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Abstract: Artificial Intelligence in healthcare employs machine learning algorithms to emulate hu-
man cognition in the analysis of complicated or large sets of data. Specifically, artificial intelligence
taps on the ability of computer algorithms and software with allowable thresholds to make deter-
ministic approximate conclusions. In comparison to traditional technologies in healthcare, artificial
intelligence enhances the process of data analysis without the need for human input, producing
nearly equally reliable, well defined output. Schizophrenia is a chronic mental health condition that
affects millions worldwide, with impairment in thinking and behaviour that may be significantly
disabling to daily living. Multiple artificial intelligence and machine learning algorithms have been
utilized to analyze the different components of schizophrenia, such as in prediction of disease, and
assessment of current prevention methods. These are carried out in hope of assisting with diagnosis
and provision of viable options for individuals affected. In this paper, we review the progress of the
use of artificial intelligence in schizophrenia.

Keywords: artificial intelligence; machine Learning; mental health; schizophrenia

1. Introduction

Machine learning (ML) is the process of automating the tracking of changes in data
patterns through a trained learning algorithm. Data is key in training of good learning
models as it generates patterns for development of learning algorithms, in which future
predictions are based upon. The unique features of each dataset form the discriminating
factors for patterns generated, and hence the learning algorithm. Data can be split into
a training set and a test set, to be used for evaluation. A ML algorithm is first selected
and trained with the data from the training set with certain features collected. Features
that prove not to provide discrimination are then removed as it can severely slow down
training time or return false results. This process is then repeated and optimized to fine
tune the learning model for achieving higher accuracies in prediction. It is then eventually
applied to the test set or with new data for validation of the final learning model. This is
the ML process. The flow of the process is captured in Figure 1.

Artificial intelligence (AI) and ML in the medical field has been advancing quickly
since the advent of modern computers. With advances in computational power and the
increased complexity of medicine, both AI and medicine has crossed paths and collabora-
tions between both communities have increased with uncharted potential [1,2]. Advances
in AI and ML is transforming our ability to analyze and process large amounts of data
and to predict outcomes in biomedical research and healthcare delivery. AI and ML have
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been well explored for creating predictive models and have been used extensively in a
variety of medical and healthcare purposes [3,4]. It can also transform the way that clinical
decisions and clinical diagnosis are being made [5,6]. Examples include the classification
and extraction of medical data [7,8], real-time analysis of medical scans [9], potential use
of diagnosing medical conditions [10], and automate medical processes such as detection
and classification [11]. Of focus in this review is the classification and diagnosis of mental
health patients. Increasingly, researchers from ML and medical fields have sought to better
classify and diagnose mental health cases thereby enabling a more accurate diagnosis and
classification of mental health [12–14] to provide patients with personalized treatment
programs to improve their recovery [15,16]. For these reasons, this course of research is
increasingly deserving of attention and the collaboration of these two fields will continue
to push the frontiers of learning.

Figure 1. Flowchart to demonstrate the general framework of the process of training a machine
learning algorithm.

Schizophrenia (SZ) is a severe chronic mental health condition that affects millions
worldwide and associated with significant impairment of quality of life. At present, it
is diagnosed clinically by fulfilling a criteria of phenotypical features over a temporal
distribution as stated by either the Diagnostic and Statistical Manual of Mental Disorders,
5th edition (DSM-V) or the International Classification of Diseases 11th Revision (ICD-
11) [17]. While it is not as common as other mental health disorders such as depression
or anxiety, the symptoms of SZare often disabling. People with SZmay seem like they
have lost touch with reality [18,19]. Symptoms of SZusually start at early ages of 16 to 30.
The symptoms of SZcan be classified into three categories, namely positive, negative or
cognitive symptoms [20,21]. Clinical assessments are performed based on these observed
symptoms and corroborative reports [22]. Symptoms associated with SZoccur along a
continuum and must be of considerable severity and impairment before a diagnosis is
made [23].

SZis characterized by hallucinations, delusions, disorganized speech, and other symp-
toms that cause social or occupational dysfunction such as impairments in cognition,
attention and memory. It can only be diagnosed after exclusion of organic causes such as de-
mentia or delirium that can manifest similarly. Treatment of SZis generally classified under
two broad categories—non-pharmacological and pharmacological. Non-pharmacological
interventions such as cognitive behavioural therapy aim to help patients cope with their
symptoms and achieve an acceptable level of psychosocial functioning in society. Pharma-
cological treatment remains the mainstay of therapy, based upon neurobiological theories
of re-uptake and release of neurotransmitters such as glutamate, gamma aminobutyric acid,
acetylcholine, and serotonin. More recently, methods such as electroconvulsive therapy
have proven to be of benefit in the treatment of SZ. However, the treatment of SZ [24] is
beyond the scope of the current review.

With technological advances, there are increasing efforts to “operationalize” and
“objectify” the detection of SZ, with AI and ML techniques. Large amounts of data, rang-
ing from investigations derived from magnetic resonance imaging (MRI) scans, positron
emission tomography (PET) scans and electroencephalography (EEG) and subjective in-
terpretations of patient’s posture, facial expression, word choices, attitude and behaviour,
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have been analyzed in attempt to define SZ. However, there have been few attempts to
organize these studies in a systematic manner by presenting the number of subjects, AI
and ML technique used, and prediction accuracy. In this review, we will synthesize the
work presented by various research groups that employ the use of artificial intelligence
and machine learning in classifying and detecting, and report their prediction accuracy.

The rest of the article is organized as such: Section 2 describes our methodology
in curating existing literature, and the process of choosing which articles are suitable.
In Section 3, we report on different machine learning techniques used for various input
data types, such as MRI scans, the size of their samples and their classification accuracy.
We provide perspective on the potential outlook on how to employ machine learning as a
means to measure the effectiveness of furthering SZresearch in Section 4, before concluding
in Section 5.

2. Methodology

In this systematic review, we did a search on articles, conference and review papers
using key words such as ‘Schizophrenia’, ‘Artificial Intelligence’, ‘Machine Learning’, ‘Deep
Learning’, ‘Mental Health’, ‘Detection’, ‘Diagnosis’ and its variants. The resulting literature
were screened for relevance before chosen to be included in this review. A procedural
flow diagram is included in Figure 2 to show the process for which suitable literature were
chosen. The selected papers range from the Year 1999 to 2020. There has not been any
work carried out thus far to consolidate key papers that have tapped on the technological
advances in AI and ML with regards to SZ. As such, our paper will be the first of its kind to
consolidate existing papers by presenting their study sample size, classification accuracies
and the method used for classification.

Figure 2. Procedural flow diagram choosing suitable literature.

3. Survey of AI Methods for Classification and Detection of Schizophrenia

AI techniques have been used in the detection of SZvia different means. The bulk
of attempts to detect SZstems from various types of MRI scans. Other techniques of
detection using AI include PET scans, EEG and other techniques involving prediction
through psycho-physio abilities and by gene and protein classification.
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3.1. Classification and Detection of SZ by MRI

Magnetic resonance imaging is a medical imaging technique used in radiology to
form images depicting anatomy. With various sequences, MRI may provide insight of
physiological processes of the body. Scanned images of the brain were taken from both
patients diagnosed with SZand healthy controls [25]. These images were compared to
detect SZusing various means of AI and ML tools. A typical MRI scan can allow medical
professionals to diagnose the onset of SZ.

3.1.1. Structural MRI

Structural MRI (sMRI) is the study of the structure of different parts of the brain
and making predictions by comparing the MRI scans of patients and control subjects. By
comparing the scans, ML algorithms can be trained to classify patients with and without
SZ. Leonard et al. [26] was one of the first to use discriminant function analysis (DFA) to
correctly classify the subjects (77% accuracy) from the structural brain scans. The bulk
of the work in other sMRI techniques focus on analyzing and comparing Grey Matter
(GM) and White Matter (WM), and their corresponding size or density. Other groups
used DFA and its variants to classify and detect patients with SZby considering other
Region-of-Interest (ROI) in the brain and were able to achieve similar or better prediction
rates by performing DFA on sMRI scans. Through the various studies, we have noticed
that researchers tend to make the same conclusion—the risk of SZmay depend on the total
amount of neural deviance rather than on anomalies in a single structure or circuit.

Another popular method used in classifying SZis the use of support vector machine
(SVM) classifiers, including non-linear SVM and its variants. SVM forms the majority of
the analysis from detection using sMRI images. Customary in most predictive analysis,
the SVM models were constructed from one set of subjects (training set) and the model
was then applied to a different set of subjects (test set) to cross-validate the model. Many
groups also used SVM to compare at-risk mental state (ARMS) SZindividuals with healthy
controls (HC). In particular, in the work of Koutsouleris et al. [27], non-linear SVM with
multivarite neuroanatomical pattern classification was performed on the sMRI data of
individuals with ARMS (early and late) and HC. The accuracy of the method was then
evaluated by categorizing the baseline imaging data of individuals with transition to
psychosis as compared to those without transition and HC after 4 years of clinical follow-
up. The 3-group, cross-validated classification accuracies of the first analysis were 86%
in discriminating HC, 91% in discriminating early ARMS, and 86% in discriminating late
ARMS. The accuracies in the second analysis were 90% in discriminating HC, 88% in
discriminating individuals with transition, and 86% in discriminating individuals without
transition. Independent HC were correctly classified in 96% (first analysis) and 93%
(second analysis) of cases. Notably, there were several studies that point to better prediction
accuracies when combining multiple features than simply employing single-modal features
in SVM [28–30].

Other ML methods notably include the regression model used by Csernansky et al. [31]
to predict SZamong subjects who were similar in age, gender and parental socioeconomic
status, with 75% prediction rate. However, it was unable to predict the severity of the
condition using the same model. Other notable methods employed include the high-
dimensional non-linear pattern classification used by Davatzikos et al. [32] to quantify the
degree of separation between patients and control, achieving 81.1% mean classification
accuracy. An overview of the work, sample size and accuracy from utilizing machine
learning techniques on structural magnetic resonance imaging data is compiled in Table 1.
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Table 1. Summary of work and predictions relating to the detection of SZusing data from structural MRI scans via various
artificial intelligence techniques and machine learning algorithms.

Study Year
Subjects

Prediction AI/ML Technique
Patients Control

Leonard et al. [26] 1999 37♂ 33♂ 77% Linear Discriminant Function Analysis (DFA)

Csernansky et al. [31] 2002 52 65 75% (sensitivity)
76.9% (specificity) Logistic Regression Model

Nakamura et al. [33] 2004 30♂, 27♀ 25♂, 22♀ 80%♂, 81.6%♀ DFA

Yushkevich et al. [34] 2005 46 46 72% (sensitivity)
70% (specificity) Support Vector Machine (SVM)

Davatzikos et al. [32] 2005 69 79 (matched) 81.1% (mixed)
85%♂, 82%♀ High-dimensional nonlinear Pattern Classifier

Fan et al. [35] 2006 23♀, 46♂ 38♀, 41♂ 91.8%♀, 90.8%♂ Nonlinear SVM, leave-one-out cross-validation

Yoon et al. [36] 2007 21♀, 32♂ 52 (matched) at least 88.8% SVM, PCA

Kawasaki et al. [37] 2007 30♂, 16♂ 30♂, 16♂ 90%, 80%,
75% (Jackknife) Multivariate Linear DFA, Jackknife approach

Castellani et al. [38] 2009 54 54 up to 75% and 85%
(sex stratified) Scale Invariance Feature Transform (SIFT), SVM

Pohl and Sabuncu [39] 2009 16 17 (age-matched) up to 90% Linear SVM, Leave-one-out cross-validataion

Sun et al. [40] 2009 36 36 (sex- and
age-matched) 86.1%

Pattern Classification Analysis with Sparese
Multi-nomial Logistic Regression Classifier,

Leave-on-out cross-validation

Koutsouleris et al. [27] 2009

A1: 20 (ARMS-E),
25 (ARMS-L)

A2: 15 (ARMS-T),
18 (ARMS-NT)

A1: 25 (matched)
A2: 17 (matched)

Cross-validation: 45

at least 86% (sensitivity)
at least 93% (specificity) SVM, Multivariate Pattern Analysis (MVPA)

Takayanagi et al. [41] 2010 17♂, 17♀ 24♂, 24♀ 75.6%, 82.9% Linear DFA

Castellani et al. [42] 2010 64 60 up to 86.13% SVM

Koutsouleris et al. [43] 2010 25 28 83% SVM with Partial-least-squares Pattern
Analysis

Kasparek et al. [44] 2011 39 39 66.7% (sensitivity)
76.9% (specificity)

Maximum-uncertainty Linear Discriminant
Analysis (MLDA)

Karageorgiou et al. [45] 2011 28 47
67.9% (sensitivity)

72.3% (specificity) using
PCA-LDA (sMRI only)

LDA, Principal Component Analysis (PCA)

Castellani et al. [46] 2011 30 30 up to 83.33% SVM, Leave-one-out cross-validation

Ulaş et al. [47] 2011 64 60 71.93% (SVM) 1-Nearest Neighbour, Linear SVM

Koutsouleris et al. [48] 2012 16/21 22
92.3%
66.9%
84.2%

SVM

Castellani et al. [49] 2012 54 54 (matched) at least 66.38% SIFT and nonlinear SVM

Nieuwenhuis et al. [50] 2012 128, 155 111, 122 71.4%, 70.4% SVM, Leave-one-out cross-validation

Ulaş et al. [28] 2012 50 50 84% (MKL)
77% (SVM) SVM, MKL

Ulaş et al. [29] 2012 21♂, 21♀ 19♂, 21♀ 90.24% (CLMKL)
71.95% (SVM) SVM, Clustered Localized MKL (CLMKL)

Ota et al. [51] 2012 38♀, 23♀ 105♀, 23♀ 74% (sensitivity)
70% (specificity) DFA

Bansal et al. [52] 2012 65 40 93.1% (sensitivity)
94.5% (specificity)

Hierarchical clustering, Split-half and
Leave-one-out cross-validation

Greenstein et al. [53] 2012 98 99 73.3% Random Forest

Borgwardt et al. [54] 2013 16/23 22
86.7%
80.7%
80.0%

SVM, Nested cross-validation

Iwabuchi et al. [55] 2013 19 20 up to 77% SVM

Zanetti et al. [56] 2013 62 62 (matched) 73.4% SVM

Gould et al. [57] 2014 126/74 134 71% SVM

Perina et al. [58] 2014 21♂, 21♀ 19♂, 21♀ 83% (sensitivity) SVM

Schnack et al. [59] 2014 46/47 43 90% SVM

Cabral et al. [60] 2016 71 74 69.7% SVM, MVPA

Lu et al. [61] 2016 41 42 (sex- and
age-matched)

91.9% (sensitivity)
84.4% (specificity) SVM, Recursive Feature Elimination (RFE)
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Table 1. Cont.

Study Year
Subjects

Prediction AI/ML Technique
Patients Control

Yang et al. [30] 2016 40 46 77.91% MLDA, SVM

Squarcina et al. [62] 2017 127 127 80% SVM

Rozycki et al. [63] 2018 440 501 76% Linear SVM

de Moura et al. [64] 2018 143, 32 82 77.6% (sensitivity)
68.3% (specificity) MLDA

Liang et al. [65] 2019 98, 54 106, 48 75.05%, 76.54% Gradient Boosting Decision Tree

Deng et al. [66] 2019 65 60 76.9% (sensitivity)
75.0% (specificity) Random Forest

3.1.2. Functional MRI

Functional MRI (fMRI) scans display changes in blood oxygen level concentration as a
consequence of task-induced or spontaneous modulation of neural metabolism. The strength
of fMRI lies in its higher spatial resolution and wide availability to both clinical and academic
researchers. Advances in technology has allowed for improvement of signal-to-noise ratio
which characterizes fMRI data. This can be used for pattern classification and other statistical
methods to draw increasingly complex inferences about cognitive brain states. Similar to
sMRI, fMRI analyses employ the use of signal differences between states of the brain, which
can be analyzed with various statistical tools, ML techniques then utilize these data to perform
identification of SZby comparing baseline differences. Similar to the studies using sMRI data,
SVM classification has gained popularity in the past decade and has been extensively used. In
the earlier days, discriminant analysis was the preferred choice of detection.

Notable work that uses fMRI data includes Calhoun et al. [67] and extended by Jafri
and Calhoun [68]. In their initial work, they demonstrated on a dataset derived from
15 HC and 15 SZpatients, that when tasked to carry out an auditory oddball task and a
Sternberg working memory task, the fMRI scan images reveal that SZpatients appear to
“activate” less, across a smaller unique set of brain regions. This is supported by findings of
reduced connectivity between joint networks made of by regions commonly classified from
prevalent models of SZ, and henceforth initiating the use of fMRI data in many clinical
studies related to SZ. This motivated one of the first work using fMRI data on a neural
network by employing independent component analysis [68]. They managed to achieve
an average accuracy of 75.6% classification by rotating the test training sets. This was
significantly improved in a later study [69] using a multivariate analysis approach which
successfully classified SZand non-SZpatients with sensitivity 92% and specificity 95%. This
pioneering work led to many other research work in investigating the use of other AI
and ML techniques and fMRI data in classifying SZ, the majority of which can reach an
accuracy prediction levels of Calhoun et al.

An overview of the work, sample size and accuracy from utilizing machine learning
techniques on functional magnetic resonance imaging data is compiled in Table 2.

Table 2. Summary of work and predictions relating to the detection of SZusing data from functional MRI scans via various
artificial intelligence techniques and machine learning algorithms.

Study Year
Subjects

Prediction AI/ML Technique
Patients Control

Jafri and Calhoun [68] 2006 38 31 75.6% Neural network

Calhoun et al. [69] 2008 21 26 92% (sensitivity)
95% (specificity) MVPA

Anderson et al. [70] 2010 14 6 up to 90% Multivariate Random Forest

Arribas et al. [71] 2010 21 25 90% Stochastic Gradient Learning based on
minimization of Kullback-Leibler divergence

Shen et al. [72] 2010 32 20 93.75% (sensitivity)
75% (specificity)

Low-dimensional embedding and self-organized
C-means clustering

Yang et al. [73] 2010 20 20 at least 82% (using fMRI
data) SVM
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Table 2. Cont.

Study Year
Subjects

Prediction AI/ML Technique
Patients Control

Castro et al. [74] 2010 52 54 95% Composite kernels, Linear and Gaussian SVM,
Leave-two-out cross-validation

Costafreda et al. [75] 2011 32 40 92% (seonsitivity) SVM

Fan et al. [76] 2011 31 31 up to 85.5% SVM, Linear kernel, Radial basis function kernel,
Sigmoid kernel

Du et al. [77] 2012 28 28 90%
Fisher’s linear discriminant analysis, Default mode

network, Majority vote, Leave-one-out
cross-validation

Liu et al. [78] 2012 25 25 (siblings)
25 (HC) 80.4% (SZvs. HC) Nonlinear SVM with polynomial kernel

Venkataraman et al. [79] 2012 18 18 75% Multivariate classification

Yoon et al. [80] 2012 51 51 (age-matched) 51.0% (sensitivity)
64.7% (specificity) Linear DFA, Leave-one-out cross-validation

Anderson and Cohen [81] 2013 74 72 65% SVM

Arbabshirani et al. [82] 2013 28 28 up to 96% (KNN) Various (10 types) linear and nonlinear classifier

Fekete et al. [83] 2013 8♂ 10♂ 100% Complex network analysis, Block diagonal
optimization.

Yu et al. [84] 2013 24 25 (siblings)
22 (matched HC) 62% SVM, PCA, Leave-one-out cross-validation

Yu et al. [85] 2013 32 (SZ)
19 (Depression) 38 80.9% SVM, Intrinsic DA, Leave-one-out cross-validation

Anticevic et al. [86] 2014 Sample: 90
Validation: 23

Sample: 90
(matched)

Validation: 23
(matched)

Sample: 75.5%
(sensitivity), 72.2%

(specificity)
Validation: 67.9%

(sensitivity), 77.8%
(specificity)

Linear SVM, Leave-one-out cross-validation

Brodersen et al. [87] 2014 41 42 78%, 71% Linear SVM, Variational Bayesian Gaussian mixture

Castro et al. [88] 2014 31 21 90% (L-norm MKL),
85% (Lp-norm MKL) L-norm and Lp-norm MKL

Guo et al. [89] 2014 69 62 68% SVM

Watanabe et al. [90] 2014 54 67 at least 77.0% Fused Lasso and GraphNet regularized SVM

Cheng et al. [91] 2015 415 405 73.53–80.92% SVM

Chyzhyk et al. [92] 2015 26/14 28 97–100% Linear SVM

Kaufmann et al. [93] 2015 71 196 46.5% (sensitivity)
86.0% (specificity) Regularized LDA, Leave-one-out cross-validation

Pouyan and Shahamat [94] 2015 10 10 up to 100% (sensitivity
and specificity) ICA, PCA, Various, Leave-one-out cross-validation

Mikolas et al. [95] 2016 63 63 (sex- and
age-matched)

74.6% (sensitivity)
71.4% (specificity) Linear SVM

Peters et al. [96] 2016 18 18 up to 91% SVM, Leave-one-out cross-validation

Yang et al. [30] 2016 40 40 77.91% MLDA, SVM

Skaatun et al. [97] 2017 182 348 up to 80% Multivariate regularized LDA

Chen et al. [98] 2017 20 (SZ)
20 (depression) 20 60% (sensitivity)

90% (specificity) Linear SVM, MVPA

Kaufmann et al. [99] 2017 90 (SZ)
97 (bipolar) 137 (HC) 60% (sensitivity)

90% (specificity)
5-class regularized LDA, k-fold cross-validation

model

Guo et al. [100] 2017 28
28 family-based

control (FBC)
40 (HC)

SVM: 96.43%
(sensitivity)

89.29% (specificity, FBC)
SVM, Receiver operating characteristic (ROC) curve

Iwabuchi and
Palaniyappan [101] 2017 71 62 80.32% MKL

Yang et al. [102] 2017 446 451 60–86% Multi-task classification, 10-fold cross-validation

Bae et al. [103] 2018 21 54 92.1% (SVM) Various (5 types), 10-fold cross-validation

Li et al. [104] 2019 60 71 76.34% (LDA) KNN, Liner SVM, Radial basis SVM, LDA

Chatterjee et al. [105] 2019 34 34 94% (SVM)
96% (1-NN) SVM, k-nearest neighbours

Kalmady et al. [106] 2019 81 93 (sex- and
age-matched) 87% L2-regularized Logistic regression
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3.1.3. Diffusion Tensor Imaging and Perfusion MRI

There is increasing evidence suggesting that disturbance in connectivity between
different brain regions, rather than abnormalities within the brain regions themselves,
are responsible for clinical symptoms and cognitive dysfunctions observed in SZ [107].
Thus, this led to a growing interest in WM fiber tracts, sub-serving anatomical connections
between distant, as well as proximal, brain regions.

Diffusion-weighted MRI (dMRI) methods which include Diffusion Tensor Imaging
(DTI) is used to map and characterize the diffusion of water as a function of spatial location
in the brain. The diffusion tensor describes various measures, including magnitude,
degree of anisotropy and orientation of diffusion anisotropy. The diffusion anisotropy and
principal diffusion directions allows for estimates of WM connectivity patters in the brain
from WM tractography. The highly sensitive changes at the cellular and microstructural
level is the main contributor for the rapidly adoption of DTI, which is highly applicable in
such cases. The interest in investigating disturbance in connectivity between brain regions
coincides with the applicability of DTI, which makes it possible to evaluate characteristics
WM fiber tracts, facilitating the process of identifying SZpatients [107,108].

Perfusion MRI (pMRI), on the other hand, is a non-invasive technique of obtaining
measured cerebral perfusion through assessment of various hemodynamic measurements
such as cerebral blood volume, cerebral blood flow, and mean transit time [109,110]. These
techniques have become important clinical tools in the diagnosis and treatment of patients
with cerebrovascular disease and other brain disorders, including SZ. Since pMRI tracks
blood flow, it is also commonly used to quantify the effectiveness of drug-related pharma-
cological treatment for SZ. A summary of various studies on ML techniques on DTI and
pMRI data is compiled in Table 3.

Table 3. Summary of work and predictions relating to the detection of SZusing data from diffusion-weight MRI, diffusion
tensor imaging and perfusion MRI scans via various artificial intelligence techniques and machine learning algorithms.

Study Year
Subjects

Prediction AI/ML Technique
Patients Control

Caan et al. [111] 2006 34♂ 24 (not reported) LDA, PCA

Caprihan et al. [112] 2008 45 45
(age-matched) 100% DPCA

Ingalhalikar et al. [113] 2010 27♀ 37♀ 90.62% Nonlinear SVM

Rathi et al. [114] 2010 21 (FEP) 20
(age-matched)

SH: 78% (sensitivity)
80% (specificity)

F2T: 86% (sensitivity)
85% (specificity)

K-nearest neighbours, Parzen window
classifier, SVM

Ardekani et al. [115] 2011 50 50 (age- and
sex-matched)

FA: 96% (sensitivity)
92% (specificity)

MD: 96% (sensitivity)
100% (specificity)

Fisher’s LDA

Squarcina et al. [116] 2015 35 (FEP) 35 83% SVM

Finally, we conclude this section by presenting a comparison between the different
ML techniques applied to MRI data, the size of the study and the accuracy of prediction
across the years in Figure 3. If more than one experiment is conducted or more than one
accuracy is reported, the sensitivity prediction with the lowest accuracy will be taken for
the cross-validated group.
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Figure 3. Classification by year, SZsample size and prediction accuracy for the various machine
learning technique for different MRI data.

3.2. Classification and Detection of SZ through Other Neurological Scans
3.2.1. PET Scans

PET scans involve intrusive introduction of radioactive tracers into the subject’s
bloodstream. Organs, specifically of interest in SZ, brain tissue, absorb the tracer, which
is concentrated in areas of higher chemical activity, appearing as bright spots on the PET
scan. Neuroinflammation, which is well depicted by these scans, are areas of interest as
there is presence of epidemiological, genetic and clinical evidence of its involvement in
SZ. Microglia are the resident immune cells of the central nervous system and act as major
mediators of neuroinflammation. When microglia are activated, they express high levels
of the 18-kDa translocator protein which can be measured in vivo with PET radio-tracers.
Images collected can be used to train a ML classifier, and patterns recognized from the
algorithm can then be used to predict and detect SZin new subjects.

Levy et al. [117] obtained PET scan images from 12 medicated SZpatients and 11 HC
under resting conditions and while performing a visual task. A cortical/subcortical spatial
pattern was found to be significant in two directions; anterior/posterior and chiasmatic
(left-anterior/right-posterior). A total of 14 two-group linear discriminant analyses were
performed to classify the sample. The best individual clinical classification (Jackknife
classification) occurred under visual task at two axial brain levels: at the basal ganglia (with
correct classification rates of 91% specificity and 84% sensitivity), and at the cerebellum
(which had rates of 82% specificity and 92% sensitivity). These high classification rates
were obtained using only four coefficients of the lowest spatial frequency. These results
point to the generalized brain dysfunction of regional glucose metabolism in chronic
medicated schizophrenics both at rest and at a visual image-tracking task. Josin and
Liddle [118] reported an analysis using a neural network to discriminate between the
patterns of functional connectivity in 16 SZpatients and six HC. After training on data from
two healthy subjects and seven SZpatients, the neural network successfully assigned all
members of a test set of four healthy subjects and nine SZpatients to the correct diagnostic
category. Lastly, Bose et al. [119] also tested an artificial neural network model in the
discrimination of 19 SZpatients from 31 HC using o-dihydroxyphenylalanine (DOPA)
rate constants within the anterior–posterior subdivisions of the striatum. They obtained
correct classification rates of 89% sensitivity and 94% specificity. Although PET scans are
reporting relatively high classification predictions of remarkable accuracy, it does not evoke
confidence as means of detecting SZas that current work use small sample sizes.
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3.2.2. EEG Signal

An electroencephalogram (EEG) is a test used to evaluate electrical activity in the brain
and be used to detect certain brain disorders such as epilepsy. Event-related potentials
(ERP) are obtained and analyzed. The advantage of using EEG scans stems from the ease
of analysis due to its simple data type. However, EEG is not widely used for the diagnosis
of mental disorders. This may be due to its low spatial resolution or depth sensitivity.
Currently, there are differing views on the use of EEG as an effective tool to diagnose
SZ [120–124]. In particular, it is criticized as it heavily depends on assumptions, conditions
and prior knowledge regarding the patient. These may be improved through the use of
data analysis and ML techniques [125]. An overview of the various study on machine
learning techniques on EEG scan data is compiled in Table 4.

Table 4. Summary of work and predictions relating to the detection of SZusing data from electroencephalogram scans via
various artificial intelligence techniques and machine learning algorithms.

Study Year
Subjects

Prediction AI/ML Technique
Patients Control

Knott et al. [126] 1999 14 14 at least 89.3% DFA, Jackknife classification

Neuhaus et al. [127] 2011 40 40 (matched) 79.9% (balanced)

SVM (linear, quadratic and radial basis kernels),
LDA, Quadratic discriminant analysis (QDA), KNN,
naïve Bayes with equal and unequal variances and

Mahalanobis classification

Iyer et al. [128] 2012 13 20
max 76% (ensemble

averaging)
100% (single-trial)

Random Forest, 10-fold stratified cross-validation

Laton et al. [129] 2014 54 54 (sex- and
age-matched) up to 84.7% Naïve Bayes, SVM and decision tree, with two of its

improvements: adaboost and Random Forest

Neuhaus et al. [130] 2014 144 144 (matched) 74% (balanced)

LDA and QDA (with their diagonal variants),
SVM (linear, polynomial, radial basis and multilayer

perceptron kernels), Naïve Bayes, KNN
(Euclidean and cosine distance measures) and

Mahalanobis classification

Johannesen et al. [131] 2016 40 12 up to 87% 1-norm SVM

Shim et al. [132] 2016 34 34

Maximum: 88.24%
(combined)

80.88% (sensor-level)
85.29% (source-level)

SVM, Leave-one-out cross-validation

Taylor et al. [133] 2017 21 22 80.84% SVM, Gaussian processes classifiers, MVPA

Krishnan et al. [134] 2020 14 14 (sex- and
age-matched) up to 93% Various, SVM (Radial Basis Function)

3.3. Classification and Detection of SZ through Other Techniques

The ways that genetic and DNA changes are related to SZare not well understood, and
the genetics of this disorder is an active area of research [135]. However, the benefit of using
gene and protein data to classify SZis the vast availability of data, which may propel the ad-
vancement of using ML techniques in this scope of research. There are also studies that aim
to identify, classify and detect SZthrough task-specific characteristics or non-neurological
features through ML techniques. For example, cognitive and neuropsychological tests are
used to examine whether neurological signs predict cognitive performance in SZpatients
and to determine the ability of neurological signs and neuropsychological tests to discrimi-
nate SZpatients from healthy subjects [136–140]. Facial features is also an area of interest to
detect SZsuch as eye tracking [141] and facial features [142,143] as well as communication
ability by tracking handwriting [144] and speech [145]. There are also traditional studies
on brain shape and volume symmetry [146], signs of negative symptoms [147,148] and
behavioural anomalies [149,150] as well as novel means of detecting by tracking keywords
used on social media [151–153] or upbringing [154].
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3.4. Composite Data Types for Classification and Detection

Since the advent of ML techniques in medical healthcare, there have been various opin-
ions on the accuracy or the usefulness of these techniques or the type of data that gives the
best prediction. These opinions are varied especially for mental health disorders [155–157]
where the confidence interval of diagnosis by medical professionals is in itself wide. As
such, some researchers have performed broad-based studies, in particular, there have been
several studies that seek to compare the accuracy of specific ML technique for various
types of data.

While the majority of research presented in the previous subsections generally focus
on the use of just one type of data or ML technique, the question remains as to which type
of data or ML technique would provide the best prediction. Hu et al. [158] was one of the
few groups to implement ML algorithm as a means of performing classification by more
than one type of MRI data. In particular, they employed SVM classification. Multimodal T1
structural MRI, DTI and resting-state fMRI (rs-fMRI) datasets of 10 SZsubjects and 10 HC
were obtained. rs-fMRI and DTI datasets of subjects with mild cognitive impairment and
SZwere then used to demonstrate their corresponding fine-granularity functional interaction
(FGFI) signatures. This is done so that an examination of how FGFI features can improve
the performance in the differentiation of the subject population from HC can be quantified.
Consequently, with the reduced feature set, the SVM classifier was implemented to evaluate
the discriminability of the FGFI features. It is seen that FGFI features yield a relatively high
sensitivity 75.0% and specificity 80.0%. The ROI of this research are the left frontal, left
parietal, left temporal, left occipital, right frontal, right parietal, right temporal and right
occipital lobes.

Another significant work of similar nature is the research performed by Pettersson-
Yeo et al. [159], however, Pettersson-Yeo et al. added non-neuroimaging data to the analysis
which significantly broadened the research scope. They performed a unified study using the
ML technique of SVM on genetic, sMRI, DTI, fMRI and cognitive data. Three age and gender-
matched SVM paired comparison groups were created comprising 19, 19 and 15 subject pairs
for first-episode psychosis (FEP) versus HC, ultra-high risk (UHR) versus HC and FEP versus
UHR, respectively. Successful classification (p < 0.05) comprised of the following:

• FEP versus HC: genotype, 67.86%; DTI, 65.79%; fMRI, 65.79% and 68.42%; cognitive
data, 73.69%,

• UHR versus HC: sMRI, 68.42%; DTI, 65.79%, and
• FEP versus UHR: sMRI, 76.67%; fMRI, 73.33%; cognitive data, 66.67%.

The results suggest that FEP subjects are identifiable at the individual level through
the use of a series of biological and cognitive measures. Comparatively, only sMRI and DTI
allowed discrimination of UHR from HC subjects, thus suggesting that changes in baseline
structure of WM is significant. For the first time FEP and UHR subjects have been shown
to be directly differentiable at the single-subject level using cognitive, sMRI and fMRI data.
The work by Pettersson-Yeo covers a series of different data types and the results support
clinical development of SVM to help inform identification of FEP and UHR subjects. While
this is a significant advancement in the use of ML techniques to classify patients from HC,
future work is needed to provide enhanced levels of accuracy.

The works by Hu et al. and Pettersson-Yeo et al. show that there is still a huge potential
for the use of AI and ML, especially with many types of data available. Just as how medical
professionals use different data means to identify SZ, a well-trained ML model can take
into account all these variables and clinical considerations to make predictions.

4. Outlook

As an emerging field, there remain significant gaps that can be narrowed in future research.
As mentioned, the majority of papers reviewed focus on detection, with greater emphasis on
using MRI data. There is significant scope to explore whether ML can have similar accuracy in
the detection of SZthrough the use of other medical data. Currently, there are few public datasets
available for independent researchers to apply novel AI and ML techniques for better machine
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classification and detection. This important partnership between mental health and data science
sectors can be beneficial to the advancement of SZdiagnosis. A collaborative effort to have data
available could expedite research in using big data to enhance medical professionals’ experience
in proper detection and diagnosis of SZin potential patients.

Furthermore, while there is a fair number of studies that focused on treatment and support
for patients with SZ, comparatively fewer research has explored applications in support
domains such as education, public health, research and clinical administration. This forms
a large area for innovating, particularly when leveraged by ML techniques as it contributes
a significantly large volume of data that can be utilized in further coordination such as
public mental health education, big data research and clinical administration. One possible
concern is the emergence of cyber risks when integrating AI, ML, and big data into healthcare
infrastructure. However, with the development of technology, also comes an active and
advancing field of research [160–162] that seeks to mitigate cyber risks to protect healthcare
givers and patients from the small risks that come with the wide opportunities made available
with technological integration. With proper intervention, these risks could be mitigated.

Current research and the choice of supervised learning ML techniques (SVM, k-nearest
neighbours, decision trees, regression etc.) is indicative of the focus on detection. Super-
vised learning is typically designed using large, retrospective, labelled datasets ideal for
classification tasks. Future researchers could consider the possibility of using less struc-
tured, prospective data for real-time ML analysis. While such studies cannot replace the
emotive aspect of physician-patient connection, advances in these analytic unsupervised or
online learning may enable researchers and clinicians to provide personalized and context-
sensitive information for assessment. This can also alleviate the main issues, such as the
quality of data, that hinder the effectiveness of many supervised learning ML models.

We caution that ML should not replace other research or analytic approaches; rather,
it complements and value-add to SZresearch. While the question of which ML technique
or data type is most reliable or most accurate depends heavily on the study and nature
of the data collected, it does show that different research groups can produce a detection
mechanism of an acceptable classification accuracy. The push for a data-driven research
through means of using ML techniques may require greater collaboration between research
institutions and healthcare bodies to harmonize and share data, in a responsible and
sensitive manner. These forms of collaboration seek to maximize the effectiveness and
accuracy of the models developed. Thus, the emerging question should not be about which
data type is best or which ML technique is the best. These are questions of the past as we
have seen that regardless of data type, various ML techniques have proven to have high
prediction accuracy. Furthermore, the data inputs are from different sources and quality. A
step towards the future should be to build a learning model that can receive comprehensive
types of data to make better predictions through a combination of multiple ML techniques
rather than solely relying on a single data type or ML technique. This, coupled with a
centralized standard of data curation for clinical and academic researchers would create a
level platform for providing a basis for comparison of data type and technique. Researchers
and medical professionals who wish to implement and integrate AI and ML techniques,
may refer to the survey conducted by Coronato et al. [163,164].

Finally, while still debated, the successful and competitive prediction accuracy motivate
the employment of ML techniques to evaluate effectiveness of pharmacological treatment.
To date, SZremains a complex disorder which requires prompt therapy upon detection of
early signs of psychotic episodes. Medical professionals must consider many factors while
developing a comprehensive and effective treatment plan. These considerations can be aided
by the advent of ML techniques in optimizing treatment through pharmacological options.
This is one of the motivations to use AI and ML algorithms for the purpose of detection
and quantifying treatment aid in the eventual goal of enhancing translational medicine
for individualized management of SZpatients. This, however, cannot overwrite on-going
research in non-pharmacological treatment, which fundamentally remains an important
pillar to mental health treatment.
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5. Conclusions

This review is in line with the growing interest of applying ML to areas of mental
health research. The current work focus on detecting and classifying SZby quantifying them
according to the AI techniques and machine learning algorithms. We formally synthesized
and consolidated the literature on ML and big data with application to SZ by highlighting
the advances in current research and applications in practice. The dominant work in
current research has focused on the benefits of ML as a means to improve detection and
diagnosis of SZ. The studies presented in this review demonstrate the need to push the
boundaries of AI and ML in the healthcare profession, indicating the potential of using
computers as a means of enhancing capabilities in dealing with SZdiagnosis.

Research in the field of AI and ML for SZhas revealed exciting advances. The work re-
viewed shows that ML can contribute in the area of detection and diagnosis of SZconditions.
Research into treatment and support has demonstrated initial positive results. The need
for more comparative studies that uses composite data and analyzed with multiple ML
techniques, we highlight the work presented by Hu et al. and Pettersson-Yeo et al. In their
work, they concluded that FEP subjects are identifiable through the use of biological and
cognitive measures, while sMRI and DTI is particularly useful in differentiating high-risk
patients with healthy subjects. They were able to come to this conclusion because of their
extensive use of data types and AI techniques. With ML tools becoming more accessible
for researchers and clinicians, it is expected that the field will continue to grow and that
novel applications for detection and pharmacological treatment with the help of advanced
AI and ML techniques will follow. More information please see Supplementary Materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph18116099/s1, Table S1: Summary of work relating to the detection of SZ using data from
structural MRI scans via various artificial intelligence techniques and machine learning algorithms.
Table S2: Summary of work relating to the detection of SZ using data from functional MRI scans via
various artificial intelligence techniques and machine learning algorithms. Table S3: Summary of work
relating to the detection of SZ using data from diffusion-weight MRI, diffusion tensor imaging and
perfusion MRI scans via various artificial intelligence techniques and machine learning algorithms.
Table S4: Summary of work relating to the detection of SZ using data from electroencephalogram
scans via various artificial intelligence techniques and machine learning algorithms.
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29. Ulaş, A.; Gönen, M.; Castellani, U.; Murino, V.; Bellani, M.; Tansella, M.; Brambilla, P. A localized MKL method for brain
classification with known intra-class variability. In International Workshop on Machine Learning in Medical Imaging; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 152–159.

30. Yang, H.; He, H.; Zhong, J. Multimodal MRI characterisation of schizophrenia: A discriminative analysis. Lancet 2016, 388, S36.
[CrossRef]

31. Csernansky, J.G.; Wang, L.; Jones, D.; Rastogi-Cruz, D.; Posener, J.A.; Heydebrand, G.; Miller, J.P.; Miller, M.I. Hippocampal
deformities in schizophrenia characterized by high dimensional brain mapping. Am. J. Psychiatry 2002, 159, 2000–2006. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2018.2840695
http://www.ncbi.nlm.nih.gov/pubmed/29993532
http://dx.doi.org/10.1016/j.inffus.2018.09.012
http://www.ncbi.nlm.nih.gov/pubmed/30467459
http://dx.doi.org/10.1109/TPAMI.1980.6592368
http://dx.doi.org/10.1109/TPAMI.2019.2891600
http://dx.doi.org/10.1109/TPAMI.2008.273
http://www.ncbi.nlm.nih.gov/pubmed/19926897
http://dx.doi.org/10.1109/TPAMI.2017.2782687
http://www.ncbi.nlm.nih.gov/pubmed/29990011
http://dx.doi.org/10.1016/j.bbe.2019.01.004
http://dx.doi.org/10.1016/j.bbe.2020.03.005
http://dx.doi.org/10.1016/j.metabol.2017.01.011
http://dx.doi.org/10.1016/j.inffus.2019.04.001
http://dx.doi.org/10.1109/TPAMI.1984.4767479
http://www.ncbi.nlm.nih.gov/pubmed/21869169
http://dx.doi.org/10.1001/jamapsychiatry.2019.3360
http://www.ncbi.nlm.nih.gov/pubmed/31664453
http://dx.doi.org/10.1093/schbul/13.2.261
http://www.ncbi.nlm.nih.gov/pubmed/3616518
http://dx.doi.org/10.2147/NDT.S4120
http://www.ncbi.nlm.nih.gov/pubmed/19337453
http://dx.doi.org/10.1148/radiol.2015151334
http://dx.doi.org/10.3389/fnhum.2014.00653
http://dx.doi.org/10.1016/S0006-3223(99)00052-9
http://dx.doi.org/10.1001/archgenpsychiatry.2009.62
http://dx.doi.org/10.1016/S0140-6736(16)31963-8
http://dx.doi.org/10.1176/appi.ajp.159.12.2000


Int. J. Environ. Res. Public Health 2021, 18, 6099 15 of 20

32. Davatzikos, C.; Shen, D.; Gur, R.C.; Wu, X.; Liu, D.; Fan, Y.; Hughett, P.; Turetsky, B.I.; Gur, R.E. Whole-brain morphometric study
of schizophrenia revealing a spatially complex set of focal abnormalities. Arch. Gen. Psychiatry 2005, 62, 1218–1227. [CrossRef]

33. Nakamura, K.; Kawasaki, Y.; Suzuki, M.; Hagino, H.; Kurokawa, K.; Takahashi, T.; Niu, L.; Matsui, M.; Seto, H.; Kurachi, M. Multiple
structural brain measures obtained by three-dimensional magnetic resonance imaging to distinguish between schizophrenia
patients and normal subjects. Schizophr. Bull. 2004, 30, 393–404. [CrossRef] [PubMed]

34. Yushkevich, P.; Dubb, A.; Xie, Z.; Gur, R.; Gur, R.; Gee, J. Regional Structural Characterization of the Brain of Schizophrenia
Patients. Acad. Radiol. 2005, 12, 1250–1261. [CrossRef] [PubMed]

35. Fan, Y.; Shen, D.; Gur, R.C.; Gur, R.E.; Davatzikos, C. COMPARE: Classification of morphological patterns using adaptive regional
elements. IEEE Trans. Med. Imaging 2006, 26, 93–105. [CrossRef]

36. Yoon, U.; Lee, J.M.; Im, K.; Shin, Y.W.; Cho, B.H.; Kim, I.Y.; Kwon, J.S.; Kim, S.I. Pattern classification using principal components
of cortical thickness and its discriminative pattern in schizophrenia. Neuroimage 2007, 34, 1405–1415. [CrossRef] [PubMed]

37. Kawasaki, Y.; Suzuki, M.; Kherif, F.; Takahashi, T.; Zhou, S.Y.; Nakamura, K.; Matsui, M.; Sumiyoshi, T.; Seto, H.; Kurachi, M.
Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. Neuroimage 2007,
34, 235–242. [CrossRef] [PubMed]

38. Castellani, U.; Rossato, E.; Murino, V.; Bellani, M.; Rambaldelli, G.; Tansella, M.; Brambilla, P. Local Kernel for brains classification in
Schizophrenia. In Congress of the Italian Association for Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2009; pp. 112–121.

39. Pohl, K.M.; Sabuncu, M.R. A unified framework for MR based disease classification. In Proceedings of the International
Conference on Information Processing in Medical Imaging, Williamsburg, VA, USA, 5–10 July 2009; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 300–313.

40. Sun, D.; van Erp, T.G.; Thompson, P.M.; Bearden, C.E.; Daley, M.; Kushan, L.; Hardt, M.E.; Nuechterlein, K.H.; Toga, A.W.;
Cannon, T.D. Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: Classification analysis
using probabilistic brain atlas and machine learning algorithms. Biol. Psychiatry 2009, 66, 1055–1060. [CrossRef]

41. Takayanagi, Y.; Kawasaki, Y.; Nakamura, K.; Takahashi, T.; Orikabe, L.; Toyoda, E.; Mozue, Y.; Sato, Y.; Itokawa, M.; Yamasue,
H.; et al. Differentiation of first-episode schizophrenia patients from healthy controls using ROI-based multiple structural brain
variables. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 10–17. [CrossRef]

42. Castellani, U.; Perina, A.; Murino, V.; Bellani, M.; Rambaldelli, G.; Tansella, M.; Brambilla, P. Brain morphometry by probabilistic
latent semantic analysis. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Beijing, China, 20–24 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 177–184.

43. Koutsouleris, N.; Gaser, C.; Bottlender, R.; Davatzikos, C.; Decker, P.; Jäger, M.; Schmitt, G.; Reiser, M.; Möller, H.J.; Meisenzahl,
E.M. Use of neuroanatomical pattern regression to predict the structural brain dynamics of vulnerability and transition to
psychosis. Schizophr. Res. 2010, 123, 175–187. [CrossRef]

44. Kasparek, T.; Thomaz, C.E.; Sato, J.R.; Schwarz, D.; Janousova, E.; Marecek, R.; Prikryl, R.; Vanicek, J.; Fujita, A.; Ceskova, E.
Maximum-uncertainty linear discrimination analysis of first-episode schizophrenia subjects. Psychiatry Res. Neuroimaging 2011,
191, 174–181. [CrossRef] [PubMed]

45. Karageorgiou, E.; Schulz, S.C.; Gollub, R.L.; Andreasen, N.C.; Ho, B.C.; Lauriello, J.; Calhoun, V.D.; Bockholt, H.J.; Sponheim, S.R.;
Georgopoulos, A.P. Neuropsychological testing and structural magnetic resonance imaging as diagnostic biomarkers early in the
course of schizophrenia and related psychoses. Neuroinformatics 2011, 9, 321–333. [CrossRef] [PubMed]

46. Castellani, U.; Mirtuono, P.; Murino, V.; Bellani, M.; Rambaldelli, G.; Tansella, M.; Brambilla, P. A new shape diffusion descriptor
for brain classification. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Toronto, ON, Canada, 18–22 September 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 426–433.

47. Ulaş, A.; Duin, R.P.; Castellani, U.; Loog, M.; Mirtuono, P.; Bicego, M.; Murino, V.; Bellani, M.; Cerruti, S.; Tansella, M.; et al.
Dissimilarity-based detection of schizophrenia. Int. J. Imaging Syst. Technol. 2011, 21, 179–192. [CrossRef]

48. Koutsouleris, N.; Borgwardt, S.; Meisenzahl, E.M.; Bottlender, R.; Möller, H.J.; Riecher-Rössler, A. Disease prediction in the at-risk
mental state for psychosis using neuroanatomical biomarkers: Results from the FePsy study. Schizophr. Bull. 2012, 38, 1234–1246.
[CrossRef] [PubMed]

49. Castellani, U.; Rossato, E.; Murino, V.; Bellani, M.; Rambaldelli, G.; Perlini, C.; Tomelleri, L.; Tansella, M.; Brambilla, P.
Classification of schizophrenia using feature-based morphometry. J. Neural Transm. 2012, 119, 395–404. [CrossRef] [PubMed]

50. Nieuwenhuis, M.; van Haren, N.E.; Pol, H.E.H.; Cahn, W.; Kahn, R.S.; Schnack, H.G. Classification of schizophrenia patients and
healthy controls from structural MRI scans in two large independent samples. Neuroimage 2012, 61, 606–612. [CrossRef] [PubMed]

51. Ota, M.; Sato, N.; Ishikawa, M.; Hori, H.; Sasayama, D.; Hattori, K.; Teraishi, T.; Obu, S.; Nakata, Y.; Nemoto, K.; et al.
Discrimination of female schizophrenia patients from healthy women using multiple structural brain measures obtained with
voxel-based morphometry. Psychiatry Clin. Neurosci. 2012, 66, 611–617. [CrossRef] [PubMed]

52. Bansal, R.; Staib, L.H.; Laine, A.F.; Hao, X.; Xu, D.; Liu, J.; Weissman, M.; Peterson, B.S. Anatomical brain images alone can
accurately diagnose chronic neuropsychiatric illnesses. PLoS ONE 2012, 7, e50698. [CrossRef] [PubMed]

53. Greenstein, D.; Weisinger, B.; Malley, J.D.; Clasen, L.; Gogtay, N. Using multivariate machine learning methods and structural
MRI to classify childhood onset schizophrenia and healthy controls. Front. Psychiatry 2012, 3, 53. [CrossRef]

54. Borgwardt, S.; Koutsouleris, N.; Aston, J.; Studerus, E.; Smieskova, R.; Riecher-Rössler, A.; Meisenzahl, E.M. Distinguishing
prodromal from first-episode psychosis using neuroanatomical single-subject pattern recognition. Schizophr. Bull. 2013, 39,
1105–1114. [CrossRef]

http://dx.doi.org/10.1001/archpsyc.62.11.1218
http://dx.doi.org/10.1093/oxfordjournals.schbul.a007087
http://www.ncbi.nlm.nih.gov/pubmed/15279055
http://dx.doi.org/10.1016/j.acra.2005.06.014
http://www.ncbi.nlm.nih.gov/pubmed/16179202
http://dx.doi.org/10.1109/TMI.2006.886812
http://dx.doi.org/10.1016/j.neuroimage.2006.11.021
http://www.ncbi.nlm.nih.gov/pubmed/17188902
http://dx.doi.org/10.1016/j.neuroimage.2006.08.018
http://www.ncbi.nlm.nih.gov/pubmed/17045492
http://dx.doi.org/10.1016/j.biopsych.2009.07.019
http://dx.doi.org/10.1016/j.pnpbp.2009.09.004
http://dx.doi.org/10.1016/j.schres.2010.08.032
http://dx.doi.org/10.1016/j.pscychresns.2010.09.016
http://www.ncbi.nlm.nih.gov/pubmed/21295452
http://dx.doi.org/10.1007/s12021-010-9094-6
http://www.ncbi.nlm.nih.gov/pubmed/21246418
http://dx.doi.org/10.1002/ima.20279
http://dx.doi.org/10.1093/schbul/sbr145
http://www.ncbi.nlm.nih.gov/pubmed/22080496
http://dx.doi.org/10.1007/s00702-011-0693-7
http://www.ncbi.nlm.nih.gov/pubmed/21904897
http://dx.doi.org/10.1016/j.neuroimage.2012.03.079
http://www.ncbi.nlm.nih.gov/pubmed/22507227
http://dx.doi.org/10.1111/j.1440-1819.2012.02397.x
http://www.ncbi.nlm.nih.gov/pubmed/23252928
http://dx.doi.org/10.1371/journal.pone.0050698
http://www.ncbi.nlm.nih.gov/pubmed/23236384
http://dx.doi.org/10.3389/fpsyt.2012.00053
http://dx.doi.org/10.1093/schbul/sbs095


Int. J. Environ. Res. Public Health 2021, 18, 6099 16 of 20

55. Iwabuchi, S.; Liddle, P.F.; Palaniyappan, L. Clinical utility of machine-learning approaches in schizophrenia: Improving diagnostic
confidence for translational neuroimaging. Front. Psychiatry 2013, 4, 95. [CrossRef] [PubMed]

56. Zanetti, M.V.; Schaufelberger, M.S.; Doshi, J.; Ou, Y.; Ferreira, L.K.; Menezes, P.R.; Scazufca, M.; Davatzikos, C.; Busatto, G.F.
Neuroanatomical pattern classification in a population-based sample of first-episode schizophrenia. Prog. Neuropsychopharmacol.
Biol. Psychiatry 2013, 43, 116–125. [CrossRef] [PubMed]

57. Gould, I.C.; Shepherd, A.M.; Laurens, K.R.; Cairns, M.J.; Carr, V.J.; Green, M.J. Multivariate neuroanatomical classification of
cognitive subtypes in schizophrenia: A support vector machine learning approach. Neuroimage Clin. 2014, 6, 229–236. [CrossRef]
[PubMed]

58. Perina, A.; Peruzzo, D.; Kesa, M.; Jojic, N.; Murino, V.; Bellani, M.; Brambilla, P.; Castellani, U. Mapping brains on grids of features
for Schizophrenia analysis. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Boston, MA, USA, 14–18 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 805–812.

59. Schnack, H.G.; Nieuwenhuis, M.; van Haren, N.E.; Abramovic, L.; Scheewe, T.W.; Brouwer, R.M.; Pol, H.E.H.; Kahn, R.S. Can
structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia,
bipolar disorder and healthy subjects. Neuroimage 2014, 84, 299–306. [CrossRef] [PubMed]

60. Cabral, C.; Kambeitz-Ilankovic, L.; Kambeitz, J.; Calhoun, V.D.; Dwyer, D.B.; Von Saldern, S.; Urquijo, M.F.; Falkai, P.; Koutsouleris,
N. Classifying schizophrenia using multimodal multivariate pattern recognition analysis: Evaluating the impact of individual
clinical profiles on the neurodiagnostic performance. Schizophr. Bull. 2016, 42, S110–S117. [CrossRef]

61. Lu, X.; Yang, Y.; Wu, F.; Gao, M.; Xu, Y.; Zhang, Y.; Yao, Y.; Du, X.; Li, C.; Wu, L.; et al. Discriminative analysis of schizophrenia
using support vector machine and recursive feature elimination on structural MRI images. Medicine (Baltimore) 2016, 95, e3973.
[CrossRef] [PubMed]

62. Squarcina, L.; Castellani, U.; Bellani, M.; Perlini, C.; Lasalvia, A.; Dusi, N.; Bonetto, C.; Cristofalo, D.; Tosato, S.; Rambaldelli, G.; et al.
Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning
techniques. Neuroimage 2017, 145, 238–245. [CrossRef]

63. Rozycki, M.; Satterthwaite, T.D.; Koutsouleris, N.; Erus, G.; Doshi, J.; Wolf, D.H.; Fan, Y.; Gur, R.E.; Gur, R.C.; Meisenzahl, E.M.;
et al. Multisite machine learning analysis provides a robust structural imaging signature of schizophrenia detectable across
diverse patient populations and within individuals. Schizophr. Bull. 2018, 44, 1035–1044. [CrossRef] [PubMed]

64. de Moura, A.M.; Pinaya, W.H.L.; Gadelha, A.; Zugman, A.; Noto, C.; Cordeiro, Q.; Belangero, S.I.; Jackowski, A.P.; Bressan, R.A.;
Sato, J.R. Investigating brain structural patterns in first episode psychosis and schizophrenia using MRI and a machine learning
approach. Psychiatry Res. Neuroimaging 2018, 275, 14–20. [CrossRef]

65. Liang, S.; Li, Y.; Zhang, Z.; Kong, X.; Wang, Q.; Deng, W.; Li, X.; Zhao, L.; Li, M.; Meng, Y.; et al. Classification of first-episode
schizophrenia using multimodal brain features: A combined structural and diffusion imaging study. Schizophr. Bull. 2019,
45, 591–599. [CrossRef] [PubMed]

66. Deng, Y.; Hung, K.S.; Lui, S.S.; Chui, W.W.; Lee, J.C.; Wang, Y.; Li, Z.; Mak, H.K.; Sham, P.C.; Chan, R.C.; et al. Tractography-based
classification in distinguishing patients with first-episode schizophrenia from healthy individuals. Prog. Neuropsychopharmacol.
Biol. Psychiatry 2019, 88, 66–73. [CrossRef]

67. Calhoun, V.D.; Adalı, T.; Kiehl, K.A.; Astur, R.; Pekar, J.J.; Pearlson, G.D. A method for multitask fMRI data fusion applied to
schizophrenia. Hum. Brain Mapp. 2006, 27, 598–610. [CrossRef] [PubMed]

68. Jafri, M.J.; Calhoun, V.D. Functional classification of schizophrenia using feed forward neural networks. In Proceedings of the
2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3
September 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 6631–6634.

69. Calhoun, V.D.; Maciejewski, P.K.; Pearlson, G.D.; Kiehl, K.A. Temporal lobe and “default” hemodynamic brain modes discriminate
between schizophrenia and bipolar disorder. Hum. Brain Mapp. 2008, 29, 1265–1275. [CrossRef]

70. Anderson, A.; Dinov, I.D.; Sherin, J.E.; Quintana, J.; Yuille, A.L.; Cohen, M.S. Classification of spatially unaligned fMRI scans.
Neuroimage 2010, 49, 2509–2519. [CrossRef] [PubMed]

71. Arribas, J.I.; Calhoun, V.D.; Adali, T. Automatic Bayesian classification of healthy controls, bipolar disorder, and schizophrenia
using intrinsic connectivity maps from FMRI data. IEEE Trans. Biomed. Eng. 2010, 57, 2850–2860. [CrossRef] [PubMed]

72. Shen, H.; Wang, L.; Liu, Y.; Hu, D. Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using
low dimensional embedding of fMRI. Neuroimage 2010, 49, 3110–3121. [CrossRef] [PubMed]

73. Yang, H.; Liu, J.; Sui, J.; Pearlson, G.; Calhoun, V.D. A hybrid machine learning method for fusing fMRI and genetic data:
Combining both improves classification of schizophrenia. Front. Hum. Neurosci. 2010, 4, 192. [CrossRef]

74. Castro, E.; Martínez-Ramón, M.; Pearlson, G.; Sui, J.; Calhoun, V.D. Characterization of groups using composite kernels and
multi-source fMRI analysis data: Application to schizophrenia. Neuroimage 2011, 58, 526–536. [CrossRef]

75. Costafreda, S.G.; Fu, C.H.; Picchioni, M.; Toulopoulou, T.; McDonald, C.; Kravariti, E.; Walshe, M.; Prata, D.; Murray, R.M.;
McGuire, P.K. Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder.
BMC Psychiatry 2011, 11, 18. [CrossRef]

76. Fan, Y.; Liu, Y.; Wu, H.; Hao, Y.; Liu, H.; Liu, Z.; Jiang, T. Discriminant analysis of functional connectivity patterns on Grassmann
manifold. Neuroimage 2011, 56, 2058–2067. [CrossRef]

77. Du, W.; Calhoun, V.D.; Li, H.; Ma, S.; Eichele, T.; Kiehl, K.A.; Pearlson, G.D.; Adali, T. High classification accuracy for schizophrenia
with rest and task fMRI data. Front. Hum. Neurosci. 2012, 6, 145. [CrossRef]

http://dx.doi.org/10.3389/fpsyt.2013.00095
http://www.ncbi.nlm.nih.gov/pubmed/24009589
http://dx.doi.org/10.1016/j.pnpbp.2012.12.005
http://www.ncbi.nlm.nih.gov/pubmed/23261522
http://dx.doi.org/10.1016/j.nicl.2014.09.009
http://www.ncbi.nlm.nih.gov/pubmed/25379435
http://dx.doi.org/10.1016/j.neuroimage.2013.08.053
http://www.ncbi.nlm.nih.gov/pubmed/24004694
http://dx.doi.org/10.1093/schbul/sbw053
http://dx.doi.org/10.1097/MD.0000000000003973
http://www.ncbi.nlm.nih.gov/pubmed/27472673
http://dx.doi.org/10.1016/j.neuroimage.2015.12.007
http://dx.doi.org/10.1093/schbul/sbx137
http://www.ncbi.nlm.nih.gov/pubmed/29186619
http://dx.doi.org/10.1016/j.pscychresns.2018.03.003
http://dx.doi.org/10.1093/schbul/sby091
http://www.ncbi.nlm.nih.gov/pubmed/29947804
http://dx.doi.org/10.1016/j.pnpbp.2018.06.010
http://dx.doi.org/10.1002/hbm.20204
http://www.ncbi.nlm.nih.gov/pubmed/16342150
http://dx.doi.org/10.1002/hbm.20463
http://dx.doi.org/10.1016/j.neuroimage.2009.08.036
http://www.ncbi.nlm.nih.gov/pubmed/19712744
http://dx.doi.org/10.1109/TBME.2010.2080679
http://www.ncbi.nlm.nih.gov/pubmed/20876002
http://dx.doi.org/10.1016/j.neuroimage.2009.11.011
http://www.ncbi.nlm.nih.gov/pubmed/19931396
http://dx.doi.org/10.3389/fnhum.2010.00192
http://dx.doi.org/10.1016/j.neuroimage.2011.06.044
http://dx.doi.org/10.1186/1471-244X-11-18
http://dx.doi.org/10.1016/j.neuroimage.2011.03.051
http://dx.doi.org/10.3389/fnhum.2012.00145


Int. J. Environ. Res. Public Health 2021, 18, 6099 17 of 20

78. Liu, M.; Zeng, L.L.; Shen, H.; Liu, Z.; Hu, D. Potential risk for healthy siblings to develop schizophrenia: Evidence from pattern
classification with whole-brain connectivity. Neuroreport 2012, 23, 265–269. [CrossRef]

79. Venkataraman, A.; Whitford, T.J.; Westin, C.F.; Golland, P.; Kubicki, M. Whole brain resting state functional connectivity
abnormalities in schizophrenia. Schizophr. Res. 2012, 139, 7–12. [CrossRef]

80. Yoon, J.H.; Nguyen, D.V.; McVay, L.M.; Deramo, P.; Minzenberg, M.J.; Ragland, J.D.; Niendham, T.; Solomon, M.; Carter, C.S.
Automated classification of fMRI during cognitive control identifies more severely disorganized subjects with schizophrenia.
Schizophr. Res. 2012, 135, 28–33. [CrossRef]

81. Anderson, A.; Cohen, M.S. Decreased small-world functional network connectivity and clustering across resting state networks
in schizophrenia: An fMRI classification tutorial. Front. Hum. Neurosci. 2013, 7, 520. [CrossRef]

82. Arbabshirani, M.R.; Kiehl, K.; Pearlson, G.; Calhoun, V.D. Classification of schizophrenia patients based on resting-state functional
network connectivity. Front. Neurosci. 2013, 7, 133. [CrossRef] [PubMed]

83. Fekete, T.; Wilf, M.; Rubin, D.; Edelman, S.; Malach, R.; Mujica-Parodi, L.R. Combining classification with fMRI-derived complex
network measures for potential neurodiagnostics. PLoS ONE 2013, 8, e62867. [CrossRef] [PubMed]

84. Yu, Y.; Shen, H.; Zeng, L.L.; Ma, Q.; Hu, D. Convergent and divergent functional connectivity patterns in schizophrenia and
depression. PLoS ONE 2013, 8, e68250. [CrossRef] [PubMed]

85. Yu, Y.; Shen, H.; Zhang, H.; Zeng, L.L.; Xue, Z.; Hu, D. Functional connectivity-based signatures of schizophrenia revealed by
multiclass pattern analysis of resting-state fMRI from schizophrenic patients and their healthy siblings. Biomed. Eng. Online 2013,
12, 10. [CrossRef] [PubMed]

86. Anticevic, A.; Cole, M.W.; Repovs, G.; Murray, J.D.; Brumbaugh, M.S.; Winkler, A.M.; Savic, A.; Krystal, J.H.; Pearlson, G.D.;
Glahn, D.C. Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cereb. Cortex 2014, 24, 3116–3130.
[CrossRef]

87. Brodersen, K.H.; Deserno, L.; Schlagenhauf, F.; Lin, Z.; Penny, W.D.; Buhmann, J.M.; Stephan, K.E. Dissecting psychiatric spectrum
disorders by generative embedding. Neuroimage Clin. 2014, 4, 98–111. [CrossRef] [PubMed]

88. Castro, E.; Gómez-Verdejo, V.; Martínez-Ramón, M.; Kiehl, K.A.; Calhoun, V.D. A multiple kernel learning approach to perform
classification of groups from complex-valued fMRI data analysis: Application to schizophrenia. Neuroimage 2014, 87, 1–17.
[CrossRef] [PubMed]

89. Guo, S.; Kendrick, K.M.; Yu, R.; Wang, H.L.S.; Feng, J. Key functional circuitry altered in schizophrenia involves parietal regions
associated with sense of self. Hum. Brain Mapp. 2014, 35, 123–139. [CrossRef]

90. Watanabe, T.; Kessler, D.; Scott, C.; Angstadt, M.; Sripada, C. Disease prediction based on functional connectomes using a scalable
and spatially-informed support vector machine. Neuroimage 2014, 96, 183–202. [CrossRef]

91. Cheng, W.; Palaniyappan, L.; Li, M.; Kendrick, K.M.; Zhang, J.; Luo, Q.; Liu, Z.; Yu, R.; Deng, W.; Wang, Q.; et al. Voxel-based,
brain-wide association study of aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry. NPJ
Schizophr. 2015, 1, 15016. [CrossRef]

92. Chyzhyk, D.; Graña, M.; Öngür, D.; Shinn, A.K. Discrimination of schizophrenia auditory hallucinators by machine learning of
resting-state functional MRI. Int. J. Neural Syst. 2015, 25, 1550007. [CrossRef]

93. Kaufmann, T.; Skåtun, K.C.; Alnæs, D.; Doan, N.T.; Duff, E.P.; Tønnesen, S.; Roussos, E.; Ueland, T.; Aminoff, S.R.; Lagerberg, T.V.;
et al. Disintegration of sensorimotor brain networks in schizophrenia. Schizophr. Bull. 2015, 41, 1326–1335. [CrossRef]

94. Pouyan, A.A.; Shahamat, H. A texture-based method for classification of schizophrenia using fMRI data. Biocybern. Biomed. Eng.
2015, 35, 45–53. [CrossRef]

95. Mikolas, P.; Melicher, T.; Skoch, A.; Matejka, M.; Slovakova, A.; Bakstein, E.; Hajek, T.; Spaniel, F. Connectivity of the anterior
insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: A machine-learning study.
Psychol. Med. 2016, 46, 2695–2704. [CrossRef]

96. Peters, H.; Shao, J.; Scherr, M.; Schwerthöffer, D.; Zimmer, C.; Förstl, H.; Bäuml, J.; Wohlschläger, A.; Riedl, V.; Koch, K.; et al.
More consistently altered connectivity patterns for cerebellum and medial temporal lobes than for amygdala and striatum in
schizophrenia. Front. Hum. Neurosci. 2016, 10, 55. [CrossRef] [PubMed]

97. Skåtun, K.C.; Kaufmann, T.; Doan, N.T.; Alnæs, D.; Córdova-Palomera, A.; Jönsson, E.G.; Fatouros-Bergman, H.; Flyckt, L.; KaSP;
Melle, I.; et al. Consistent functional connectivity alterations in schizophrenia spectrum disorder: A multisite study. Schizophr.
Bull. 2017, 43, 914–924. [CrossRef]

98. Chen, X.; Liu, C.; He, H.; Chang, X.; Jiang, Y.; Li, Y.; Duan, M.; Li, J.; Luo, C.; Yao, D. Transdiagnostic differences in the resting-state
functional connectivity of the prefrontal cortex in depression and schizophrenia. J. Affect. Disord. 2017, 217, 118–124. [CrossRef]
[PubMed]

99. Kaufmann, T.; Alnæs, D.; Brandt, C.L.; Doan, N.T.; Kauppi, K.; Bettella, F.; Lagerberg, T.V.; Berg, A.O.; Djurovic, S.; Agartz, I.; et al.
Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets. Neuroimage 2017,
147, 243–252. [CrossRef]

100. Guo, W.; Liu, F.; Chen, J.; Wu, R.; Li, L.; Zhang, Z.; Zhao, J. Family-based case-control study of homotopic connectivity in
first-episode, drug-naive schizophrenia at rest. Sci. Rep. 2017, 7, 43312. [CrossRef]

101. Iwabuchi, S.J.; Palaniyappan, L. Abnormalities in the effective connectivity of visuothalamic circuitry in schizophrenia. Psychol.
Med. 2017, 47, 1300–1310. [CrossRef]

http://dx.doi.org/10.1097/WNR.0b013e32834f60a5
http://dx.doi.org/10.1016/j.schres.2012.04.021
http://dx.doi.org/10.1016/j.schres.2012.01.001
http://dx.doi.org/10.3389/fnhum.2013.00520
http://dx.doi.org/10.3389/fnins.2013.00133
http://www.ncbi.nlm.nih.gov/pubmed/23966903
http://dx.doi.org/10.1371/journal.pone.0062867
http://www.ncbi.nlm.nih.gov/pubmed/23671641
http://dx.doi.org/10.1371/journal.pone.0068250
http://www.ncbi.nlm.nih.gov/pubmed/23844175
http://dx.doi.org/10.1186/1475-925X-12-10
http://www.ncbi.nlm.nih.gov/pubmed/23390976
http://dx.doi.org/10.1093/cercor/bht165
http://dx.doi.org/10.1016/j.nicl.2013.11.002
http://www.ncbi.nlm.nih.gov/pubmed/24363992
http://dx.doi.org/10.1016/j.neuroimage.2013.10.065
http://www.ncbi.nlm.nih.gov/pubmed/24225489
http://dx.doi.org/10.1002/hbm.22162
http://dx.doi.org/10.1016/j.neuroimage.2014.03.067
http://dx.doi.org/10.1038/npjschz.2015.16
http://dx.doi.org/10.1142/S0129065715500070
http://dx.doi.org/10.1093/schbul/sbv060
http://dx.doi.org/10.1016/j.bbe.2014.08.001
http://dx.doi.org/10.1017/S0033291716000878
http://dx.doi.org/10.3389/fnhum.2016.00055
http://www.ncbi.nlm.nih.gov/pubmed/26924973
http://dx.doi.org/10.1093/schbul/sbw145
http://dx.doi.org/10.1016/j.jad.2017.04.001
http://www.ncbi.nlm.nih.gov/pubmed/28407554
http://dx.doi.org/10.1016/j.neuroimage.2016.11.073
http://dx.doi.org/10.1038/srep43312
http://dx.doi.org/10.1017/S0033291716003469


Int. J. Environ. Res. Public Health 2021, 18, 6099 18 of 20

102. Yang, Y.; Cui, Y.; Xu, K.; Liu, B.; Song, M.; Chen, J.; Wang, H.; Chen, Y.; Guo, H.; Li, P.; et al. Distributed functional connectivity
impairment in schizophrenia: A multi-site study. In Proceedings of the 2nd IET International Conference on Biomedical Image
and Signal Processing (ICBISP 2017), Wuhan, China, 13–14 May 2017; IET: London, UK, 2017; pp. 1–6.

103. Bae, Y.; Kumarasamy, K.; Ali, I.M.; Korfiatis, P.; Akkus, Z.; Erickson, B.J. Differences between schizophrenic and normal subjects
using network properties from fMRI. J. Digit. Imaging 2018, 31, 252–261. [CrossRef] [PubMed]

104. Li, J.; Sun, Y.; Huang, Y.; Bezerianos, A.; Yu, R. Machine learning technique reveals intrinsic characteristics of schizophrenia: An
alternative method. Brain Imaging Behav. 2019, 13, 1386–1396. [CrossRef] [PubMed]

105. Chatterjee, I.; Kumar, V.; Sharma, S.; Dhingra, D.; Rana, B.; Agarwal, M.; Kumar, N. Identification of brain regions associated with
working memory deficit in schizophrenia. F1000Research 2019, 8, 124. [CrossRef]

106. Kalmady, S.V.; Greiner, R.; Agrawal, R.; Shivakumar, V.; Narayanaswamy, J.C.; Brown, M.R.; Greenshaw, A.J.; Dursun, S.M.;
Venkatasubramanian, G. Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple
brain parcellation ensemble-learning. NPJ Schizophr. 2019, 5, 1–11. [CrossRef]

107. Kubicki, M.; McCarley, R.; Westin, C.F.; Park, H.J.; Maier, S.; Kikinis, R.; Jolesz, F.A.; Shenton, M.E. A review of diffusion tensor
imaging studies in schizophrenia. J. Psychiatr. Res. 2007, 41, 15–30. [CrossRef]

108. Kyriakopoulos, M.; Bargiotas, T.; Barker, G.J.; Frangou, S. Diffusion tensor imaging in schizophrenia. Eur. Psychiatry 2008,
23, 255–273. [CrossRef]

109. Pinkham, A.; Loughead, J.; Ruparel, K.; Wu, W.C.; Overton, E.; Gur, R.; Gur, R. Resting quantitative cerebral blood flow in
schizophrenia measured by pulsed arterial spin labeling perfusion MRI. Psychiatry Res. Neuroimaging 2011, 194, 64–72. [CrossRef]
[PubMed]

110. Korfiatis, P.; Erickson, B. The basics of diffusion and perfusion imaging in brain tumors. Appl. Radiol. 2014, 43, 22. [PubMed]
111. Caan, M.W.; Vermeer, K.A.; van Vliet, L.J.; Majoie, C.B.; Peters, B.; den Heeten, G.; Vos, F.M. Shaving diffusion tensor images in

discriminant analysis: A study into schizophrenia. Med. Image Anal. 2006, 10, 841–849. [CrossRef] [PubMed]
112. Caprihan, A.; Pearlson, G.D.; Calhoun, V.D. Application of principal component analysis to distinguish patients with schizophre-

nia from healthy controls based on fractional anisotropy measurements. Neuroimage 2008, 42, 675–682. [CrossRef] [PubMed]
113. Ingalhalikar, M.; Kanterakis, S.; Gur, R.; Roberts, T.P.; Verma, R. DTI based diagnostic prediction of a disease via pattern

classification. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention,
Beijing, China, 20–24 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 558–565.

114. Rathi, Y.; Malcolm, J.; Michailovich, O.; Goldstein, J.; Seidman, L.; McCarley, R.W.; Westin, C.F.; Shenton, M.E. Biomarkers
for identifying first-episode schizophrenia patients using diffusion weighted imaging. In Proceedings of the International
Conference on Medical Image Computing and Computer-Assisted Intervention, Beijing, China, 20–24 September 2010; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 657–665.

115. Ardekani, B.A.; Tabesh, A.; Sevy, S.; Robinson, D.G.; Bilder, R.M.; Szeszko, P.R. Diffusion tensor imaging reliably differentiates
patients with schizophrenia from healthy volunteers. Hum. Brain Mapp. 2011, 32, 1–9. [CrossRef]

116. Squarcina, L.; Perlini, C.; Peruzzo, D.; Castellani, U.; Marinelli, V.; Bellani, M.; Rambaldelli, G.; Lasalvia, A.; Tosato, S.; De Santi, K.; et al.
The use of dynamic susceptibility contrast (DSC) MRI to automatically classify patients with first episode psychosis. Schizophr. Res.
2015, 165, 38–44. [CrossRef]

117. Levy, A.V.; Gomez-Mont, F.; Volkow, N.D.; Corona, J.F.; Brodie, J.D.; Cancro, R. Spatial low frequency pattern analysis in positron
emission tomography: A study between normals and schizophrenics. Brain 1991, 33, 35.

118. Josin, G.; Liddle, P. Neural network analysis of the pattern of functional connectivity between cerebral areas in schizophrenia.
Biol. Cybern. 2001, 84, 117–122. [CrossRef]

119. Bose, S.K.; Turkheimer, F.E.; Howes, O.D.; Mehta, M.A.; Cunliffe, R.; Stokes, P.R.; Grasby, P.M. Classification of schizophrenic
patients and healthy controls using [18F] fluorodopa PET imaging. Schizophr. Res. 2008, 106, 148–155. [CrossRef] [PubMed]

120. Rissling, A.J.; Miyakoshi, M.; Sugar, C.A.; Braff, D.L.; Makeig, S.; Light, G.A. Cortical substrates and functional correlates of
auditory deviance processing deficits in schizophrenia. NeuroImage Clin. 2014, 6, 424–437. [CrossRef]

121. Dvey-Aharon, Z.; Fogelson, N.; Peled, A.; Intrator, N. Schizophrenia detection and classification by advanced analysis of EEG
recordings using a single electrode approach. PLoS ONE 2015, 10, e0123033. [CrossRef] [PubMed]

122. Light, G.A.; Swerdlow, N.R.; Thomas, M.L.; Calkins, M.E.; Green, M.F.; Greenwood, T.A.; Gur, R.E.; Gur, R.C.; Lazzeroni, L.C.;
Nuechterlein, K.H.; et al. Validation of mismatch negativity and P3a for use in multi-site studies of schizophrenia: Characterization
of demographic, clinical, cognitive, and functional correlates in COGS-2. Schizophr. Res. 2015, 163, 63–72. [CrossRef] [PubMed]

123. Jahmunah, V.; Oh, S.L.; Rajinikanth, V.; Ciaccio, E.J.; Cheong, K.H.; Arunkumar, N.; Acharya, U.R. Automated detection of
schizophrenia using nonlinear signal processing methods. Artif. Intell. Med. 2019, 100, 101698. [CrossRef] [PubMed]

124. da Cruz, J.R.; Favrod, O.; Roinishvili, M.; Chkonia, E.; Brand, A.; Mohr, C.; Figueiredo, P.; Herzog, M.H. EEG microstates are a
candidate endophenotype for schizophrenia. Nat. Commun. 2020, 11, 3089. [CrossRef]

125. Khosla, A.; Khandnor, P.; Chand, T. A comparative analysis of signal processing and classification methods for different
applications based on EEG signals. Biocybern. Biomed. Eng. 2020, 40, 649–690. [CrossRef]

126. Knott, V.; Mahoney, C.; Labelle, A.; Ripley, C.; Cavazzoni, P.; Jones, B. Event-related potentials in schizophrenic patients during a
degraded stimulus version of the visual continuous performance task. Schizophr. Res. 1999, 35, 263–278. [CrossRef]

http://dx.doi.org/10.1007/s10278-017-0020-4
http://www.ncbi.nlm.nih.gov/pubmed/28924878
http://dx.doi.org/10.1007/s11682-018-9947-4
http://www.ncbi.nlm.nih.gov/pubmed/30159765
http://dx.doi.org/10.12688/f1000research.17731.1
http://dx.doi.org/10.1038/s41537-018-0070-8
http://dx.doi.org/10.1016/j.jpsychires.2005.05.005
http://dx.doi.org/10.1016/j.eurpsy.2007.12.004
http://dx.doi.org/10.1016/j.pscychresns.2011.06.013
http://www.ncbi.nlm.nih.gov/pubmed/21831608
http://www.ncbi.nlm.nih.gov/pubmed/26456989
http://dx.doi.org/10.1016/j.media.2006.07.006
http://www.ncbi.nlm.nih.gov/pubmed/16965928
http://dx.doi.org/10.1016/j.neuroimage.2008.04.255
http://www.ncbi.nlm.nih.gov/pubmed/18571937
http://dx.doi.org/10.1002/hbm.20995
http://dx.doi.org/10.1016/j.schres.2015.03.017
http://dx.doi.org/10.1007/s004220000197
http://dx.doi.org/10.1016/j.schres.2008.09.011
http://www.ncbi.nlm.nih.gov/pubmed/18849151
http://dx.doi.org/10.1016/j.nicl.2014.09.006
http://dx.doi.org/10.1371/journal.pone.0123033
http://www.ncbi.nlm.nih.gov/pubmed/25837521
http://dx.doi.org/10.1016/j.schres.2014.09.042
http://www.ncbi.nlm.nih.gov/pubmed/25449710
http://dx.doi.org/10.1016/j.artmed.2019.07.006
http://www.ncbi.nlm.nih.gov/pubmed/31607349
http://dx.doi.org/10.1038/s41467-020-16914-1
http://dx.doi.org/10.1016/j.bbe.2020.02.002
http://dx.doi.org/10.1016/S0920-9964(98)00122-4


Int. J. Environ. Res. Public Health 2021, 18, 6099 19 of 20

127. Neuhaus, A.H.; Popescu, F.C.; Grozea, C.; Hahn, E.; Hahn, C.; Opgen-Rhein, C.; Urbanek, C.; Dettling, M. Single-subject
classification of schizophrenia by event-related potentials during selective attention. Neuroimage 2011, 55, 514–521. [CrossRef]
[PubMed]

128. Iyer, D.; Boutros, N.N.; Zouridakis, G. Single-trial analysis of auditory evoked potentials improves separation of normal and
schizophrenia subjects. Clin. Neurophysiol. 2012, 123, 1810–1820. [CrossRef]

129. Laton, J.; Van Schependom, J.; Gielen, J.; Decoster, J.; Moons, T.; De Keyser, J.; De Hert, M.; Nagels, G. Single-subject classification
of schizophrenia patients based on a combination of oddball and mismatch evoked potential paradigms. J. Neurol. Sci. 2014,
347, 262–267. [CrossRef]

130. Neuhaus, A.H.; Popescu, F.C.; Rentzsch, J.; Gallinat, J. Critical evaluation of auditory event-related potential deficits in schizophre-
nia: Evidence from large-scale single-subject pattern classification. Schizophr. Bull. 2014, 40, 1062–1071. [CrossRef]

131. Johannesen, J.K.; Bi, J.; Jiang, R.; Kenney, J.G.; Chen, C.M.A. Machine learning identification of EEG features predicting working
memory performance in schizophrenia and healthy adults. Neuropsychiatr. Electrophysiol. 2016, 2, 3–21. [CrossRef]

132. Shim, M.; Hwang, H.J.; Kim, D.W.; Lee, S.H.; Im, C.H. Machine-learning-based diagnosis of schizophrenia using combined
sensor-level and source-level EEG features. Schizophr. Res. 2016, 176, 314–319. [CrossRef]

133. Taylor, J.A.; Matthews, N.; Michie, P.T.; Rosa, M.J.; Garrido, M.I. Auditory prediction errors as individual biomarkers of
schizophrenia. NeuroImage Clin. 2017, 15, 264–273. [CrossRef] [PubMed]

134. Krishnan, P.T.; Raj, A.N.J.; Balasubramanian, P.; Chen, Y. Schizophrenia detection using Multivariate Empirical Mode Decomposi-
tion and Entropy Measures from Multichannel EEG Sentropy measures from multichannel EEG signal. Biocybern. Biomed. Eng.
2020, 40, 1124–1139. [CrossRef]

135. Mealer, R.G.; Williams, S.E.; Daly, M.J.; Scolnick, E.M.; Cummings, R.D.; Smoller, J.W. Glycobiology and schizophrenia: A
biological hypothesis emerging from genomic research. Mol. Psychiatry 2020, 25, 3129–3139. [CrossRef] [PubMed]

136. Arango, C.; Bartko, J.J.; Gold, J.M.; Buchanan, R.W. Prediction of neuropsychological performance by neurological signs in
schizophrenia. Am. J. Psychiatry 1999, 156, 1349–1357. [PubMed]

137. Pina-Camacho, L.; Garcia-Prieto, J.; Parellada, M.; Castro-Fornieles, J.; Gonzalez-Pinto, A.M.; Bombin, I.; Graell, M.; Paya, B.;
Rapado-Castro, M.; Janssen, J.; et al. Predictors of schizophrenia spectrum disorders in early-onset first episodes of psychosis: A
support vector machine model. Eur. Child Adolesc. Psychiatry 2015, 24, 427–440. [CrossRef] [PubMed]

138. Liang, S.; Vega, R.; Kong, X.; Deng, W.; Wang, Q.; Ma, X.; Li, M.; Hu, X.; Greenshaw, A.J.; Greiner, R.; et al. Neurocognitive graphs
of first-episode schizophrenia and major depression based on cognitive features. Neurosci. Bull. 2018, 34, 312–320. [CrossRef]

139. Liang, S.; Brown, M.R.; Deng, W.; Wang, Q.; Ma, X.; Li, M.; Hu, X.; Juhas, M.; Li, X.; Greiner, R.; et al. Convergence and divergence
of neurocognitive patterns in schizophrenia and depression. Schizophr. Res. 2018, 192, 327–334. [CrossRef] [PubMed]

140. Brodey, B.; Girgis, R.; Favorov, O.; Bearden, C.; Woods, S.; Addington, J.; Perkins, D.; Walker, E.; Cornblatt, B.; Brucato, G.; et al.
The Early Psychosis Screener for Internet (EPSI)-SR: Predicting 12 month psychotic conversion using machine learning. Schizophr.
Res. 2019, 208, 390–396. [CrossRef]

141. Campana, A.; Duci, A.; Gambini, O.; Scarone, S. An artificial neural network that uses eye-tracking performance to identify
patients with schizophrenia. Schizophr. Bull. 1999, 25, 789–799. [CrossRef] [PubMed]

142. Santos, P.E.; Thomaz, C.E.; dos Santos, D.; Freire, R.; Sato, J.R.; Louzã, M.; Sallet, P.; Busatto, G.; Gattaz, W.F. Exploring the
knowledge contained in neuroimages: Statistical discriminant analysis and automatic segmentation of the most significant
changes. Artif. Intell. Med. 2010, 49, 105–115. [CrossRef] [PubMed]

143. Tron, T.; Peled, A.; Grinsphoon, A.; Weinshall, D. Automated facial expressions analysis in schizophrenia: A continuous dynamic
approach. In Proceedings of the International Symposium on Pervasive Computing Paradigms for Mental Health, Milan, Italy,
24–25 September 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 72–81.

144. Strous, R.D.; Koppel, M.; Fine, J.; Nachliel, S.; Shaked, G.; Zivotofsky, A.Z. Automated characterization and identification of
schizophrenia in writing. J. Nerv. Ment. Dis. 2009, 197, 585–588. [CrossRef]

145. Kliper, R.; Portuguese, S.; Weinshall, D. Prosodic analysis of speech and the underlying mental state. In Proceedings of the
International Symposium on Pervasive Computing Paradigms for Mental Health, Milan, Italy, 24–25 September 2015; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 52–62.

146. Gerig, G.; Styner, M.; Shenton, M.E.; Lieberman, J.A. Shape versus size: Improved understanding of the morphology of brain
structures. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention,
Utrecht, The Netherlands, 14–17 October 2001; Springer: Berlin/Heidelberg, Germany, 2001; pp. 24–32.

147. Gorrell, G.; Roberts, A.; Jackson, R.; Stewart, R. Finding negative symptoms of schizophrenia in patient records. In Proceedings of
the Workshop on NLP for Medicine and Biology associated with RANLP 2013, Hissar, Bulgaria, 13 September 2013; pp. 9–17.

148. Patel, R.; Jayatilleke, N.; Jackson, R.; Stewart, R.; McGuire, P. Investigation of negative symptoms in schizophrenia with a machine
learning text-mining approach. Lancet 2014, 383, S16. [CrossRef]

149. Chakraborty, D.; Tahir, Y.; Yang, Z.; Maszczyk, T.; Dauwels, J.; Thalmann, D.; Thalmann, N.M.; Tan, B.L.; Lee, J. Assessment
and prediction of negative symptoms of schizophrenia from RGB + D movement signals. In Proceedings of the 2017 IEEE 19th
International Workshop on Multimedia Signal Processing (MMSP), Luton, UK, 16–18 October 2017; IEEE: Piscataway, NJ, USA,
2017; pp. 1–6.

http://dx.doi.org/10.1016/j.neuroimage.2010.12.038
http://www.ncbi.nlm.nih.gov/pubmed/21182969
http://dx.doi.org/10.1016/j.clinph.2011.12.021
http://dx.doi.org/10.1016/j.jns.2014.10.015
http://dx.doi.org/10.1093/schbul/sbt151
http://dx.doi.org/10.1186/s40810-016-0017-0
http://dx.doi.org/10.1016/j.schres.2016.05.007
http://dx.doi.org/10.1016/j.nicl.2017.04.027
http://www.ncbi.nlm.nih.gov/pubmed/28560151
http://dx.doi.org/10.1016/j.bbe.2020.05.008
http://dx.doi.org/10.1038/s41380-020-0753-1
http://www.ncbi.nlm.nih.gov/pubmed/32377000
http://www.ncbi.nlm.nih.gov/pubmed/10484944
http://dx.doi.org/10.1007/s00787-014-0593-0
http://www.ncbi.nlm.nih.gov/pubmed/25109600
http://dx.doi.org/10.1007/s12264-017-0190-6
http://dx.doi.org/10.1016/j.schres.2017.06.004
http://www.ncbi.nlm.nih.gov/pubmed/28651909
http://dx.doi.org/10.1016/j.schres.2019.01.015
http://dx.doi.org/10.1093/oxfordjournals.schbul.a033419
http://www.ncbi.nlm.nih.gov/pubmed/10667748
http://dx.doi.org/10.1016/j.artmed.2010.03.003
http://www.ncbi.nlm.nih.gov/pubmed/20452195
http://dx.doi.org/10.1097/NMD.0b013e3181b09068
http://dx.doi.org/10.1016/S0140-6736(14)60279-8


Int. J. Environ. Res. Public Health 2021, 18, 6099 20 of 20

150. Chakraborty, D.; Xu, S.; Yang, Z.; Chua, Y.H.V.; Tahir, Y.; Dauwels, J.; Thalmann, N.M.; Tan, B.L.; Keong, J.L.C. Prediction of
negative symptoms of schizophrenia from objective linguistic, acoustic and non-verbal conversational cues. In Proceedings of the
2018 International Conference on Cyberworlds (CW), Singapore, 3–5 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 280–283.

151. McManus, K.; Mallory, E.K.; Goldfeder, R.L.; Haynes, W.A.; Tatum, J.D. Mining Twitter data to improve detection of schizophrenia.
AMIA Summits Transl. Sci. Proc. 2015, 2015, 122.

152. Mitchell, M.; Hollingshead, K.; Coppersmith, G. Quantifying the language of schizophrenia in social media. In Proceedings of the
2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, Denver, CO,
USA, 5 June 2015; pp. 11–20.

153. Birnbaum, M.L.; Ernala, S.K.; Rizvi, A.F.; De Choudhury, M.; Kane, J.M. A collaborative approach to identifying social media
markers of schizophrenia by employing machine learning and clinical appraisals. J. Med. Internet Res. 2017, 19, e289. [CrossRef]

154. Carter, J.; Parnas, J.; Cannon, T.; Schulsinger, F.; Mednick, S. MMPI variables predictive of schizophrenia in the Copenhagen
High-Risk Project: A 25-year follow-up. Acta Psychiatr. Scand. 1999, 99, 432–440. [CrossRef]

155. Fusar-Poli, P.; Meyer-Lindenberg, A. Forty years of structural imaging in psychosis: Promises and truth. Acta Psychiatr. Scand.
2016, 134, 207–224. [CrossRef]

156. Falkai, P.; Schmitt, A.; Andreasen, N. Forty years of structural brain imaging in mental disorders: Is it clinically useful or not?
Dialogues Clin. Neurosci. 2018, 20, 179.

157. Tandon, N.; Tandon, R. Will machine learning enable us to finally cut the gordian knot of schizophrenia. Schizophr. Bull. 2018, 44,
939–941. [CrossRef] [PubMed]

158. Hu, X.; Zhu, D.; Lv, P.; Li, K.; Han, J.; Wang, L.; Shen, D.; Guo, L.; Liu, T. Fine-granularity functional interaction signatures for
characterization of brain conditions. Neuroinformatics 2013, 11, 301–317. [CrossRef] [PubMed]

159. Pettersson-Yeo, W.; Benetti, S.; Marquand, A.F.; Dell’Acqua, F.; Williams, S.C.; Allen, P.; Prata, D.; Mcguire, P.; Mechelli, A. Using
genetic, cognitive and multi-modal neuroimaging data to identify ultra-high-risk and first-episode psychosis at the individual
level. Psychol. Med. 2013, 43, 2547–2562. [CrossRef]

160. Radanliev, P.; Roure, D.D.; Walton, R.; Kleek, M.V.; Montalvo, R.M.; Maddox, L.; Santos, O.; Burnap, P.; Anthi, E. Artificial
intelligence and machine learning in dynamic cyber risk analytics at the edge. SN Appl. Sci. 2020, 2. [CrossRef]

161. Radanliev, P.; Roure, D.D.; Kleek, M.V.; Santos, O.; Ani, U. Artificial intelligence in cyber physical systems. AI Soc. 2020. [CrossRef]
162. Coronato, A.; Cuzzocrea, A. An Innovative Risk Assessment Methodology for Medical Information Systems. IEEE Trans. Knowl.

Data Eng. 2020, 1. [CrossRef]
163. Coronato, A.; Naeem, M.; Pietro, G.D.; Paragliola, G. Reinforcement learning for intelligent healthcare applications: A survey.

Artif. Intell. Med. 2020, 109, 101964. [CrossRef]
164. Amato, A.; Coronato, A. Supporting Hypothesis Generation by Machine Learning in Smart Health. In Innovative Mobile and

Internet Services in Ubiquitous Computing; Barolli, L., Enokido, T., Eds.; Springer International Publishing: Cham, Switzerland,
2018; pp. 401–410. [CrossRef]

http://dx.doi.org/10.2196/jmir.7956
http://dx.doi.org/10.1111/j.1600-0447.1999.tb00989.x
http://dx.doi.org/10.1111/acps.12619
http://dx.doi.org/10.1093/schbul/sby101
http://www.ncbi.nlm.nih.gov/pubmed/29986110
http://dx.doi.org/10.1007/s12021-013-9177-2
http://www.ncbi.nlm.nih.gov/pubmed/23319242
http://dx.doi.org/10.1017/S003329171300024X
http://dx.doi.org/10.1007/s42452-020-03559-4
http://dx.doi.org/10.1007/s00146-020-01049-0
http://dx.doi.org/10.1109/TKDE.2020.3023553
http://dx.doi.org/10.1016/j.artmed.2020.101964
http://dx.doi.org/10.1007/978-3-319-61542-4_38

	Introduction
	Methodology
	Survey of AI Methods for Classification and Detection of Schizophrenia
	Classification and Detection of SZ by MRI
	Structural MRI
	Functional MRI
	Diffusion Tensor Imaging and Perfusion MRI

	Classification and Detection of SZ through Other Neurological Scans
	PET Scans
	EEG Signal

	Classification and Detection of SZ through Other Techniques
	Composite Data Types for Classification and Detection

	Outlook
	Conclusions
	References

