxide (CO) and
selectivity of the methanol product using data sets obtained from experimental
investigations to capture uncertainty in prediction values. The results indicate that
the proposed GPR model can accurately predict CO conversion and methanol
selectivity as compared to other ML models. Further, the factors that influence the
predictions are identified from the best GPR model employing “Shapley Additive
exPlanations” (SHAP). After interpretation, the essential input features are found
to be the inlet mole fraction of CO (Y(CO, in)) and the net inlet flow rate (Fin(nL/min)) for our best prediction GPR models,
irrespective of our data sets. These interpretable models are employed for Bayesian optimization in a weighted multiobjective
framework to obtain the optimal operating points, namely, maximization of both selectivity and conversion.

■ INTRODUCTION
Methanol is a main chemical that may be used as a fuel, a fuel
substitute, or a chemical feedstock. It can be used in combustion
turbines for rapid-starting and as a gasoline substitute or a blend
with gasoline in engines.1 It is a good hydrogen carrier as well.2

Methanol is frequently utilized as a raw material feedstock for
various industrial chemicals, including methyl methacrylate,
acetic acid, formaldehyde, and methyl tertiary-butyl ether.3

There are two main catalytic routes for methanol production
from syngas (CO/H2) by hydrogenation. In the first route,
syngas is produced from fossil sources by reforming
technologies, i.e., dry and steam.4,5 However, in the second
route, pyrolysis or gasification of coal and biomass-based
feedstocks is employed for syngas production. Hydrogenation is
the proceeding step for methanol synthesis.6 In addition, syngas
production from shale gas is also prevalent in North American
countries due to the abundance of shale reserves.7

Catalytic reduction of carbon monoxide (CO) with hydrogen
(H2) from coal-derived syngas into methanol can be achieved
using both gas-phase and liquid-phase processes
(LPMeOHTM) as developed by air products and chemicals.8

The following are the relevant reactions

+2H CO CH OH2 3F (1)

+ +CO 3H CH OH H O2 2 3 2F (2)

+ +CO H O CO H2 2 2F (3)

All of the above presented three reactions eqs 1−3 are highly
exothermic.9−11 The conventional commercial gas-phase
process is carried out in a fixed-bed reactor at high pressure.
Depending on the catalyst, the methanol synthesis reaction is
usually conducted at about 40−110 barg and 200−270 °C. Even
though eqs 1−3 are highly exothermic, the temperature rise
across an adiabatic reactor is controlled by concrete recycling of
the H2 affluent process gas. After dilution with recycled H2, the
CO content at the reactor input is usually controlled to around
10−15%. Methanol synthesis catalysts are often a ternary
combination of copper, zinc oxide, and alumina with a promoter
such as magnesia.12,13 Recent advances have also resulted in the
possibility of a novel catalyst made of carbon, nitrogen, and
platinum.14 Methanol has also been produced from syngas using
membrane, electrochemical, photoelectrochemical, and slurry
reactors.15,16
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To optimize the conditions for methanol production from
syngas, it is imperative to model the CO conversion and
methanol selectivity in the reaction (eqs 1−3) as functions of
feed and process conditions. To this end, kinetic modeling and
reactor design of methanol formation have been studied by
many researchers in the last decade.17−19 However, being
developed from first principles, they are bound by various
assumptions and are tedious to solve in real time. Alternatively,
one can use data-driven machine learning (ML) approaches to
model the underlying trend of reaction kinetics if sufficient and
representative data are available from the experiments.20,21 A
critical impediment in this direction is the availability of flexible
machine learning models that can capture the tricky hidden
underlying trend in the experimental data sets with sufficient
accuracy. Further, machine learning and applications in catalysis
are witnessing a progressive trend in recent times.22−25

Drawing inspiration from the above, the following are
proposed in this study: (1) a Gaussian process regression
(GPR) modeling framework for predicting the conversion of
CO and methanol selectivity as target/output variables using
various descriptors from laboratory-scale experimental data; (2)
SHAP-based interpretation of the developed GPR models; and
(3) Multi-Objective Bayesian Optimization (MOBO) to
identify the optimal operational trajectory using the developed
interpretable models. To this end, we have used laboratory-scale
experimental data sets of gas-phase methanol synthesis from a
fixed-bed once-through reactor and a Berty recycle continuous
reactor,26 where the utilized catalyst contains CuO, ZnO, MgO,
Ni-Cu/Al2O3, and K−ZnCr.27−29 GPR has been frequently
employed in the nonparametric Bayesian framework for the
data-driven modeling of complex systems.30−32 The advantage
of the GPR model is that it can quantify the uncertainty in
modeling. The GPR’s basic premise is that a multivariate
Gaussian distributionmay be used to describe a collection of any
arbitrary function value.33 Also, GPR has an impeccable ability
to capture the hidden trends in sparse data sets.31,34−36 In this
study, we extensively leverage the prediction capabilities of GPR
by tuning hyperparameters and kernels. The results of GPR are
compared to those of deep neural nets, support vector machines,

and regression models, among other machine learning
methods.25

Features are vital in terms of their relevance and contribution
in a data-driven modeling framework as they critically affect the
prediction of the target variables.37 Shapley Additive exPlan-
ation (SHAP) is a framework that helps interpret an ML model
effectively. It provides precise information on the relevance of
each feature instance and the order of importance of features for
target variable prediction. These are calibrated using the
“Shapley” value. Many researchers have implemented this
technique to interpret the black-box nature of the ML-based
models. Ekanayake et al. have implemented a decision tree,
adaptive boost (AdaBoost), and extreme gradient boost
(XGBoost) in the SHAP framework.38 Zaki et al. utilized
SHAP to study the optical properties of glass by implying the
ML model.39 Onsree et al. investigated the effect of features on
the accuracy of the ML model using SHAP.40 Park et al.
presented a comparative study of eight machine learning
algorithms by implementing the SHAP to identify the best
combination of features.41 Similarly, Liang et al. worked with
ensemble machine learning models, namely, random forest
(RF), extreme gradient boosting machine (XGBoost), and light
gradient boosting machine (LGBM), and interpreted by means
of SHAP.42 However, to the best of the author’s knowledge, the
“SHAP”-based framework has not been used in interpreting the
GPR models.

Subsequently, a multiobjective Bayesian optimization is
employed to optimize process variables. Bayesian optimization
is an effective tool for finding the optimal global solution by
building a data-driven surrogate model like GPR.43,44 The
surrogate model forms the probabilistic model of the objective
function, which is then optimized with the help of acquisition
functions. Some of the popularly used acquisition functions are
expected improvement (EI), maximum probability improve-
ment (MPI), lower confidence bound (LCB), etc. Bayesian
optimization is becoming popular in process optimization as
well, for instance, multiobjective optimization based on the
optimal design of the reactor using CFD data,45,46 optimization-
based design and optimization of toluene di-isocyanate (TDI)

Figure 1. Distribution of all descriptors represented in the form of box plots, where (a) and (b) represent recycle and once-through reactor data sets,
respectively.
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reactors,47 robust optimization with uncertainty quantifica-
tion,48 development of data-driven decision-making systems for
chemical synthesis,49,50 optimization of process parameters for
the conversion of a mixture of waste terpenes to p-cymene,51

process design,52 and an optimized process model built by
implying aspen plus.53 The multiobjective optimization for
maximizing methanol production and reducing carbon emission
uses the genetic algorithm.54 Using machine learning and
Bayesian optimization, they created metal oxides while jointly
optimizing experimental parameters to meet the target CO2 and
H2 conversion predictions.55 However, to the best of the
authors’ knowledge, hardly any work has been reported in the
literature that employs interpretable GPR models in a
multiobjective Bayesian optimization framework, specifically
for syngas-to-methanol conversion.

The following are the details of how the rest of the article is
organized. The data sets and preprocessing of data sets are
briefly discussed in Section 2. The GPR modeling method and
the multiobjective Bayesian optimization strategy are discussed
in Section 3. The study’s results and discussions are presented in
Section 4, and concluding remarks are presented in Section 5.

■ DATA SETS AND PREPROCESSING
We consider two distinct data sets obtained from experiments/
literature for synthesizing methanol from syngas.26,27 The first
route employs a recycle reactor, and the second one utilizes a
once-through reactor. After normalization of salient features,
box plots are generated for the recycled reactor data and the
once-through reactor in Figure 1(a),(b), respectively.

In this study, we have considered that the selectivity of
methanol and the conversion of CO are target variables for
prediction and optimization. The set of input descriptors
includes the following variables: (a) reactor pressure (pressure)
(40−110 barg), (b) reaction temperature (Temp) (200−270
°C), (c) inlet stream flow rate (Fin(nL/min)), and (d) inlet
mole fractions of CO (Y(CO, in)), as mentioned in Figure 1.
These feature sets are utilized for the prediction of conversion of
CO and selectivity of methanol.

■ METHODS: GPR MODELING, SHAP, AND
MULTIOBJECTIVE BAYESIAN OPTIMIZATION

This section describes the GPRmodeling, the SHAP framework,
and the multiobjective Bayesian optimization, which are the
three pillars of the proposed study.
Gaussian Process Regression. The Gaussian process

models a set of random variables such that they follow a joint
Gaussian distribution. For a set of inputs x n, let us define
the following distribution of functions

=f x x k x x( ) ( ( ), ( , )) (4)

where

= [ ]x E f x( ) ( ) (5)

= [ ]k x x E f x x f x x( , ) ( ( ) ( )) ( ( ) ( ))T (6)

Here, μ(x) is the mean function and k(x,x′) is the covariance
function. For a data set with N sample points, k(x,x′) is defined
as follows

=k x x
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The kernel matrix k(x,x′) has a dimension ofN ×N, symmetric,
and positive definite. A suitable kernel is chosen based on
assumptions such as data smoothness and patterns. According to
a reasonable assumption, the correlation between two points
should diminish as the distance between them increases. It
indicates that nearby data points are likely to behave more
similarly than farther away data points.

In the GPR modeling paradigm, the output y and input x are
modeled as

= +y f x( ) (8)

where f x x k x x( ) ( ( ), ( , )) and the noise term ϵ ∼
N(0,σ2). In this study, we have evaluated the performance of
various kernels whose functional forms are tabulated in Table 1.

The radial basis function (RBF), commonly known as the
“squared exponential kernel”, is the most extensively utilized
kernel. RBF is an infinitely differentiable function and has a
length-scale parameter (l > 0), where the term d(.,.) stands for
Euclidean distance in the equation.56,57 The rational quadratic
kernel is an infinite summation or scale mixture of RBF kernels
with different length scales with a scale mixture (α > 0).58,59 The
Matern kernel is a modified version of the RBF kernel with an
extra parameter ν, which measures the smoothness of the
function. As the value of ν increases, the nature of the Matern
kernel approaches the simple RBF kernel, and for = 1

2
, it

becomes an exponential kernel. In the equation of the Matern
kernel, Kν(.) is the modified Bessel function and Γ(.) is the γ
function.60,61 The constant kernel is part of a sum kernel, where
it modifies the mean of the Gaussian process and returns a
specific value. It is generally added to other kernels to modify

Table 1. Description of Different Kernels Used in the GPR
Modeling

kernel functional form k(xi, xj)
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their mean, for instance, the RBF + constant kernel and the
Matern + constant kernel. The dot product kernel has a
parameter that defines the homogeneity (σ0

2 = 0) or non-
homogeneity (σ0

2 ≠ 0).62,63 It is used separately and combined
with a white kernel, which introduces the noise signal. The
exponentiation kernel uses one base kernel and a parameter p as
the exponent power to the base kernel. The base kernel that is
widely used in the exponentiation kernel is RBF or Matern or
rational quadratic kernels with an exponent.64 The deep learning
kernel is another kernel that has the following general functional
form

| |k x x k g x w g x w w( , ) ( ( , ), ( , ) )i j i j (9)

The term g(x,w) is specially designed for capturing complex
signatures in the data set by deep learning, with the optimized
weights w.65 The deep kernel structure that we employed is
given below as follows k(x,x* | Θ)

|
* |
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(10)

where the parameter (Θ) of the above kernel is equivalent to a
combination of ap, ∑p, and μp, which is a mixture of weight,
bandwidth, and frequencies, respectively.66 For model pre-
dictions of GPR for an unseen new input data x*, the following
relation will hold
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where f* would follow the distribution as follows

*| * * *f x y x f cov f, , ( ( ), ( )) (12)

with

* = * + * [ + ]f k x x k x x I y( ) ( , ) ( , ) ( )2 1 (13)

* = * * * [ + ] *cov f k x x k x x k x x I k x x( ) ( , ) ( , ) ( , ) ( , )2 1

(14)

Equations 12−14 are used to perform model predictions with
the unseen input instance x*.

For the GPR modeling, the data sets (with labeled inputs and
outputs) are split randomly into two parts: (a) train set and (b)
test set. The test set is used to benchmark the performance of the
built models, while the train set is utilized for training the
models. In our work, the data set is divided into 70% and 30% as
a training set and a test set, respectively. Before the training
phase, a fraction of the train set is randomly chosen as a
validation set. The data set is divided into train and test sets
numerous times at distinct random instances to eliminate bias in
the results.

We also validated and benchmarked different ML models
against the GPR models, including linear regression (LR), lasso
regression (LOR), ridge regression (RR), elastic-net regression
(ELR), principal component regression (PCR), partial least-
square regression (PLSR), support vector regression (SVR), and
multilayer perceptron (MLP). The performance of all ML
models, including GPR, is estimated by two metrics: (1)
coefficient of determination (R2) and (2) root-mean-square
error (RMSE).67 The simulations are appropriately performed

in the Python environment using Scikit-learn and Pytorch
libraries.
Interpreting the GPR Prediction Model Using SHAP.

ML models tend to dismiss the physical relevance of input
features on the predictions. The model would become more
generally explainable and easy to interpret if the effect of input
qualities on outputs could be established. To this extent,
recently, there have been various techniques proposed in the
literature, such as LIME,68 DeepLIFT,69 layer-wise relevance
propagation,70 Shapley regression values,71 Shapley sampling
values, and quantitative input influence,72 among others.

The Shapley Additive exPlanation (SHAP) is a technique that
helps interpret the impact of a feature value on prediction using
the “Shapley value”. It is the average value of a feature’s marginal
contribution over all possible feature combinations. Suppose a
regression model and their prediction function be f ′ (x1,···,xn),
where x1,···,xn are the features. By means of SHAP, the
contribution of the jth feature is computed as follows

=f f x E f X( ) ( ) ( ( ))j j j (15)

where the upper-case letter stands for the feature random
variable. E( f ′(Xj)) is the mean effect estimate for the jth feature
and their contribution, computed as the difference between the
feature prediction and the average estimation. If we add up every
feature contribution at once, we get the following

== =f f x f E X( ) ( ( ) ( ( )))j
N

j j
N

j j1 1 (16)

Let f x(S) denote the estimate feature values in the set S that are
minimized over features not in the set S

= ···f S f x x P E f X( ) ( )d ( ( )))x N x S X1 (17)

The Shapley value calculation for a feature value is its
contribution to the prediction, weighted and summed across
all feasible feature value combinations. It is calculated as a
feature’s average marginal contribution to overall feasible
coalitions of features. Thus, the Shapley value ϕj( f x) is estimated
as follows

= | |! | | !
!

[ { } ]
{ }

f
S N S

N
f S j f S( )

( 1)
( ) ( ))j x

S N j
x x

/

(18)

where S denotes the subset of features and N denotes the total
number of input features. It would be either negative or positive,
and a negative value means the feature instance negatively
impacts the target value and vice versa.

The explanatory technique implements the additive feature
contribution, which relies on the linear combination of a feature
set as follows.

= +
=

g z z( )
j

N

j jo
1 (19)

where z′ ∈{0,1}N is the coalition vector, N is the number of
features, and ϕj is the attribute by the jth feature.73 In this study,
we have interpreted the best-performing GPR models by
utilizing the “KernelSHAP” framework. It is appropriate for
nonlinear models such as GPR and interprets the feature
importance by evaluating the Shapley values.

The KernelSHAP calculates the contributions of each feature
value to the estimate for an instance x. The KernelSHAP
algorithm involves five major steps as follows.
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1. Sample coalitions zk′ ∈ {0,1}M, where k = {0,1,···,K}, 1
means the coalition has feature and 0 means feature is
absent.

2. Get prediction for each zk′: f ′(hx(zk′)), where
{ }h : 0, 1x

M P.

3. Estimate the weight for each zk′ using the SHAP kernel
Πx(z′)73

=

| |
| | | |

z
M

M
z

z M z
( )

( 1)

( )
x i

k
jjjj

y
{
zzzz (20)

whereM indicates the maximum size of coalition and |z′|
stands for the number of features present for a given
instance.

4. Fit the weighted linear model by minimizing the loss L =
∑z′[f ′(hx(z′)) − g(z′)]2Πx(z′).

5. Return Shapley values for ϕk, the linear model’s
coefficients.

The computed Shapley values are finally presented as the
normalized average of absolute Shapley values per feature across
the feature data, Ik = 1/n∑i

n ∥ϕk
i∥. The high value of Ikmeans it

is a crucial feature while predicting the target variables and vice
versa. In this study, SHAP analysis is performed in the Python
environment.
Multiobjective Bayesian Optimization (MOBO). Baye-

sian optimization (BO) is a framework to maximize or minimize
the objective functions that are nonparametric. In the BO
framework, surrogate black-box functions are used to approx-
imate the actual objective function, and subsequently,
acquisition functions are utilized to sample the objective

Figure 2. Prediction results of recycle reactor models presented as scatter plots. Measured and predicted selectivity along with R2 values. (a) GPR with
rational quadratic kernel shown with a standard deviation aroundmean. (b) Combined results of selectivity prediction of all MLmodels. Measured and
predicted conversion. (c) GPR rational quadratic kernel with standard deviation aroundmean. (d) Combined results of all models used for conversion
prediction. The other ML models used for comparison purposes are LR, LOR, RR, ELR, PCR, PLSR, SVR, and MLP.
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function probabilistically. The most widely used surrogate
function in BO is GPR because of its ability to capture complex
nonlinear characteristics and the uncertainty in prediction.74,75

A key component of BO is the acquisition function. Expected
improvement is one of the most extensively used acquisition
functions in the BO framework.
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+
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The mean and variance of the GPR model output at a given
point x are μ(x) and σ(x), respectively. f is the objective
function, optimized with an estimated maximum at x+, and ψ(z)
and ϕ(z) denote a standard Gaussian distribution’s cumulative
and density functions, respectively. The lower confidence bound
(LCB) of the acquisition function is defined as follows

=x x xLCB( ) ( ) ( ) (22)

where κ is a parameter used for balancing exploitation and
exploration.76 Maximum probability of improvement (MPI) is
another option for an acquisition function.

=
+

x
E f x f x

f x
MPI( )

( ( ) ( ) )
( ( ))

i
k
jjjjj

y
{
zzzzz (23)

where ϵ is used to indicate the percentage of exploitation. The
Bayesian optimization is carried out in this work with the help of
the GPyOpt toolbox77 in the Python environment.

This study employs multiobjective Bayesian optimization
(MOBO) in a weighted objective framework. A mathematical
description of the weighted objective function is given as follows

=obj x Tar GP x( ) ( ( ))cov conv 1
2

(24x)

=obj x Tar GP x( ) ( ( ))sel sel 2
2

(24y)

= +obj x w obj x w obj x( ) ( ) ( ) (1 ) ( )weight cov sel (24z)

where objcov(x), objsel(x), and objweight(x) are the objective
function for conversion, the objective function for selectivity,
and the multiobjective weighted function, respectively. The
proposed interpretable GPR models with an explainable feature
set are used as surrogate models for conversion and selectivity,
GP1(x) andGP2(x), respectively, and w∈ {0,1}. The Tarconv and
Tarsel are the chosen valued target variables for conversion and
selectivity, respectively, and have been normalized between 0
and 1, by dividing the maximum value of the target variable. eqs
24x and 24y refer to the objective function for conversion and
selectivity irrespective of reactor type. Both objectives are
combined in the weighted objective function as given in eq 24z.

■ RESULTS AND DISCUSSION
First, we consider the prediction of selectivity of methanol and
conversion of CO for the recycling reactor as target variables
using GPR models. Figure 2a shows the GPR prediction of

Figure 3. R2 metric of the test set for GPR performance with different kernels is shown in bar plots for selectivity and conversion parameters, as
displayed in (a) and (b), respectively.
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selectivity with the standard deviation of prediction using the
best-performing kernel compared to the actual experimental
data points with values of R2 for the train set and test set as 0.999
and 0.989, respectively. To achieve this, the hyperparameters of
the GPR model are tuned with the help of a random search
method. We have tried different types of kernels, as indicated in
the bar plot in Figure 3; the order of kernels is descending based
on their performance. The best-performing kernel is the rational
quadratic kernel (length scale = 10.0, α = 0.5), with the R2 value
of 0.989 for the test, as clearly visible in Figure 3a with the blue-
color bar. All kernels’ performance (R2 of train and test) and
corresponding hyperparameter values are collated in Table S6 in
Section S2 of the Supporting Information.

Along similar lines, we proceed to predict the conversion of
CO, a key parameter in the reaction. Figure 2c depicts GPR
prediction and the standard deviation of prediction for the best

kernel, the rational quadratic kernel, against the actual
experimental data points. We obtain an R2 of 0.991 for the
training data set, and the test data set has an R2 of 0.980. In this
kernel, we have used the length scale (l) = 1.0 and α = 0.75 as the
tuned hyperparameter values. We also evaluated the perform-
ance of other kernels, and their results in the form of metric R2

with tuned hyperparameters are collated in Table S5 of Section
S2 of the Supporting Information and shown in Figure 3b, as
indicated in red color. GPR model predictions match the
experimental data in both cases as the prediction and the
measured data coincide with the 45-degree line. For comparison
purposes, the GPR prediction performance is evaluated using
the R2 metric on the test data and is reported against other
standard MLmodels LR, LOR, RR, ELR, PCR, PLSR, SVR, and
MLP, as shown in Figure 2b,d for selectivity and conversion,
respectively. The hyperparameters of all ML models are

Figure 4. Prediction results of once-through reactor models presented as scatter plots. Measured and predicted selectivity along with R2 values. (a)
GPR with a rational quadratic kernel with a standard deviation around mean. (b) Combined results of selectivity prediction of all ML models. For
conversion, (c) GPR rational quadratic kernel with a standard deviation around mean. (d) Combined results of all models used for conversion
prediction. The other ML models used for comparison purposes are LR, LOR, RR, ELR, PCR, PLSR, SVR, and MLP.
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included in the Supporting Information. Tables S1 and S2
represent selectivity and conversion results, respectively. The
mean RMSE and mean R2 for all ML models are represented in
the form of bar plots in Figure 5a,b for selectivity and
conversion, respectively.

Second, we developed GPR models for methanol selectivity
and CO conversion in once-through reactors. Interestingly, we
do see that various kernels are giving comparable performances,
as is clearly shown in Figure 3a with the blue-color bar and in
Figure 3b with the red-color bar. In particular, the rational
quadratic kernel performs exceptionally well, with R2 values of
1.0 and 0.968 for the train data set and 1.0 and 0.948 for the test
data set, as shown in Figure 4a,c for selectivity and conversion,
respectively. This agrees well with recycle reactor results,
wherein the rational quadratic kernel proved the best for the
given cases. In this case, also, we have optimized the GPRmodel
hyperparameters using random search techniques. For selectiv-
ity and conversion, respectively, all kernel results are tabulated in
Tables S7 and S8 in the Supporting Information. The length-
scale parameter of the optimized rational quadratic kernel is 1.0,

and α is 0.1 for both case conversion and selectivity, respectively.
Similar to the previous case, we have also compared the
performance of other ML models against the GPR models. The
scattered plots with the test data set’s R2 metric of various ML
models are showcased in Figure 4b,d for selectivity and
conversion, respectively. The detailed analysis regarding the
prediction performance of all MLmodels is collated in Tables S3
and S4 for selectivity and conversion, respectively, and
presented in the Supporting Information. Further, the models’
mean RMSE and mean R2 are shown in bar plots for selectivity
and conversion in Figure 5c,d, respectively.

These results unmistakably demonstrate the GPR prediction’s
advantage in terms of R2 and RMSE. Since the GPR provides
distribution for a prediction value rather than a single point as a
prediction, it can quantify the prediction variability. Other ML
models cannot account for this prediction variability. By
choosing different kernel functions, it has the extraordinary
ability to add prior information and specifications about the
underlying data’s signature. This supports the GPR model’s
overall ability to predict the reaction parameters.

Figure 5. Evaluated mean R2 of train and test and mean RMSE of train and test are shown in (a), (b), (c), and (d), where (a) and (b) represent
selectivity and conversion in the recycle reactor, respectively. The bar plots (c) and (d) represent selectivity and conversion in the once-through
reactor, respectively.
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Next, we interpret our best GPR models by implementing the
SHAP technique. It gives us some critical insights related to the
feature set. Figures 6 and 7 indicate the SHAP summary plots,

which depict the relevance of features and Shapley values. The
importance of features is sorted in a descending order (top to
bottom), and the color gradient represents the feature values as
they progress from low to high. The “rational kernel” performs

well with GPR for predicting the recycle reactor’s target variables
(conversion and selectivity). According to Figure 6a, Y(co, in) is
the essential feature. The low values are more dominating
(having a positive effect) than the high values of Y(co, in), and
pressure seems to be the least contributing. The high pressure
and high temperature are preferable for prediction of CO
conversion. The Y(co, in) is also a key feature with preferable
high values when predicting the selectivity. The least important
feature is Fin(nL/min), which has minimal impact on
prediction, as shown in Figure 6b.

Similarly, SHAP is used to investigate conversion and
selectivity prediction models (best GPR models) for the once-
through reactor. Here, GPR with a rational kernel also
performed well for both conversion and selectivity as target
variables. From the SHAP summary plots, it is evident that for
predicting the conversion, Fin(nL/min) is the most relevant
feature, and it is preferred to have a slow flow rate that results in a
positive Shapley value (i.e., having a positive impact on
prediction). Moreover, the least desired feature is pressure,
but high pressure is preferred. Moreover, lower values of the
Y(co, in) feature have a favorable effect, as shown in Figure 7a.
While predicting the selectivity, Y(co, in) seems an essential
feature for selectivity. Y(co, in) values are directly proportional
to the Shapley value; thus, high values are preferable. The other
three features seem to be neutral as their Shapley values are very
close to zero. Fin(nL/min) is the least important among the
three, as clearly shown in Figure 7b.

Now we proceed to present the results of the MOBO for
maximizing both selectivity and conversion together. The three
acquisition functions used in this study are EI, LCB, and MPI.
The functional form of the weighted objective function is given
in eq 24z. Here, we have attempted a range of weights (w), i.e., w
∈ {0,1} with the interval of 0.01. The weighted objective
function is minimized for each weight (w). Figure 8a,b plots
show the comparative study of all objectives for the recycling
reactor and the once-through reactor data sets, respectively. The
black line indicates the weighted objective function, and the red
and blue lines depict the conversion and selectivity objectives,
respectively. The weighted objective for the recycle reactor in
Figure 8a indicates that the conversion objective decreases as the
weight w increases from 0, while the selectivity objective stays
close to zero. The weighted objective function grows until w =
0.5 and then stays close to the individual objectives, possibly
owing to the recycling effect. It is observed that when the weight
(w) equals to 0.5, all three profiles coincide with each other. In
this case, the optimal values of process parameters are 535, 70.3,
0.241, and 0.98 K for temperature, pressure (0.1 MPa), Y(co,
in), and Fin(nL/min), respectively. However, for the once-
through reactor in Figure 8b, we see that the conversion
objective decreases as the weight w increases from 0 and vice
versa for the selectivity objective. In this case, it can be seen that
the overall weighted objective is to increase initially, reaching a
maximum when the weights are equal, and decrease afterward.
When the overall weighted objective value is maximum, the
optimal values for the process parameters of temperature,
pressure (0.1 MPa), Y(co, in), and Fin(nL/min), are 515 K,
5.10, 0.382, and 0.00335, respectively.

■ CONCLUSIONS
This study has employed GPR as a machine learning tool to
predict methanol selectivity and CO conversion using sparse
experimental data sets. We employed experimental data sets of
syngas conversion to methanol using a once-through and a

Figure 6. Summary plots of SHAP result of (a) conversion and (b)
selectivity for the recycle reactor.

Figure 7. Summary plots of SHAP result of (a) conversion and (b)
selectivity for the once-through reactor.
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recycle reactor. We have trained the GPR model with various
kernels and found that the rational quadratic kernel is the best-
performing kernel for conversion and selectivity target variables
for either the recycle reactor or the once-through reactor. TheR2

metric values are 0.989 and 0.980 for the test data set for
predicting selectivity and conversion, respectively, for the
recycle reactor. Similarly, the predictions of selectivity and
conversion for the once-through reactor are also good, with R2

metric values of 1.0 and 0.948, respectively, for the test data set.
We have benchmarked the performance of GPR models with
other standard ML models such as LR, LOR, RR, ELR, PCR,
PLSR, SVR, andMLP. The results indicate the superiority of the
GPR models in predicting reaction progress parameters for
methanol formation from syngas by quantifying the uncertainty
of the prediction. Final selected GPR models are further
interpreted by SHAP, which indicated that the inlet mole
fraction of CO (Y(co, in)) and the net inlet flow rate (Fin(nL/
min)) are salient features in the data sets that affect the target
variables, positively. Further, multiobjective optimization in a
weighted objective framework was also carried out using the
Bayesian optimization technique for both target variables
considering the developed GPR models as surrogate models
to obtain the preferred operational trajectory. The MOBO
worked well in optimizing the process input parameters with a
normalized weight range (w ∈ {0,1}) and found that at weight
equal to 0.5, the performance is optimal. Overall, it is expected
that the adoption of the proposed framework will help accelerate
the production of methanol as fuel and, thereby, contribute to
lessening environmental footprints.
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