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High mobility group box 1 (HMGB1) is an evolutionarily conserved protein and is constitutively expressed in virtually all types of
cells. In response to microbial infections, HMGB1 is secreted from activated immune cells to orchestrate rigorous inflammatory
responses. Here we review the distinct mechanisms by which several herbal components inhibit HMGB1 action or secretion, such
as by modulating inflammasome activation, autophagic degradation, or endocytic uptake. In light of the reciprocal interactions
between these cellular processes, it is possible to developmore effective combinational herbal therapies for the clinical management
of inflammatory diseases.

1. Introduction

High mobility group box 1 (HMGB1), an evolutionarily
conserved 30 kDa DNA-binding protein, is ubiquitously
expressed in virtually all types of cells. Bearing two nuclear-
localization sequences (NLS), HMGB1 is transported into the
nucleus by the nuclear import complexes, thereby maintain-
ing a large nuclear “pool” of preformed protein [1]. It carries
two internal repeats of positively charged domains (“HMG
boxes” known as “A box” and “B box”) in the N-terminus
and a continuous stretch of negatively charged (aspartic and
glutamic acid) residues in the C-terminus.These HMG boxes
enable HMGB1 to bind chromosomal DNA and fulfill its
nuclear functions in stabilizing nucleosomal structure and
regulating gene expression [1].The disruption of local expres-
sion of HMGB1 renders animals susceptible to infectious [2]
or injurious insults [3, 4], reinforcing a beneficial role of intra-
cellularHMGB1 in immunity against infection and injury [5].

In response to infections and injuries, however, HMGB1
is secreted from activated immune cells or passively released
from injured cells. Excessive HMGB1 secretion/release

adversely contributes to the pathogenesis of infection-
and injury-elicited inflammatory diseases. For instance,
in animal models of endotoxemia or sepsis (induced by
cecal ligation and puncture, CLP), HMGB1-neutralizing
antibodies improve survival [6] and rescue rodents from
lethal sepsis even if given at 24 h after CLP [7, 8]. Sim-
ilarly, HMGB1-specific antibodies are protective against
ischemia/reperfusion [9–11], trauma [12, 13], chemical tox-
emia [14–16], atherosclerosis [17], gastric ulcer [18], and
hyperoxia [19], supporting the pathogenic role of HMGB1
in injury-elicited inflammatory diseases. Furthermore, in
animal models of rheumatoid arthritis, anti-HMGB1 agents
confer significant protection against joint tissue edema [20–
22], supporting a pathogenic role for HMGB1 in autoimmune
diseases. The establishment of HMGB1 as a mediator of
various inflammatory diseases has prompted the search for
inhibitors that can attenuate HMGB1 secretion or action.
In this review, we summarize the divergent mechanisms
by which several herbal therapies effectively inhibit active
HMGB1 secretion and action and hope to stimulate interests
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in developing novel HMGB1-targeting therapeutic strategies
for the treatment of inflammatory diseases.

2. Regulation of HMGB1 Secretion

In response to microbial products (e.g., ds-RNA, CpG-DNA,
and endotoxins) [6, 23], macrophages/monocytes secrete
HMGB1 into the extracellular milieu in a delayed fashion.
Lacking a leader peptide sequence, HMGB1 cannot be
actively secreted through classical endoplasmic reticulum-
Golgi exocytotic pathways [6]. Instead, it is first shuttled to
cytoplasmic vesicles (“nucleus-to-cytoplasm translocation”)
and subsequently secreted into the extracellular environment.
The nucleus-to-cytoplasm translocation is regulated by post-
translational modifications (e.g., acetylation or phosphory-
lation) [24, 25] of the NLS [5, 26]. For instance, bacterial
endotoxin or proinflammatory cytokines (e.g., IFNs) can
activate the JAK/STAT1 signaling pathways and acetylate
lysine residues within the NLS sites, leading to sequestration
of HMGB1 into cytoplasmic vesicles [24, 27–29].

Subsequently, cytoplasmic HMGB1 is secreted into the
extracellular space partly through caspase-1-mediated pyrop-
tosis, a proinflammatory programmed cell death by which
activated macrophages rapidly release large amounts of cel-
lular contents (including HMGB1 and cytokines such as IL-
1𝛽) extracellularly. Indeed, pharmacological inhibition (with
a broad-spectrum caspase inhibitor Z-VAD-FMK) or genetic
disruption of caspase 1 uniformly reduces HMGB1 secretion
[8, 30]. Specifically, the procaspase-1 forms a heteromeric
protein complex with an adaptor protein (termed apoptosis-
associated speck-like protein containing a CARD, ASC), a
NOD-like receptor (NLR, e.g., NLRP1, NLRP3, and NLRC4),
or amember of the PYHIN family.The resultant protein com-
plex, termed the “inflammasome,” is responsible for cleaving
procaspase-1 to generate caspase-1, which triggers inflamma-
some activation as well as pyroptosis [30]. Inflammasome
activation occupies an essential role in the regulation of
HMGB1 secretion [30, 31], because genetic disruption of key
inflammasome components (e.g., caspase 1 or Nalp3) com-
pletely blocks LPS/ATP-inducedHMGB1 secretion. Recently,
the double-stranded RNA-activated protein kinase R (PKR)
has been established as a key regulator of inflammasome
activation and HMGB1 secretion [31]. Consistently, genetic
disruption of PKR expression or pharmacological inhibition
of PKR phosphorylation (with 2-aminopurine (2-AP) or 7-
desacetoxy-6,7-dehydrogedunin (7DG)) markedly reduces
inflammasome activation [31, 32], pyroptosis [31, 32], and
HMGB1 secretion [31]. Thus, the LPS- or IFN-induced
HMGB1 secretion is controlled not only by JAK/STAT-
mediated acetylation and nuclear-cytoplasmic translocation,
but also through PKR-mediated inflammasome activation
and pyroptosis [5, 26].

3. Extracellular Role of HMGB1 as an Alarmin

Once released, extracellular HMGB1 functions as an alarmin
signal to alert, recruit, and activate immune cells. For
instance, HMGB1 binds to various microbial products (e.g.,
CpG-DNA or LPS), thereby facilitating their recognition by
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Figure 1: Extracellular HMGB1 as a proinflammatory cytokine/
chemokine.The immunological activities of HMGB1 are modulated
by the redox status in a divergent fashion, thereby facilitating leuko-
cyte recruitment or activation, resulting in sustained inflammatory
responses.

respective receptors to augment inflammatory responses [33].
Harboring three cysteine residues (C23, C45, and C106) that
are redox-sensitive, HMGB1 can be modified into three iso-
forms termed “HMGB1” (all-thiol form), “disulfide HMGB1”
(partially oxidized), and oxidized HMGB1 (Figure 1) [34,
35]. The “all-thiol” HMGB1 binds to other chemokines
(e.g., CXCL12) and stimulates leukocyte recruitment via the
CXCR4 receptor [36]. The “disulfide” HMGB1 can activate
immune cells to produce cytokines/chemokines via TLR4 or
other receptors such as RAGE [33], TLR2, TLR4 [37–39],
TLR9 [23, 33], cluster of differentiation 24 (CD24)/Siglec-
10 [40], Mac-1 [41], thrombomodulin [42], or single trans-
membrane domain proteins (e.g., syndecans) [43]. Once
fully oxidized, the HMGB1 is devoid of either chemokine
or cytokine activities (Figure 1) [34, 35]. Thus, HMGB1
can function either as a chemokine to stimulate leukocyte
migration [41, 44, 45] or as a cytokine to activatemacrophages
[37, 46, 47] and endothelial cells [48, 49] to produce more
cytokines, chemokines, and adhesion molecules.

4. Distinct Mechanisms of Herbal Inhibition of
HMGB1 Secretion or Action

Recently, a number of herbal extracts (e.g., Danggui, Mung
bean, and Prunella vulgaris) [50–52] and components (e.g.,
nicotine, EGCG, tanshinone, glycyrrhizin, chlorogenic acid,
emodin-6-O-𝛽-D-glucoside, rosmarinic acid, isorhamnetin-
3-O-galactoside, persicarin, forsythoside B, chloroquine,
acteroside, and shikonin) (Figure 2) [53–65] have been shown
effective in inhibiting endotoxin-induced HMGB1 secretion.
Here we compare the distinct mechanisms by which several
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Figure 2: Chemical structures of HMGB1-inhibiting herbal components.

herbal components effectively inhibit HMGB1 action or
secretion.

4.1. Glycyrrhizin (GZA) Binds to HMGB1 to Inhibit Its Secre-
tion or Action. Gancao (radix glycyrrhizae, meaning “sweet
root” in Greek or “licorice” in English) has been traditionally
used in the clinical management of various inflammatory

diseases including peptic ulcer, hepatitis, and pulmonary
bronchitis for many centuries. Its anti-inflammatory prop-
erties are attributable to a major component, glycyrrhizin
(GZA, Figure 2), which has been proven beneficial in animal
models of hepatitis [66], hepatic ischemia/reperfusion (I/R)
injury [67, 68], endotoxin- and acetaminophen-induced
liver injury [69, 70], influenza [71], lung inflammation [72],
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Figure 3: Divergent inhibition of HMGB1 action or secretion. (a) GZA binds to the shallow cave surface of HMGB1 boxes. Computer-assisted
molecular docking of HMGB1 with GZA: the blue area represents surface of HMGB1 box A, whereas the chemical structure of GZA is shown
in green. (b) CBX inhibits LPS-induced HMGB1 secretion by preventing PKR activation. Prolonged stimulation with crude LPS may lead to
panx-1 hemichannel-mediated ATP efflux and upregulation of PKR expression. Extracellular ATP then binds to P2X7R and activates the ATP-
gated P2X7R and panx-1 hemichannels, leading to PKR phosphorylation and subsequent inflammasome-dependent HMGB1 secretion. CBX
may block LPS-inducedATP efflux through panx-1, thereby impairingATP/P2X7R-mediated PKR activation and subsequent inflammasome-
dependent HMGB1 secretion.

intracerebral hemorrhage [73], cerebral I/R injury [74, 75],
seizure [76], endotoxemia [56, 77], and colitis [78]. Sakamoto
et al. first employed biochemical techniques and demon-
strated that GZA directly interacted with HMGB1 to induce
certain conformational changes that preventedDNA-binding
[79]. Subsequently, Mollica et al. (2007) used nuclear mag-
netic resonance (NMR) and fluorescence techniques and
confirmed that GZA indeed docked into the DNA-binding
concaves of both HMGB1 boxes (Figure 3(a)) [80, 81]. In
agreement with these findings, most GZA-mediated pro-
tective effects have been associated with the inhibition of
HMGB1 release [56, 68, 75, 76] or cytokine/chemokine
activities [56, 70, 73, 82].

4.2. Carbenoxolone (CBX) Prevents PKR Activation. The
replacement of the glucuronic acid in GZA by succinic acid
gives rise to a new compound, carbenoxolone (CBX, Fig-
ure 2), a drug previously prescribed for esophageal ulceration
and inflammation [83]. Since its inception, CBX has been
shown to dose-dependently inhibit a variety of biological
activities including the gap junctions (50–100 𝜇M) and the
panx-1 hemichannels (EC

50
= 1–4𝜇M) [84, 85]. Recently, we

discovered that CBX also effectively inhibited LPS-induced
HMGB1 secretion, with an estimated IC

50
and IC

100
∼5 𝜇M

and 10 𝜇M, respectively [86]. However, it is unlikely that

CBX inhibits the LPS-induced HMGB1 secretion through
impairing the gap junctions, because macrophages do not
form gap junctions, and the concentrations of CBX used to
block gap junctions (i.e., 50–100𝜇M) are much higher than
those (i.e., 5–10𝜇M) used to abrogate LPS-induced HMGB1
secretion [86].

The involvement of PKR in CBX-mediated inhibition of
HMGB1 secretion is supported by several lines of evidence.
First, ultrapure LPS (free from contaminating bacterial pro-
teins and nucleic acids) fails to trigger HMGB1 secretion
unless the initial LPS (10 𝜇g/mL) priming is accompanied
by a second stimulus (e.g., ATP) [30, 31], which promotes
PKRphosphorylation [31] and inflammasome activation [87–
89]. Second, crude LPS (containing trace amounts of bacterial
proteins and nucleic acids) triggers marked upregulation of
PKR expression (>2-fold) and phosphorylation (>8-fold) and
effectively induces HMGB1 secretion [6]. It is possible that
the crude LPS may prime macrophages by upregulating PKR
expression and simultaneously eliciting panx-1-mediated
ATP release (Figure 3(b)). Extracellular ATP then binds and
activates the purinergic P2X7 receptor (P2X7R) [90], which
further elevates panx-1 hemichannel activity to induce feed-
forwarding ATP release and subsequent PKR/inflammasome
activation and HMGB1 secretion [87–89] (Figure 3(b)).
This hypothesis is consistent with the finding that panx-1
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physically interacts with both P2X7R and components of
the NLRP3 inflammasome [91, 92]. It is also supported by
our observations that both P2X7R antagonists (e.g., oxidized
ATP or oATP) and panx-1 inhibitors (e.g., CBX) effectively
inhibit LPS-induced dye uptake, PKR activation, andHMGB1
secretion (Figure 3(b)) [31, 93]. Consistently, CBX (10 𝜇M)
has recently been proven effective in inhibiting the panx-
1-mediated ATP release in response to hypoxia [94], sheer
stress [95], and lowoxygen tension [96] andblockingHMGB1
secretion by neurons during cortical spreading depression
[97].

4.3. Epigallocatechin-3-Gallate (EGCG) Stimulates Autoph-
agic HMGB1 Degradation. Green tea contains a class of
biologically active polyphenols called catechins such as the
epigallocatechin-3-gallate (EGCG). At relatively low concen-
trations (10–15𝜇M), EGCG partially inhibits LPS-induced
release of TNF and IL-12 but dramatically attenuates IL-6
and several chemokines (including MIP-1𝛼, MIP-1𝛽, MIP-2,
RANTES, KC, MCP-1, and CXCL16) [54]. Similarly, EGCG
dose-dependently abrogates LPS-induced HMGB1 secretion,
with an estimated IC

50
< 1.0 𝜇M [54]. Notably, significant

inhibition of HMGB1 secretion is still achieved even when
EGCG is added 2–6 h after LPS stimulation [54], suggesting
EGCG as an effective HMGB1 inhibitor. It now appears that
EGCG prevents the LPS-induced HMGB1 secretion strategi-
cally by destroying HMGB1 in the cytoplasm via a cellular
degradation process, autophagy (self-eating) (Figure 4).

As an evolutionarily conserved cellular process for
degrading damaged cytoplasmicmacromolecules, autophagy
begins with the formation of double-membraned struc-
tures, which elongate and engulf portions of the cytoplasm
to form autophagosomes. Subsequently, autophagosomes
fuse with lysosomes to form degradative autophagolyso-
somes, where the engulfed contents are degraded by acidic
lysosomal hydrolases. Indeed, EGCG can be trafficked
into autophagosomes within 6 h and then destined to the
lysosomal-associated membrane protein 2- (LAMP2-) con-
taining autophagolysosomes within 16 h [98]. Meanwhile,
EGCG conjugates to cytoplasmic HMGB1, leading to the
formation of EGCG-HMGB1 complexes (dimmer, trimmer,
tetramer, and oligomer) (Figure 4) [98]. This is consistent
with previous findings that EGCGmay conjugate to proteins
either covalently with the free thiol group of cysteine residues
[99] or noncovalently via hydrogen bonding, aromatic stack-
ing, or hydrophobic interactions [100]. Because these large
EGCG-HMGB1 complexes cannot physically pass through
the narrow pore of the proteasome barrel of the ubiquitin-
proteasome pathway, they trigger the autophagic degradation
process. Consistently, at the concentrations effective for
inhibiting HMGB1 secretion, EGCG dramatically enhances
the formation of autophagosomes [98]. In contrast, the
coaddition of autophagy inhibitors (e.g., 3-methyladenine)
impairs EGCG-mediated inhibition of HMGB1 secretion,
thereby leading to a dramatic accumulation of HMGB1
aggregates in macrophages. Recently, EGCG has also been
proven effective in stimulating autophagy in other cell types
including breast cancer cells [98], hepatocytes [101], reti-
nal pigment epithelial cells [102], and vascular endothelial

EGCG

Dimer
(theasinensin)

HMGB1

Complex
(EGCG-HMGB1)

Autophagic
degradation

Oxidation

Aggregation

Autophagy

Figure 4: EGCG induces autophagic HMGB1 degradation.
Green tea EGCG induces HMGB1 aggregation, thereby triggering
autophagic HMGB1 degradation in macrophage cultures.

cells [103]. Given the possibility that HMGB1 interacts with
autophagy regulators (e.g., beclin-1) in the cytoplasm [104,
105], it will be important to investigate whether HMGB1
occupies a critical role in EGCG-mediated autophagy. This
is relevant because recent studies indicate that bacterial
endotoxin induces significantly less autophagy in HMGB1-
deficient macrophages [2].

4.4. Tanshinone IIA Sodium Sulfonate (TSN-SS) Stimulates
Endocytic HMGB1 Uptake. Danshen is a medicinal herb
that contains several red pigments including tanshinones
I, II, and IV and cryptotanshinone, which exhibit various
anti-inflammatory properties. Accounting for 5-6% of the
total dry weight of Danshen root, tanshinone IIA dose-
dependently attenuates LPS-induced HMGB1 secretion, with
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an estimated IC
50
< 25 𝜇M. However, its poor water sol-

ubility may adversely affect the bioavailability and thera-
peutic efficacy of tanshinone IIA [55], thereby prompting
the exploration of water-soluble derivatives as more effective
HMGB1 inhibitors. One such compound, tanshinone IIA
sodium sulfonate (TSN-SS), dose-dependently inhibits LPS-
induced HMGB1 secretion with an estimated IC

50
< 10 𝜇M.

At the doses that completely prevent HMGB1 secretion, TSN-
SS does not affect endotoxin-induced release of most other
cytokines and chemokines (such as IL-6, IL-12p40/p70, KC,
MCP-1, MIP-1𝛼, MIP-2, and TNF), indicating a selectivity for
TSN-SS in inhibiting HMGB1 secretion.

Unlike EGCG, TSN-SS itself is unable to stimulate
autophagic HMGB1 degradation [55] but instead induces
the internalization of exogenous HMGB1 into cytoplasmic
vesicles possibly through clathrin- and caveolin-dependent
endocytosis (Figure 5) [106]. Indeed, specific inhibitors
for both clathrin- (e.g., chlorpromazine) and caveolin-
dependent (e.g., nystatin and indomethacin) endocytosis
uniformly attenuate the TSN-SS-mediated HMGB1 uptake.
Surprisingly, the depletion of several HMGB1 receptors
(e.g., TLR2, TLR4, or RAGE) does not impair TSN-SS-
mediated enhancement of HMGB1 uptake, suggesting that
other HMGB1-binding cell surface proteins (such as Mac-1,
thrombomodulin, or syndecan)may be required for the TSN-
SS-mediated HMGB1 uptake.

Given the regulatory role of HMGB1 in autophagy
[2, 104, 105], the TSN-SS-mediated HMGB1 endocytosis
may be linked to autophagy (Figure 5). When occurring
simultaneously, endocytosis and autophagy can converge
on a common lysosome-dependent pathway, leading to
eventual HMGB1 degradation. Specifically, endosomes fuse
with autophagosomes to form amphisomes [107, 108], which
then merge with lysosomes to form autolysosomes, where
the amphisome contents are digested by lysosomal enzymes
[109]. In the presence of TSN-SS, exogenous HMGB1 was
detected in increased number of larger cytoplasmic vesicles
that colocalized with autophagy- (LC3-positive) punctate
structures, suggesting that HMGB1-containing endosomes
may have been fused with autophagosomes to form amphi-
somes. The internalized HMGB1 is then possibly degraded
via the lysosome-dependent pathway, because bafilomycin
A1, a specific inhibitor of autophagosome-lysosome fusion,
prevents the degradation of LC3-II and exogenous HMGB1.
Taken together, these results suggest that TSN-SS facilitates
endocytosis of exogenous HMGB1, leading to subsequent
HMGB1 degradation via a lysosome-dependent pathway
(Figure 5). Notably, even when given several hours after
the endotoxin stimulation, TSN-SS still effectively blocks
HMGB1 secretion. It is thus possible to strategically adminis-
ter TSN-SS in a delayed fashion to pharmacologically “recy-
cle” injurious proinflammatory mediators (such as HMGB1)
back to innate immune cells. TSN-SS has already been used
in China as a medicine for patients with cardiovascular
disorders, and its capacity to facilitate endocytic HMGB1
uptake by professional phagocytes may provide basis for the
treatment of both infection- and injury-elicited inflammatory
diseases [26].

Phagophore

AutophagosomeEndosome

Amphisome

Lysosome

Autolysosome

HMGB1

TSN-SS

Figure 5: TSN-SS stimulates endocytic HMGB1 uptake. TSN-
SS facilitated internalization of exogenous HMGB1 possibly via
clathrin- and caveolin-dependent endocytosis into cytoplasmic
vesicles that eventually mature into endosomes. Consequently, it
likely triggers another cellular degradation process, autophagy,
during which cytoplasmic macromolecules are engulfed by double-
membraned cytoplasmic vesicles termed autophagosomes. Sub-
sequently, these HMGB1-containing endosomes could be fused
with other cytoplasmic vesicles (such as autophagosomes) to form
amphisomes,where the internalizedHMGB1was likely degraded via
a lysosome-dependent mechanism.

5. Therapeutic Efficacy of HMGB1-Inhibiting
Herbal Components

Given the capacity of various herbal components in pre-
venting endotoxin-induced HMGB1 secretion, we explored
their efficacy in animal models of CLP-induced sepsis.
Considering the late and prolonged kinetics of HMGB1
accumulation in experimental sepsis [7], the first dose of
HMGB1 inhibitors was given in a delayed fashion, 24 h after
the onset of sepsis. Repetitive intraperitoneal administration
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of EGCG [54], TSN-SS [55], or CBX [86], at 24, 48, and
72 h after CLP, significantly increased animal survival rates.
When given orally, EGCG still rescued mice from lethal
sepsis, significantly increasing animal survival rates from 16%
to 44% [98]. Intriguingly, we found that EGCG facilitated
bacterial elimination in selective organs (e.g., the liver and
lung) in an animal model of sepsis [110]. Importantly, these
herbal components have also been proven beneficial in
other models of inflammation such as ischemia [68, 111–117],
trauma [118–120], crush injury [121], radiation [122, 123], and
chemical toxemia [124, 125]. It is not yet known whether
these protective effects are also associated with inhibition of
HMGB1 release or chemokine/cytokine activities.

Recently, a herbal remedy consisting of five herbs (Dang-
gui, Danshen, Honghua, Chuanxiong, and Chishao) has
been developed in China for treating septic patients. This
combinational therapy, termed “Xuebijing,” has been proven
to be protective experimentally in animal model of sepsis
[126] or clinically in patients with sepsis [127, 128]. In light of
the distinct but occasionally complementary mechanisms of
herbal inhibition of HMGB1 release or action, combinational
therapy with multiple herbs might result in an improved
therapeutic efficacy. For instance, the induction of autophagy
by EGCG may provide a negative feedback regulation of
inflammasome activation at multiple levels such as by elim-
inating damaged mitochondria (to prevent mitochondrial
DNA release) [129], removing active inflammasomes [129,
130], and destroying cytoplasmic HMGB1 [98]. It is thus
important to test whether a better protection could be
achieved by combinational therapy with several HMGB1
inhibitors that divergently modulate autophagy (e.g., EGCG)
and inflammasome (e.g., CBX). These important studies
may pave the road for future clinical studies to explore the
therapeutic potential of additional herbal cocktail for the
treatment of sepsis and other inflammatory diseases.

6. Conclusions

HMGB1 is secreted by activated macrophages/monocytes
through complex mechanisms including PKR-dependent
inflammasome activation and pyroptosis. A growing num-
ber of herbal components have been proven to be effec-
tive in inhibiting endotoxin-induced HMGB1 secretion
through divergently distinct mechanisms such as prevent-
ing PKR/inflammasome activation, stimulating HMGB1
autophagic degradation, and enhancing endocytic HMGB1
uptake. In light of the intricate relationship between endocy-
tosis, autophagy, and inflammasome activation, it is impor-
tant to test whether a better protection could be achieved by
combinational therapy with several anti-HMGB1 agents.
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