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Background-—The relationship between plasma concentrations of betaine and choline metabolism and major cardiovascular
disease (CVD) end points remains unclear. We have evaluated the association between metabolites from the choline pathway and
risk of incident CVD and the potential modifying effect of Mediterranean diet interventions.

Methods and Results-—We designed a case-cohort study nested within the PREDIMED (Prevention With Mediterranean Diet) trial,
including 229 incident CVD cases and 751 randomly selected participants at baseline, followed up for 4.8 years. We used liquid
chromatography–tandem mass spectrometry to measure, at baseline and at 1 year of follow-up, plasma concentrations of 5
metabolites in the choline pathway: trimethylamine N-oxide, betaine, choline, phosphocholine, and a-glycerophosphocholine. We
have calculated a choline metabolite score using a weighted sum of these 5 metabolites. We used weighted Cox regression
models to estimate CVD risk. The multivariable hazard ratios (95% confidence intervals) per 1-SD increase in choline and a-
glycerophosphocholine metabolites were 1.24 (1.05–1.46) and 1.24 (1.03–1.50), respectively. The baseline betaine/choline ratio
was inversely associated with CVD. The baseline choline metabolite score was associated with a 2.21-fold higher risk of CVD
across extreme quartiles (95% confidence interval, 1.36–3.59; P<0.001 for trend) and a 2.27-fold higher risk of stroke (95%
confidence interval, 1.24–4.16; P<0.001 for trend). Participants in the higher quartiles of the score who were randomly assigned
to the control group had a higher risk of CVD compared with participants in the lower quartile and assigned to the Mediterranean
diet groups (P=0.05 for interaction). No significant associations were observed for 1-year changes in individual plasma metabolites
and CVD.

Conclusions-—A metabolite score combining plasma metabolites from the choline pathway was associated with an increased risk
of CVD in a Mediterranean population at high cardiovascular risk.

Clinical Trial Registration-—URL: http://www.controlled-trials.com. Unique identifier: ISRCTN35739639. ( J Am Heart Assoc.
2017;6:e006524. DOI: 10.1161/JAHA.117.006524.)
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I n the past few years, interest has emerged on the role of
plasma metabolites in the development of cardiometabolic

diseases and on how diet can influence disease risk through
inducing changes in the metabolome profile. Lately, metabo-
lites from the choline pathway have received increasing
attention for its link with the gut microbiota and the potential
mechanistic relevance of them.1 In particular, these studies
have focused on metabolites associated with betaine and
choline metabolism and the gut microbiota–dependent
metabolite, trimethylamine N-oxide (TMAO), which have been
associated with atherosclerosis development and cardiovas-
cular disease (CVD).1,2 Choline can be oxidized to betaine in
humans, and the betaine/choline ratio has been inversely
associated with nonalcoholic fatty liver disease,3 but its
association with CVD has not been previously described.

Dietary lipid phosphatidylcholine is the primary source of
choline, and catabolism of betaine and choline by intestinal
microbes leads to TMAO production.4 Foods, such as meat,
egg yolks, and high-fat dairy products, which are rich in
phosphatidylcholine, choline, carnitine, and TMA, serve as
dietary precursors for TMAO generation in mice and humans.2

Dietary supplementation with these metabolites in mice
promoted atherosclerosis, and suppression of the microbiota
with antibiotics prevented the effect of dietary choline in
enhancing atherosclerosis.4 This evidence suggests that diet
could modulate intestinal microbiota composition and, sub-
sequently, the ability to synthesize trimethylamine and TMAO,
thus providing a mechanistic link between diet, gut

microbiome, and atherosclerosis.1,2,5,6 However, not all
human studies have confirmed the association between
TMAO and cardiovascular events.7–10 Indeed, the relation
between plasma concentration of choline pathway metabo-
lites and the incidence of hard CVD end points in a
population-based level and the role that diet may play in
these associations remain to be elucidated.

We hypothesized that higher concentrations at baseline
and 1-year changes in choline pathway metabolites (TMAO,
betaine, choline, phosphocholine, and a-glycerophosphocho-
line) would be associated with the risk of cardiovascular
events. The Mediterranean diet (MedDiet), which is high in
plant-based foods, has been linked with a reduced risk of
cardiovascular risk factors and CVD.11 Because previous
evidence suggests that excessive consumption of phos-
phatidylcholine and choline could be reduced by consuming
a plant-based or high-fiber diet,4 such as the MedDiet, we
hypothesized that the associations between choline metabo-
lites and CVD will be modified by MedDiet interventions.
Using a case-cohort study conducted in participants at high
cardiovascular risk from the PREDIMED (Prevention With
Mediterranean Diet) Study, we aimed to address the following:
(1) whether baseline choline pathway metabolites (and their
1-year changes) predict future risk of CVD and (2) whether
these associations are mitigated by a MedDiet intervention.

Methods

Study Population
We designed a case-cohort study in the framework of the
PREDIMED Study. The design and protocol of the PREDIMED
Study (http://www.predimed.es) have been described in
detail elsewhere.11,12 Briefly, the PREDIMED Study was a
large, multicenter, parallel-group, randomized, controlled trial
aimed at evaluating the effect of the MedDiet on the primary
prevention of CVD. A total of 7447 participants, aged 55 to
80 years and at high cardiovascular risk but free of CVD at
baseline, were randomly assigned to receive 1 of the following
3 interventions: MedDiet supplemented with extravirgin olive
oil, MedDiet supplemented with mixed nuts, or an equivalent
education program with advice to reduce the intake of all
types of fat (control group). The primary end point of the
PREDIMED trial was a composite of cardiovascular events
(myocardial infarction, stroke, or death from cardiovascular
causes); 288 incident CVD cases occurred during 4.8 years of
follow-up.

In a case-cohort study design, all incident cases and a
randomly selected sample of the original cohort were selected
as participants. In the present study, we included all the
incident cases of CVD diagnosed during the follow-up and a
random sample of 10% of the original PREDIMED trial

Clinical Perspective

What Is New?

• Baseline plasma concentrations of choline pathway metabo-
lites (choline, phosphocholine, and a-glycerophosphocho-
line) and a metabolite score combining choline pathway
metabolites were associated with the risk of major cardio-
vascular events after 4.8 years of follow-up in a Mediter-
ranean population at high cardiovascular risk.

What Are the Clinical Implications?

• Our findings suggest that metabolites from choline path-
ways may play a role in the development of cardiovascular
disease.

• The present work may have important public health
implications for focusing on dietary interventions, such as
adhering to a Mediterranean diet and reducing the intake of
animal products, to improve metabolite profiles and,
consequently, the risk of cardiovascular disease.

• However, further research is needed to replicate these
results in other populations and investigate the potential
mechanisms underlying the associations between metabo-
lite profiles and cardiovascular disease.
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(referred to as the “subcohort,” which by its random selection
may include some cases) with available EDTA plasma samples
at baseline. With this design, we maintained the original
randomization scheme of the trial. The present analysis
included a total of 980 participants, 751 were noncases and
229 were cases (there were 37 overlapping cases between
the subcohort and the total cases). Of these participants, 923
of the 980 had available samples after 1 year of follow-up and
were included in the 1-year change analyses (Figure S1). We
defined cases as the participants who developed a major
cardiovascular event (stroke, myocardial infarction, or cardio-
vascular death) during follow-up. We defined subcohort as the
random sample selected from the full roster of the PREDIMED
Study (including 37 incident CVD cases, which were defined
as internal cases). The 37 overlapping cases were treated as
cases in the analysis (total CVD cases, 229). We defined
external cases as the cases that were not randomly included
in the subcohort. All participants provided written informed
consent, according to a protocol approved by the institutional
review boards before inclusion in the study.

Metabolite Profiling
At baseline and at yearly follow-up visits, trained nurses
collected fasting blood samples from the PREDIMED partic-
ipants. After an overnight fast, tubes for EDTA plasma were
collected and aliquots were coded and kept refrigerated until
they were stored at �80°C in freezers. Pairs of samples
(baseline and first-year visit) were randomly ordered and
shipped on dry ice to the Broad Institute (Cambridge, MA) for
the metabolomics analysis.

The present work was a hypothesis-driven analysis of 5
metabolites from the choline pathway. Polar plasma metabo-
lites, including TMAO, choline, betaine, phosphocholine, and
a-glycerophosphocholine, were profiled using liquid chro-
matography–tandem mass spectrometry on a system
composed of a Shimadzu Nexera X2 U-HPLC coupled to a Q
Exactive hybrid quadrupole orbitrap mass spectrometer.13

Metabolite extracts were prepared from plasma samples
(10 lL) via protein precipitation with the addition of 9 volumes
of 74.9:24.9:0.2 v/v/v acetonitrile/methanol/formic acid
containing stable isotope-labelled internal standards (valine-
d8 and phenylalanine-d8). The samples were centrifuged
(10 minutes, 9000g, 4°C), and the supernatants were injected
directly onto a 15092-mm, 3-lm Atlantis HILIC column. The
column was eluted isocratically at a flow rate of 250 lL/min
with 5% mobile phase A (10 mmol/L ammonium formate and
0.1% formic acid in water) for 0.5 minutes, followed by a linear
gradient to 40% mobile phase B (acetonitrile with 0.1% formic
acid) over 10 minutes. Mass spectrometry analyses were
performed using electrospray ionization in the positive ion mode
using full-scan analysis over 70 to 800 m/z at 70 000

resolutions and a 3-Hz data acquisition rate. Other mass
spectrometry settings were as follows: sheath gas, 40; sweep
gas, 2; spray voltage, 3.5 kV; capillary temperature, 350°C; S-
lens, RF40; heater temperature, 300°C;microscans, 1; automatic
gain control target, 1e6; and maximum ion time, 250 millisec-
onds. Metabolite identities were confirmed using authentic
reference standards. Raw datawere processed using TraceFinder
software and Progenesis QI. Internal standard peak areas were
monitored for quality control and to ensure system performance
throughout analyses. Pooled plasma reference sampleswere also
inserted every 20 samples as an additional quality control.

Ascertainment of CVD Cases
For the present analysis, the primary end point was a composite
of cardiovascular events (myocardial infarction, stroke, or
death from cardiovascular causes). As a secondary end point,
we separately analyzed incident stroke, because this was the
most common element included in the definition of the
composite primary end point in the PREDIMED Study. Infor-
mation onmajor cardiovascular events was updated on a yearly
basis and obtained from the continuous contact with partici-
pants and their families during the trial, contact with general
practitioners, the yearly comprehensive review of medical
records, and consultation of the National Death Index. The end
point was determined by review of the Endpoint Adjudication
Committee that was blinded to the intervention group. Only
confirmed cases were included in the analyses.

Covariate Assessment
At baseline and at yearly follow-up visits, a questionnaire
about lifestyle variables, educational achievement, history of
diseases, medication use, and family history of disease was
administered. Physical activity was assessed using the
validated Spanish version of the Minnesota Leisure-Time
Physical Activity questionnaire.14 Participants were consid-
ered to have diabetes mellitus, hypercholesterolemia, or
hypertension if they had previously been diagnosed and/or
they were being treated with antidiabetic, cholesterol-low-
ering, or antihypertensive agents, respectively. Trained dieti-
tians completed a 137-item validated semiquantitative food
frequency questionnaire in face-to-face interviews with par-
ticipants.15 We used Spanish food composition tables to
estimate energy and nutrient intake.16 Trained personnel took
anthropometric and blood pressure measurements.

Statistical Analysis
We applied a rank-based inverse normal transformation to
approximate a normal distribution of metabolite levels.17

Baseline characteristics are presented per case status and for
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quartiles of the choline score as the mean (SD) for quanti-
tative traits and number (percentage) for categorical variables.
Baseline characteristics were compared between cases and
noncases using t tests for continuous variables and v2 tests
for categorical variables.

We used Cox proportional hazard models, with Barlow
weights (to account for oversampling of cases in the study
design18), to estimate hazard ratios (HRs) and their 95%
confidence intervals (CIs) for the primary combined end point
of CVD and, separately, for nonfatal stroke. In all Cox models,
Barlow weights were used to account for oversampling of
cases in the study design. Noncases in the subcohort were
weighted inversely proportional to the sampling fraction (ie, in
our study, the weight was 10). For noncases, observation time
began on the date of their randomization and ended on their
date of death (from noncardiovascular causes), the study end
date (December 1, 2010), or the date of the last medical visit
(if they had stopped attending scheduled intervention
appointments), whichever came first. Cases had a weight of
1 at the instant the individual experienced an end point, and
observation time was the time when the participant developed
CVD. Incident internal cases were treated as noncases
(observation time began on the date that they were random-
ized and ended the instant the individual died) until they
became cases, and at such instant their weight changed.

Cox models were adjusted for age (years), sex (men/
women), family history of premature heart disease (yes/no),
smoking (never, former, or current), and body mass index (kg/
m2), and were stratified by intervention group (both MedDiet
interventions and low-fat control group) (model 1). Model 2
was additionally adjusted for physical activity (metabolic
equivalent tasks in min/d), baseline hypertension (yes/no),
dyslipidemia (yes/no), and diabetes mellitus (yes/no). Base-
line individual plasma metabolites were analyzed as both
continuous variables (1-SD increment in transformed concen-
tration of metabolites) and using quartiles (using cut points
defined among noncases). To test for the linear trend across
quartiles, the median of each quartile was assigned and
analyzed as a continuous variable. To account for multiple
testing, we adjusted P values of the multivariable-adjusted
associations between 1-SD increment in metabolite concen-
tration and CVD risk using the Benjamin-Hochberg procedure.

In addition, we calculated a choline metabolite score as the
weighted sum of concentrations of 5 metabolites from the
choline pathway and modeled the score as a main exposure
variable in the Cox model. The weight for each metabolite was
the regression coefficient for a 1-SD increment in the plasma
concentration estimated from the multivariable Cox regression
model. We also calculated the ratio between betaine and choline
(by dividing the raw values and then applying inverse normal
transformations). We conducted stratified analyses by sex, age
(<65 versus ≥65 years), obesity (<30 versus ≥30 kg/m2),

smoking status (current/former versus never), family history of
premature coronary heart disease, baseline type 2 diabetes
mellitus, baseline hypertension, and baseline dyslipidemia. The
interactions between these variables of stratification and the
choline score were tested by adding multiplicative terms into
themultivariable Coxmodels; a likelihood ratio test was used for
testing statistical significance of the interaction term.

We also examined the associations of 1-year changes in
the individual plasma metabolites with CVD. We used the
same Cox regression models as in the baseline analyses, but
we further adjusted for baseline levels and an interaction term
between these metabolites at baseline and 1-year change
(both as continuous variables). We repeated the analysis using
incident stroke as the outcome, both including and excluding
the nonstroke CVD cases (ie, treating the 113 nonstroke CVD
cases as noncases or removing them from analyses), and
found similar results. Therefore, we present stroke results
only after removing the nonstroke CVD cases.

To examine the combined associations of the MedDiet
interventions and choline pathway metabolites with the
incidence of CVD, we categorized the participants into joint
subgroups, according to the assignment to the intervention
group (MedDiet merged versus control group), quartiles of the
choline metabolite score, and betaine/choline ratio. We used
participants assigned to the control group and the first
quartile of the choline score as the reference group; we also
used participants in the MedDiet group and the first quartile
of the betaine/choline ratio as the reference group. We
estimated HRs and their 95% CIs for CVD, according to this
joint categorization, using the same models as in the previous
analysis. To test the interaction between the MedDiet and the
metabolite score and betaine/choline ratio, we added a
multiplicative term (1 df) between intervention group (Med-
Diet merged versus control group) and the continuous score
into the multivariable Cox models. In secondary analysis, we
further adjusted multivariable model 2 for previous metabo-
lites that predicted CVD in our population, including a
weighted score of branched-chain amino acids (isoleucine,
leucine, and valine)19; short-chain (C2carnitine to C7car-
nitine), medium-chain (C8carnitine to C14:2carnitine), and
long-chain (C16carnitine to C26carnitine) acylcarnitines
score20; and glutamine/glutamate ratio.21 In addition, we
further adjusted the models for medication use (dyslipidemia,
antihypertensive, and antidiabetic medications).

All statistical analyses were performed using SAS version
9.4 and R version 2.13.0. P<0.05 was considered statistically
significant.

Results
The baseline characteristics of the 980 participants are shown
in Table 1, according to whether they had a major CVD event
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during the 4.8 years of follow-up and quartiles of the choline
metabolite score. Participants in the higher quartile of the
score had higher risk profiles at baseline than those in the
lower quartile of the score, including older age and higher
prevalence of hypertension, dyslipidemia, and diabetes mel-
litus; they were also more likely to smoke. The characteristics
of the metabolites included in the analysis and the pathways
in which they are involved are described in Table S1. A
diagram of the choline pathway is presented in Figure S2. A
heat map of Spearman correlation coefficients of the plasma
metabolites analyzed in the present study is shown in
Figure S3. Means and SD of plasma metabolite concentra-
tions are presented in Table S2 for the total population and in
Table S3 stratified by the intervention group.

Plasma Concentrations of Choline Pathway
Metabolites and CVD
The associations between individual plasma metabolites and
the choline metabolite score with the risk of CVD and stroke
are presented in Table 2. Compared with participants in the

lowest quartile of choline, those in the highest quartile had a
significantly higher risk of CVD after adjusting for cardiovas-
cular risk factors (HR [95% CI], 1.72 [1.05–2.81]; P=0.01 for
trend). A 1-SD increment in baseline concentrations of choline
and a-glycerophosphocholine was associated with higher risk
of CVD incidence. Similar, but weakened, associations were
observed when stroke was used as the end point (Table 2). In
the multivariable adjusted models, the choline score was
associated with a 2.21-fold higher risk of CVD and a 2.27-fold
higher risk of stroke across quartiles (HR [95% CI], 2.21
[1.36–3.59] [P<0.001 for trend] and 2.27 [1.24–4.16]
[P<0.001 for trend], respectively). The betaine/choline ratio
was inversely associated with the incidence of CVD (HR [95%
CI], 0.57 [0.35–0.92]; P=0.04 for trend) but not with the
incidence of stroke alone. The HRs associated with a 1-SD
increment in the choline metabolite score and the betaine/
choline ratio were 2.27 (95% CI, 1.36–3.80) and 0.80 (95% CI,
0.68–0.94), respectively. Subgroup analysis for the associa-
tion between the choline score and the risk of CVD is shown
in Table 3. We observed similar associations between the
score and CVD after adjusting for baseline plasma

Table 1. Baseline Characteristics of the Study Population

Characteristics Cases (n=229) Noncases (n=751)

Quartiles of Choline Metabolite Score*

1 (n=231) 2 (n=256) 3 (n=246) 4 (n=247)

Age, mean�SD, y 69.4�6.5 67.0�6 66.3�5.5 67.7�6.5 68.0�5.9 68.3�6.2

Female sex, n (%) 91 (39.7) 437 (58.1) 151 (67.1) 135 (53.3) 118 (48.1) 137 (46.6)

Body mass index, mean�SD, kg/m2 29.6�3.7 29.7�3.6 29.9�3.7 29.5�3.7 29.7�3.6 29.7�3.6

Intervention group, n (%)

MedDiet+EVOO 82 (35.8) 281 (37.4) 74 (32.9) 94 (37.1) 86 (35.1) 121 (41.1)

MedDiet+nuts 65 (28.4) 249 (33.1) 72 (32.0) 74 (29.2) 82 (33.4) 98 (33.3)

Control 82 (35.8) 221 (29.4) 79 (35.1) 85 (33.6) 77 (31.4) 75 (27.5)

Family history of CHD, n (%) 44 (19.2) 193 (25.7) 66 (29.3) 60 (23.7) 53 (21.6) 63 (21.4)

Hypertension, n (%) 189 (82.5) 628 (83.7) 183 (81.3) 215 (84.9) 203 (82.8) 246 (83.6)

Dyslipidemia, n (%) 134 (58.5) 558 (74.3) 146 (64.9) 179 (70.7) 176 (71.8) 212 (72.1)

Diabetes mellitus, n (%) 147 (64.2) 347 (46.2) 115 (51.1) 129 (50.9) 121 (49.4) 154 (52.4)

Antihypertensive medication, n (%) 167 (72.9) 564 (75.1) 173 (76.9) 193 (76.3) 173 (70.6) 217 (73.8)

Lipid-lowering medication, n (%) 91 (39.7) 367 (48.8) 94 (41.8) 119 (47.0) 118 (48.2) 143 (48.6)

Oral antidiabetic agents, n (%) 109 (47.60) 225 (29.96) 65 (28.9) 88 (34.8) 88 (35.9) 114 (38.8)

Smoking, n (%)

Never 104 (45.4) 474 (63.1) 153 (68.0) 146 (57.7) 135 (55.1) 161 (54.7)

Former 79 (34.5) 184 (24.5) 42 (18.6) 68 (26.8) 80 (32.6) 89 (30.2)

Current 46 (20.1) 93 (12.4) 30 (13.3) 39 (12.4) 30 (12.2) 44 (14.9)

Cases have a composite of cardiovascular disease events (myocardial infarction, stroke, and cardiovascular death). CHD indicates coronary heart disease; EVOO, extravirgin olive oil; and
MedDiet, Mediterranean diet.
*Quartiles were calculated on the basis of the distribution of the choline metabolite score in the subcohort. Inverse normal transformation was applied to raw values of metabolites. To
build the score, we applied a weighted sum of concentrations of 5 metabolites in the choline pathway (trimethylamine N-oxide, betaine, choline, phosphocholine, and
a-glycerophosphocholine).
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Table 2. Risk of CVD and Stroke by Baseline Plasma Concentrations of Choline Metabolites in the PREDIMED Study

Variable

HR (95% CI) for Quartiles of Plasma Metabolite Concentration

PTrend Value
HR (95% CI) per
1-SD Increment1 2 3 4

CVD

TMAO

No. of cases 43 69 58 59 . . . . . .

Multivariable model 1 Ref. 1.44 (0.90–2.28) 1.13 (0.70–1.80) 1.25 (0.78–1.99) 0.60 1.04 (0.89–1.21)

Multivariable model 2 Ref. 1.37 (0.85–2.22) 1.08 (0.66–1.76) 1.09 (0.67–1.77) 0.94 1.01 (0.85–1.18)

Betaine

No. of cases 51 57 60 61 . . . . . .

Multivariable model 1 Ref. 0.94 (0.59–1.48) 1.03 (0.66–1.61) 0.77 (0.49–1.21) 0.30 0.89 (0.77–1.03)

Multivariable model 2 Ref. 1.00 (0.63–1.60) 1.23 (0.77–1.97) 0.91 (0.77–1.49) 0.87 0.95 (0.82–1.12)

Choline

No. of cases 34 43 68 84 . . . . . .

Multivariable model 1 Ref. 1.03 (0.62–1.71) 1.30 (0.78–2.14) 1.55 (0.96–2.52) 0.03 1.21 (1.02–1.43)

Multivariable model 2 Ref. 1.08 (0.64–1.81) 1.48 (0.89–2.46) 1.72 (1.05–2.81) 0.01 1.24 (1.05–1.46)

Phosphocholine

No. of cases 46 58 57 68 . . . . . .

Multivariable model 1 Ref. 1.16 (0.73–1.85) 1.29 (0.81–2.05) 1.40 (0.89–2.24) 0.12 1.09 (0.92–1.28)

Multivariable model 2 Ref. 1.18 (0.73–1.93) 1.27 (0.77–2.08) 1.41 (0.87–2.28) 0.15 1.09 (0.92–1.30)

a-Glycerophosphocholine

No. of cases 51 56 47 75 . . . . . .

Multivariable model 1 Ref. 0.89 (0.56–1.42) 0.79 (0.50–1.26) 1.26 (0.81–1.97) 0.30 1.20 (1.00–1.44)

Multivariable model 2 Ref. 0.99 (0.62–1.57) 0.92 (0.57–1.51) 1.42 (0.89–2.28) 0.14 1.24 (1.03–1.50)

Choline metabolite score

No. of cases 39 64 57 106 . . . . . .

Multivariable model 1 Ref. 1.26 (0.77–2.05) 1.09 (0.64–1.81) 1.91 (1.20–3.04) <0.001 2.07 (1.25–3.41)

Multivariable model 2 Ref. 1.33 (0.81–2.19) 1.25 (0.74–2.11) 2.21 (1.36–3.59) <0.001 2.27 (1.36–3.80)

Betaine/choline ratio

No. of cases 74 52 63 40 . . . . . .

Multivariable model 1 Ref. 0.70 (0.46–1.08) 0.86 (0.56–1.30) 0.50 (0.32–0.78) <0.001 0.77 (0.66–0.90)

Multivariable model 2 Ref. 0.73 (0.47–1.14) 0.86 (0.55–1.34) 0.57 (0.35–0.92) 0.04 0.80 (0.68–0.94)

Stroke

TMAO

No. of cases 24 38 31 25 . . . . . .

Multivariable model 1 Ref. 1.32 (0.74–2.35) 1.06 (0.58–1.94) 0.91 (0.49–1.69) 0.55 0.93 (0.77–1.12)

Multivariable model 2 Ref. 1.19 (0.65–2.17) 0.98 (0.53–1.84) 0.78 (0.41–1.49) 0.31 0.89 (0.73–1.10)

Betaine

No. of cases 27 32 32 27 . . . . . .

Multivariable model 1 Ref. 1.08 (0.61–1.91) 1.06 (0.60–1.86) 0.73 (0.39–1.34) 0.29 0.91 (0.75–1.11)

Multivariable model 2 Ref. 1.15 (0.64–2.04) 1.32 (0.74–2.36) 0.89 (0.46–1.71) 0.85 1.00 (0.81–1.23)

Choline

No. of cases 19 24 31 44 . . . . . .

Multivariable model 1 Ref. 1.04 (0.54–2.00) 1.18 (0.59–2.33) 1.58 (0.84–2.99) 0.10 1.24 (0.98–1.56)

Multivariable model 2 Ref. 1.08 (0.56–2.09) 1.33 (0.67–2.62) 1.73 (0.91–3.29) 0.06 1.27 (1.02–1.59)

Continued
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concentrations of branched chain amino acids, acylcarnitines,
and glutamine/glutamate ratio: the HR per SD was 2.27 (95%
CI, 1.27–4.08). Similarly, the HR per SD for betaine/choline
ratio after adjustment for these metabolites was 0.77 (95% CI,
0.64–0.92). The associations between 1-SD increment in
choline and a-glycerophosphocholine remained significant
after multiple-comparison adjustment. The adjusted P values
were 0.03 and 0.04, respectively. Further adjusting the
models for medication use (dyslipidemia, antihypertensive,
and antidiabetic medications) did not change the results. For
the overall score, the HR per SD was 2.36 (95% CI, 1.39–
4.02); and for the betaine/choline ratio, the HR per SD was
0.82 (95% CI, 0.69–0.96).

Choline Pathway Metabolites and MedDiet
Interventions
As illustrated in the Figure, we observed a higher risk of CVD
events for those participants who had a higher choline score
(quartiles 2–4) and were assigned to the control group
compared with those with lower levels in the score and
assigned to the MedDiet intervention groups (HR, 2.37; 95%
CI, 1.34–4.18). Participants with a higher betaine/choline
ratio and assigned to the MedDiet intervention group had a
lower risk of CVD compared with those with a lower ratio and

in the control group (HR, 0.36; 95% CI, 0.21–0.63) (Figure).
The P values for interaction between the continuous choline
score, the betaine/choline ratio, and the intervention group
(MedDiet versus control group) and CVD were nonsignificant
at P=0.05 and P=0.93, respectively (Figure). Likewise, partic-
ipants with a higher score and in the control group also had a
higher risk of stroke (HR, 2.66; 95% CI, 1.22–5.80) (Table S4).

One-Year Changes in Plasma Concentrations of
Metabolites and CVD
No significant associations were observed for quartiles of
1-year changes in plasma concentrations of individual
metabolites and the risk of CVD and stroke. In multivariable
model 1, a 1-SD increment of betaine after 1 yearwas associated
with lower risk of CVD (HR [95% CI], 0.80 [0.66–0.98]), but the
association was attenuated in multivariable model 2 and when
analyzed as quartiles of the change (Table S5).

Discussion
In this case-cohort study nested within the PREDIMED Study,
we observed that baseline plasma concentrations of choline
pathway metabolites (choline, phosphocholine, and

Table 2. Continued

Variable

HR (95% CI) for Quartiles of Plasma Metabolite Concentration

PTrend Value
HR (95% CI) per
1-SD Increment1 2 3 4

Phosphocholine

No. of cases 23 26 29 40 . . . . . .

Multivariable model 1 Ref. 0.95 (0.51–1.79) 1.33 (0.72–2.44) 1.67 (0.94–2.98) 0.04 1.23 (0.99–1.53)

Multivariable model 2 Ref. 0.96 (0.50–1.84) 1.28 (0.66–2.46) 1.70 (0.93–3.11) 0.05 1.25 (1.00–1.57)

a-Glycerophosphocholine

No. of cases 31 23 23 41 . . . . . .

Multivariable model 1 Ref. 0.63 (0.34–1.18) 0.63 (0.35–1.15) 1.15 (0.67–1.98) 0.52 1.17 (0.91–1.50)

Multivariable model 2 Ref. 0.68 (0.36–1.26) 0.71 (0.38–1.35) 1.29 (0.74–2.25) 0.31 1.22 (0.96–1.55)

Choline metabolite score

No. of cases 21 25 22 50 . . . . . .

Multivariable model 1 Ref. 1.10 (0.58–2.09) 0.78 (0.40–1.53) 1.94 (1.07–3.50) 0.03 1.83 (1.13–2.97)

Multivariable model 2 Ref. 1.21 (0.63–2.33) 0.88 (0.44–1.76) 2.27 (1.24–4.16) 0.01 2.07 (1.25–3.44)

Betaine/choline ratio

No. of cases 38 26 33 21 . . . . . .

Multivariable model 1 Ref. 0.68 (0.39–1.20) 0.88 (0.52–1.52) 0.54 (0.30–0.97) 0.08 0.78 (0.64–0.95)

Multivariable model 2 Ref. 0.73 (0.41–1.30) 0.91 (0.52–1.61) 0.66 (0.35–1.26) 0.31 0.83 (0.66–1.03)

Inverse normal transformation was applied to raw values of metabolites. To build the score, we applied a weighted sum of concentrations of 5 metabolites in the choline pathway (TMAO,
betaine, choline, phosphocholine, and a-glycerophosphocholine). The betaine/choline ratio was calculated by dividing the raw values and then applying inverse normal transformations.
Model 1 was adjusted for age, sex, body mass index, family history of premature heart disease, and smoking and was stratified by intervention group (only in the overall analyses). Model 2
was adjusted as for model 1 and for physical activity (metabolic equivalent task units in min/d), hypertension, dyslipidemia, and diabetes mellitus. CI indicates confidence interval; CVD,
cardiovascular disease; HR, hazard ratio; PREDIMED, Prevention With Mediterranean Diet; Ref., reference; and TMAO, trimethylamine N-oxide.
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a-glycerophosphocholine) and a metabolite score combining
choline pathway metabolites were associated with the risk of
major cardiovascular events after 4.8 years of follow-up.
Higher concentrations of a choline metabolite score were
associated with higher risk of CVD and stroke, whereas the
ratio of betaine/choline was inversely associated with CVD
but not with stroke alone. Therefore, our findings suggest that
metabolites from choline pathways may play a role in the
development of CVD.

Plasma metabolites in the choline pathway, which are
derivatives from dietary sources and may also reflect

alterations in the gut microbiota, have been previously related
to multifactorial diseases, such as obesity, type 2 diabetes
mellitus, and CVD.1,22 Several mechanisms are probably
involved, including modulation of host energy metabolism, gut
epithelial permeability, gut peptide hormone secretion, and an
increase in metabolic endotoxemia and inflammatory sta-
tus.23–25 One of the mechanisms explaining the potential
associations between some of these metabolites and CVD is
the potential proatherogenic effects.6 It has been shown that
TMAO can inhibit reverse cholesterol transport, alter sterol
metabolism,26 and affect platelet activation and thrombosis
risk.27 However, the associations between plasma metabo-
lites within the choline pathway, identified using novel high-
throughput metabolomics techniques, and the incidence of
CVD at a population-based level have only recently been
reported.

To our knowledge, this is the first case-cohort study in a
clinical trial setting showing that higher concentrations of
plasma choline and a-glycerophosphocholine are associated
with an increased risk of CVD; higher concentrations of
choline and phosphocholine are associated with a higher risk
of stroke. The associations between dietary and plasma
choline and other metabolites from this pathway and CVD
events in humans are still unclear. Epidemiologic studies have
reported inconsistent associations between systemic levels of
choline and betaine and cardiovascular events.6,7,28,29

Recently, it has been reported that higher plasma choline
and betaine levels were associated with 1.9- and 1.4-fold
increased risks, respectively, of major adverse cardiac events
after 3 years of follow-up in patients undergoing elective
diagnostic coronary angiography.29 However, these associa-
tions were attenuated and no longer significant when TMAO
was included in the models.29 In contrast, betaine supple-
mentation attenuated atherosclerotic lesions in apolipopro-
tein E�/� mice.30 In our study, the betaine/choline ratio was
inversely associated with CVD in individuals at high cardio-
vascular risk, suggesting that the balance between systemic
concentrations of betaine and choline could be of importance
for the prevention of cardiovascular events. However, we
found no significant associations between 1-year changes in
choline pathway metabolites and the incidence of CVD. It is
possible that 1 year was a short period to observe these
associations, or other mechanisms and pathways are impli-
cated in the pathogenesis of CVD in our population.

Interestingly, in a cross-sectional subset of the Nutrition,
Aging and Memory in Elders cohort,31 higher plasma choline
concentrations were associated with an unfavorable car-
diometabolic risk factor profile (lower high-density lipoprotein
cholesterol and higher body mass index). They were also
associated with greater odds of large-vessel cerebral vascular
disease and history of CVD but lower odds of small-vessel
cerebral vascular disease. On the contrary, plasma betaine

Table 3. Subgroup Analysis for the Associations Between
Choline Metabolite Score and Risk of CVD

Characteristics
HR (95% CI) Per SD
Increment

P Value for
Interaction

Sex

Men (n=452) 2.31 (1.13–4.71) 0.83

Women (n=528) 2.23 (1.03–4.83)

Age, y

≤65 (n=338) 2.67 (1.06–6.69) 0.49

>65 (n=598) 2.42 (1.27–4.64)

Obesity, kg/m2

≤30 (n=535) 2.65 (1.31–5.35) 0.79

>30 (n=445) 2.04 (0.92–4.52)

Smoking status

Current/former smoking
(n=402)

2.45 (1.19–5.06) 0.63

Ever smoking (n=578) 2.40 (1.09–5.28)

Family history of CHD

Yes (n=237) 2.19 (1.22–3.95) 0.15

No (n=743) 3.78 (0.84–5.42)

Baseline type 2 diabetes mellitus

Yes (n=486) 2.22 (1.00–4.92) 0.87

No (n=494) 2.37 (1.20–4.69)

Baseline hypertension

Yes (n=817) 1.94 (1.08–3.46) 0.36

No (n=163) 3.12 (0.75–5.65)

Baseline dyslipidemia

Yes (n=692) 2.55 (1.31–4.94) 0.73

No (n=288) 2.03 (0.86–4.78)

Multivariate adjusted HRs (95% CIs) of incident CVD for 1-SD increment in the baseline
choline metabolite score. Data were adjusted for age, sex, body mass index, physical
activity (metabolic equivalent task units in min/d), family history of premature heart
disease, smoking, hypertension, dyslipidemia, and diabetes mellitus and stratified by
intervention group, except for the stratification variable in each model. P values for
interaction were derived from Cox models adjusted as above, including an interaction
term between the stratification variable and the choline metabolite score. CHD indicates
coronary heart disease; CI, confidence interval; CVD, cardiovascular disease; and HR,
hazard ratio.
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concentrations were associated with a favorable car-
diometabolic risk factor profile (lower low-density lipoprotein
cholesterol and triglycerides) and lower odds of diabetes
mellitus. In the same study, higher plasma phosphatidyl-
choline was associated with characteristics of both favorable
(higher high-density lipoprotein cholesterol and lower body
mass index) and unfavorable (higher low-density lipoprotein
cholesterol and triglycerides) cardiometabolic risk. These
findings suggest divergent roles of choline metabolites in the
pathogenesis of cardiometabolic risk factors and cerebrovas-
cular disease.31 Similarly, in our study, we have observed that
baseline choline concentrations are marginally associated
with the prevalence of being overweight and obesity (odds
ratios [95% CIs] per 1-SD increase, 1.13 [1.00–1.29] and 1.15
[1.00–1.34], respectively). Significant positive correlations,
although they were weak, were observed for choline and
triglycerides (Spearman correlation coefficient=0.08; P=0.04).
We have also observed cross-sectional inverse associations
between plasma betaine and prevalence of diabetes mellitus
and being overweight (odds ratios [95% CIs] per 1-SD
increase, 0.64 [0.55–0.74] and 0.88 [0.76–1.06], respec-
tively). Plasma betaine was inversely correlated with plasma
glucose and body mass index (Spearman correlation coeffi-
cient=�0.18 and �0.07 [P<0.01 and P=0.01], respectively).
Altogether, these findings suggested a relationship between
these metabolites and cardiovascular risk factors.

The associations between dietary choline and betaine on
the risk of CVD have been evaluated in several prospective
studies.32–34 Compared with the lowest quartile of intake,

incident coronary heart disease after 14 years of follow-up in
participants from the ARIC (Atherosclerosis Risk in Commu-
nities) study was nonsignificantly higher in the highest
quartile of choline and choline plus betaine (HRs [95% CIs],
1.22 [0.91–1.64] and 1.14 [0.85–1.53], respectively), com-
pared with the lowest quartile.32 In women from the Jackson
Heart Study, greater choline intake was associated with lower
left ventricular mass (P=0.0006 for trend across choline
quartiles) and with abdominal aortic calcium score.34 Simi-
larly, higher dietary intakes of betaine and choline were not
associated with CVD risk in postmenopausal Dutch women
followed up for 97 months.33 On the other hand, findings
from the Nurses’ Health Study and Health Professionals
Follow-Up Study, including 80 978 women and 39 434 men,
respectively, followed up to 32 years, suggested that
higher phosphatidylcholine intake was associated with an
increased risk of CVD mortality after adjustment for potential
confounders.35

Previous published literature on this topic has mostly
focused on the formation of the gut microbiota–dependent
metabolite, TMAO.2,4,6 One of the most compelling studies
linking these metabolites with CVD complications was
reported by Wang and collaborators a few years ago.6 The
authors identified a novel pathway linking dietary phos-
phatidylcholine/choline, which can be converted by the
intestinal microbiota into trimethylamine and subsequently
converted into TMAO by hepatic flavin-containing mono-
oxygenases, with CVD pathogenesis.13 These findings are
consistent with later in vivo and in vitro studies, suggesting

A Choline metabolite score B Betaine/choline ratio
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Figure. Multivariate adjusted hazard ratios (HRs; 95% confidence intervals [CIs]) of incident cardiovascular disease for quartiles (Q) of choline
metabolite score (A) and betaine/choline ratio (B), stratified by intervention group (Mediterranean diet [MedDiet] interventions vs control group).
An inverse normal transformation was applied to raw baseline values and a weighted sum of concentrations of 5 metabolites in the choline
pathway (trimethylamine N-oxide, betaine, choline, phosphocholine, and a-glycerophosphocholine). The betaine/choline ratio was calculated by
dividing the raw values and then applying inverse normal transformations. Models adjusted for age, sex, body mass index, smoking, and family
history of premature heart disease. P values for interaction were derived from Cox models stratified by intervention group and adjusted as
above, including an interaction term between the intervention group and the continuous scores. Ref. indicates reference.
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that choline metabolites may increase the risk of atheroscle-
rosis and coronary heart disease.4,29,36,37 In addition, the
ability of oral broad-spectrum antibiotics to temporarily
suppress the production of TMAO suggests that intestinal
microorganisms may play an important role in the production
of TMAO from phosphatidylcholine in humans.4 Nevertheless,
our data did not support positive significant associations
between plasma concentrations of TMAO and the risk of CVD
in individuals at high cardiovascular risk after 4.8 years of
follow-up. It is plausible that TMAO may be more relevant for
predicting recurrent CVD or CVD survival, being a marker of
established disease. Although TMAO was associated with
CVD mortality in participants undergoing incident dialysis in a
nested case-control study, when they replicated the findings
in an independent study, no differences were found in TMAO
concentrations between cases of cardiovascular death and
controls.7 One of the potential reasons for these associations
is that elevated TMAO levels are strongly related with renal
function in patients with chronic kidney disease, and they
normalize after renal transplantation.38 Therefore, because
kidney disease is a risk factor for CVD, TMAO was probably
associated with CVD mortality because individuals undergoing
dialysis have more risk of developing CVD.

Findings from a recent study, including 817 participants of
the CARDIA (Coronary Artery Risk Development in Young
Adults), followed up for 10 years, showed that TMAO was not
associated with coronary artery calcium incidence or other
measures of CVD risk, including insulin resistance, inflamma-
tory markers, and lipid profile. The authors suggest that it is
possible that the adverse effect of TMAO may be more
relevant when concentrations of TMAO are higher than in their
sample or in later stages of the disease process.10 In another
study comparing the concentrations of TMAO, carnitine, and
choline in 34 obese individuals undergoing bariatric surgery,
TMAO was not elevated in obese patients before the surgery
but increased �2-fold after bariatric surgery.39 The authors
reported that these results were unexpected and suggested
that one explanation could be adaptive shifts in the gut
microbiota with increased ability to metabolize dietary choline
and carnitine to TMAO precursors.39 In contrast, carnitine and
choline, which are abundant in nutrients, such as in red meat
and eggs, and not microbiota dependent, were reduced after
lifestyle interventions and rebounded after bariatric surgery.39

Along these lines, choline and its metabolites can be
obtained from food sources or synthesized de novo. In a
randomized, controlled, crossover trial, it was observed that
dimethylamine and TMAO were significantly higher after
consuming a diet high in fish.40 The authors reported that
plasma and urinary concentrations of TMAO were associated
with recent fish intake; therefore, high urinary TMAO
concentrations can be associated with healthy diets that are
rich in fish.40 Our data also showed that plasma TMAO is

correlated with the intake of fish and total meat (Spearman
correlation coefficients, 0.12 and 0.08, respectively; P<0.01).
However, gut bacteria can synthesize TMAO from choline and,
hence, high urinary and plasma TMAO concentrations can also
originate from red meat consumption, which is generally
associated with adverse health outcomes. Thus, the global
pattern of metabolites, which reflects the totality of the diet,
might be more important in indicating dietary patterns than
are individual biomarkers.40 Findings from Tang et al suggest
that excessive consumption of phosphatidylcholine and
choline should be avoided by consuming a vegetarian or
high-fiber diet,4 which has similar characteristics as the
MedDiet intervention in the PREDIMED Study. It is established
that foods such as meat, egg yolks, and high-fat dairy
products, which are high in phosphatidylcholine, choline,
carnitine, and TMA, can serve as precursors of TMAO
production.6

Another point that has not been raised before and
deserves consideration is the possible attenuation of detri-
mental effects of metabolite profiles on CVD risk by adhering
to a MedDiet. Multiple lines of evidence could account for the
observed benefits of the MedDiet on CVD, including the
reduction of low-grade inflammation,41 enhanced endothelial
function,42 lower oxidative stress,43 and lower levels of
oxidized low-density lipoprotein.44 Integrating diet information
with metabolomics data holds great potential for further
understanding biomarkers and mechanisms that relate diet,
health, and disease. The present work may have important
public health implications for focusing on dietary interven-
tions, such as adhering to the MedDiet and reducing the
intake of animal products, to improve metabolite profiles and,
consequently, the risk of CVD.

Several limitations and strengths of the present study
warrant mentioning. First, because the participants were
elderly Mediterranean individuals at high cardiovascular risk,
the results may not be extrapolated to other populations.
Notwithstanding, because of their increased risk of CVD, they
are an important therapeutic target. In addition, the case-
cohort design maximized the efficiency of the high-through-
put metabolomics profiling, which allowed us to extend the
results to all PREDIMED participants. Second, although we
adjusted for several potential confounders, residual con-
founding by other unknown or unmeasured variables cannot
be ruled out. Third, liquid chromatography–tandem mass
spectrometry–based metabolite measurements may not have
a direct clinical translation for each metabolite trait. Finally,
in the present analysis, we have only included choline
pathway metabolites, as subrogates of diet and gut micro-
biota–related metabolites, that have been identified in our
samples with the use of the metabolomics platform from the
present project. However, in the coming years, new metabo-
lites will probably need to be included in this group. The
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strengths of the present work include the prospective design,
the ability to control for potential confounders because of the
well-characterized comprehensive data of the randomized
PREDIMED trial, and the accurate and blind assessment of
incident CVD cases.

Conclusion
In conclusion, our findings demonstrated, for the first time,
that metabolites from the choline pathway were associated
with an increased risk of major adverse cardiovascular events,
independent of traditional risk factors, in a Mediterranean
population at high cardiovascular risk.
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SUPPLEMENTAL MATERIAL 
 



Abbreviations: CVD, cardiovascular disease; TMAO, Trimethylamine-N-oxide; T2D, type 2 diabetes mellitus.  

  

Table S1. Characteristics of the choline pathway metabolites 

Metabolite HMDB ID Metabolic 

pathways 

Superclass/class/Subclass Origin Disease Biofluid 

Trimethylamine-N-

oxide (TMAO) 

HMDB00925 Betaine 

metabolism 

Organonitrogen 

compounds/Amines/Amine 

oxides and derivatives 

Drug metabolite 

Endogenous 

Microbial 

Kidney disease 

CVD 

Obesity 

T2D 

Blood 

Feces 

Saliva 

Urine 

Betaine HMDB00043 Betaine 

metabolism 

Glycine and 

serine 

metabolism 

Methionine 

metabolism 

Organic acids and 

derivatives/Carboxylic acids 

and derivatives/Amino acids 

Endogenous 

Diet 

Kidney disease 

Lung cancer  

CVD 

T2D  

Blood 

Breast Milk 

Saliva 

Urine 

Choline HMDB00097 Betaine 

metabolism 

Methionine 

metabolism 

Phospholipid 

biosynthesis 

Organonitrogen 

compounds/quaternary 

ammonium salts/cholines 

Drug 

Food 

Plant 

Lung cancer 

Alzheimer 

CVD 

Pre-diabetes  

Blood  

Breast Milk 

Cerebrospinal Fluid  

Feces 

Saliva 

Urine 

Phosphocholine HMDB00284 Phospholipid 

biosynthesis 

Sphingolipid 

metabolism 

Organonitrogen 

compound/quaternary 

ammonium salts/cholines 

Endogenous Alzheimer 

CVD 

Blood  

Breast Milk 

Cerebrospinal Fluid  

Saliva 

Urine 

Alphaglycerophosp

hocholine 

HMDB00086 Glycerophosphol

ipid metabolism 

Lipids/Glycerophospholipids/

glycerophosphocholine 

Endogenous 

Food 

Alzheimer 

CVD 

Blood 

Breast Milk 

Cerebrospinal Fluid  

Saliva 



 

 

Table S2. Means and SD of baseline plasma concentration of metabolites (micromole per liter) in the total population  

 Total population Cases (229) Non-cases (751) P value 

Trimethylamine-N-oxide 5.88 (6.48) 5.84 (6.28) 5.89 (6.55) 0.92 

Betaine 61.00 (17.60) 61.17 (16.66) 60.95 (17.90) 0.86 

Choline 23.75 (5.09) 25.04 (5.10) 23.36 (5.03) <0.001 

Phosphocholine 0.68 (0.66) 0.75 (0.81) 0.65 (0.61) 0.09 

Alphaglycerophosphocholine 3.47 (2.64) 3.98 (3.15) 3.31 (2.44) 0.57 

Cases: composite of cardiovascular disease events: myocardial infarction, stroke and cardiovascular death. 
 
 
 

Table S3. Means and SD of plasma concentration of metabolites (micromole per liter) per intervention group at baseline and 

one year of intervention 

 Control (303) Mediterranean Diet + 

extra-virgin olive oil (363) 

Mediterranean Diet + 

Nuts (314) 

BASELINE 

Trimethylamine-N-oxide 6.21 (7.22) 5.61 (5.99) 5.86 (6.28) 

Betaine 60.70 (16.12) 60.44 (18.11) 61.95 (18.40) 

Choline 23.14 (4.72) 23.99 (5.01) 24.07 (5.49) 

Phosphocholine 0.59 (0.54) 0.72 (0.68) 0.71 (0.74) 

Alphaglycerophosphocholine 3.31 (2.21) 3.44 (2.19) 3.65 (3.38) 

1-YEAR  

Trimethylamine-N-oxide 6.55 (7.75) 7.14 (9.73) 5.80 (7.10) 

Betaine 60.62 (15.92) 60.70 (18.21) 62.35 (18.35) 

Choline 24.08 (5.11) 24.42 (5.96) 24.46 (5.14) 

Phosphocholine 0.61 (0.55) 0.62 (0.53) 0.65 (0.50) 

Alphaglycerophosphocholine 3.86 (3.91) 3.50 (2.73) 4.26 (5.67) 

  



Table S4. Joint associations of the scores and intervention group with risk of cardiovascular disease and 

stroke 

  MedDiet interventions Control P interaction 

CARDIOVASCULAR DISEASE 

Choline metabolite score 

Q1 Ref. 1.74 (0.77, 3.89) 0.09 

Q2-Q4 1.70 (0.99, 2.91) 2.53 (1.41, 4.53)  
Betaine to choline ratio 

Q1 0.67 (0.45, 0.99) Ref.  0.91 

Q2-Q4 0.43 (0.25, 0.77) 0.74 (0.38,1.44)  

STROKE 

Choline metabolite score 

Q1 Ref. 2.48 (0.94, 6.53) 0.06 

Q2-Q4 1.76 (0.85, 3.63) 2.66 (1.22, 5.80)  
Betaine to choline ratio 

Q1 0.60 (0.37, 0.96) Ref. 0.76 

Q2-Q4 0.48 (0.23, 0.99) 0.77 (0.32, 1.84)  

 
An inverse normal transformation was applied to raw baseline values. To build the score, we applied a weighted sum of 

concentrations of five metabolites in the choline pathway (trimethylamine-N-oxide (TMAO), betaine, choline, 

phosphocholine and alphaglycerophosphocholine). The ratio between betaine and choline was calculated by dividing the raw 

values and then applying inverse normal transformations. Models were adjusted for age, sex, body mass index, family history 

of premature heart disease, smoking, physical activity (metabolic equivalent task units in min/d), hypertension, dyslipidemia, 

and diabetes. Abbreviations: TMAO, trimethylamine N oxide. P for interaction were derived from Cox models adjusted as 

above, including an interaction term between the intervention group (MedDiet vs. control) and the score as a continuous 

variable. MedDiet, Mediterranean diet. 

 

 

 

  



Table S5. Risk of cardiovascular disease and stroke by 1-year changes in choline pathway metabolites in the PREDIMED Study 

 Quartiles of metabolite concentration  
P trend 

HR per 1 
P value  Q1 Q2 Q3 Q4 SD increment 

CARDIOVASCULAR DISEASE 

TMAO        

Cases 39 35 47 55    

Multivariable Model 1 Ref. 0.98 (0.44, 2.14) 1.34 (0.64, 2.81) 1.39 (0.71, 2.74) 0.13 1.06 (0.88, 1.27) 0.54 

Multivariable Model 2 Ref. 1.08 (0.47, 2.50) 1.44 (0.65, 3.18) 1.42 (0.69, 2.92) 0.18 1.04 (0.85, 1.25) 0.72 

Betaine        

Cases 56 38 44 38    

Multivariable Model 1 Ref. 0.61 (0.36, 1.02) 0.59 (0.35, 0.99) 0.60 (0.35, 1.02) 0.08 0.80 (0.66, 0.98) 0.03 

Multivariable Model 2 Ref. 0.58 (0.34, 0.98) 0.63 (0.37, 1.06) 0.61 (0.35, 1.04) 0.11 0.83 (0.68, 1.01) 0.07 

Choline        

Cases 59 40 42 35    

Multivariable Model 1 Ref. 0.72 (0.43, 1.21) 0.81 (0.47, 1.39) 0.65 (0.36, 1.16) 0.20 0.89 (0.73, 1.09) 0.27 

Multivariable Model 2 Ref. 0.71 (0.41, 1.20) 0.81 (0.46, 1.42) 0.68 (0.38, 1.23) 0.28 0.92 (0.75, 1.14) 0.46 

Phosphocholine        

Cases 42 49 36 49    

Multivariable Model 1 Ref. 0.97 (0.58, 1.62) 0.94 (0.55, 1.63) 1.20 (0.71, 2.00) 0.47 1.15 (0.94, 1.41) 0.15 

Multivariable Model 2 Ref. 0.95 (0.57, 1.60) 1.02 (0.58, 1.79) 1.21 (0.70, 2.06) 0.44 1.15 (0.93, 1.42) 0.18 

Alphaglycerophosphocholine        

Cases 47 52 29 47    

Multivariable Model 1 Ref. 1.12 (0.63, 1.99) 0.77 (0.41, 1.44) 1.02 (0.58, 1.81) 0.79 1.10 (0.91, 1.33) 0.30 

Multivariable Model 2 Ref. 1.07 (0.59, 1.92) 0.78 (0.41, 1.49) 1.05 (0.59, 1.88) 0.92 1.14 (0.94, 1.38) 0.17 

STROKE 

TMAO        

Cases 21 20 24 30    

Multivariable Model 1 Ref. 1.04 (0.35, 3.03) 1.24 (0.44, 3.54) 1.29 (0.51, 3.26) 0.42 1.02 (0.80, 1.28) 0.90 

Multivariable Model 2 Ref. 1.16 (0.36, 3.65) 1.35 (0.45, 4.09) 1.34 (0.50, 3.59) 0.47 0.99 (0.78, 1.26) 0.82 

Betaine        

Cases 31 17 25 22    

Multivariable Model 1 Ref. 0.47 (0.23, 0.96) 0.60 (0.31, 1.14) 0.63 (0.32, 1.23) 0.29 0.84 (0.64, 1.09) 0.20 



Multivariable Model 2 Ref. 0.47 (0.23, 0.98) 0.64 (0.33, 1.23) 0.67 (0.34, 1.32) 0.40 0.86 (0.66, 1.13) 0.30 

Choline        

Cases 34 22 21 18    

Multivariable Model 1 Ref. 0.62 (0.32, 1.20) 0.61 (0.31, 1.21) 0.53 (0.25, 1.09) 0.10 0.89 (0.69, 1.16) 0.40 

Multivariable Model 2 Ref. 0.62 (0.32, 1.21) 0.64 (0.32, 1.29) 0.58 (0.28, 1.21) 0.18 0.93 (0.71, 1.22) 0.61 

Phosphocholine        

Cases 28 24 21 22    

Multivariable Model 1 Ref. 0.92 (0.49, 1.74) 1.08 (0.54, 2.15) 0.99 (0.50, 1.95) 0.93 1.00 (0.77, 1.30) 0.86 

Multivariable Model 2 Ref. 0.90 (0.47, 1.70) 1.17 (0.58, 2.39) 1.00 (0.49, 2.00) 0.89 0.98 (0.74, 1.30) 0.92 

Alphaglycerophosphocholine        

Cases 25 28 19 23    

Multivariable Model 1 Ref. 1.03 (0.56, 1.87) 0.84 (0.42, 1.68) 0.88 (0.46, 1.68) 0.57 1.04 (0.81, 1.34) 0.74 

Multivariable Model 2 Ref. 1.00 (0.53, 1.88) 0.88 (0.48, 1.77) 0.90 (0.45, 1.77) 0.69 1.08 (0.83, 1.39) 0.56 
Inverse normal transformation was applied to raw values of changes in metabolite concentration. Model 1 was adjusted for age, sex, BMI, family history of premature heart 

disease, and smoking and was stratified by intervention group. Model 2 was further adjusted for physical activity, hypertension, dyslipidemia, and diabetes. All models 

were adjusted for baseline metabolites levels and the interaction between baseline levels and 1-year changes. 



Figure S1. Flow chart of study participants 

 

  

7447 participants in 

PREDIMED 

794 

(10% random subcohort* with 

available plasma samples) 

288 total CVD cases 

229 total CVD cases 

with available 

plasma samples 

Baseline: 980  

n=751 non-cases 

n=229 CVD cases 

1-year: 923  

n=747 non-cases 

n=176 CVD cases 

788 

n=751 non-cases  

n= 37 internal cases† (they 

were included in the 229 total 

CVD cases, see the right box) 

*subcohort: a random, non-stratified sample of approximately 10% of PREDIMED participants at baseline. 

†internal cases: incident cases which were subcohort members (37 overlapping cases). They were treated as 

cases in the analysis (included in the 229) 

Exclusions 

n=3 had missing metabolite values 

at baseline 

n=3 had metabolite outliers 

identified by quality control  



Figure S2. Diagram of choline pathway 

 

  

Choline metabolism

Phosphatydylcholine

TMAO

TMA

Choline

Phosphoholine

CDP-choline

Betaine

DMA FMO3

*

CHCD

Choline kinase

Cytidylyl transferase

Choline phosphotransferase

Glycerophosphocholine

The figure shows key metabolic choline pathway. *Bacterial degration of choline by the gut microbiota. FMO3 indicates, Flavin-containing monoxygenase; CHCD, choline dehydrogenase; 



Figure S3. Correlation matrix for plasma metabolite levels 

Spearman Correlations coefficients of metabolites in the PREDIMED Study 

 

TMAO 1             

Betaine 0.16 1           

Choline 0.19 0.49 1         

Phosphocholine -0.01 0.16 0.15 1       

Alphaglycerophosphocholine -0.07 0.03 0.21 0.36 1     

Ratio betaine/choline 0.01 0.66 -0.26 0.06 -0.13 1   

Choline metabolite score 0.06 0.23 0.68 0.5 0.79 -0.31 1 
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