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Kidney cancer is one the most lethal cancers of the urinary system, but current

treatments are limited and its prognosis is poor. This study focused on kidney

renal clear cell carcinoma (KIRC) and analyzed the relationship between

epigenetic alterations and KIRC prognosis, and explored the prognostic

significance of these findings in KIRC patients. Based on multi-omics data,

differentially expressed histone-modified genes were identified using the R

package limma package. Gene enhancers were detected from data in the

FANTOM5 database. Gene promoters were screened using the R package

ChIPseeker, and the Bumphunter in the R package CHAMP was applied to

screen differentially methylated regions (DMR). Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analysis and Gene Ontology (GO) functional

enrichment analysis of genes was performed using the R package

clusterProfiler. We identified 51 dysregulated epigenetic protein coding

genes (epi-PCGs) from 872 epi-PCGs, and categorized three molecular

subtypes (C1, C2, and C3) of KIRC samples with significantly different

prognosis. Notably, among the three molecular subtypes, we found a

markedly differential immune features in immune checkpoints, cytokines,

immune signatures, and immune cell distribution. C2 subtype had

significantly lower enrichment score of IFNg, cytotoxic score (CYT), and

angiogenesis. In addition, an 8-gene signature containing 8 epi-PCGs (ETV4,

SH2B3, FATE1, GRK5, MALL, HRH2, SEMA3G, and SLC10A6) was developed for

predicting KIRC prognosis. Prognosis of patients with a high 8-gene signature

score was significantly worse than those with a low 8-gene signature score,

which was also validated by the independent validation data. The 8-gene

signature had a better performance compared with previous signatures of

KIRC. Overall, this study highlighted the important role of epigenetic regulation
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in KIRC development, and explored prognostic epi-PCGs, which may provide a

guidance for exploiting further pathological mechanisms of KIRC and for

developing novel drug targets.
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Introduction

Kidney cancer is the most lethal cancer of the urinary

system, and shows an increasing incidence in recent years

(1, 2). Due to a lack of specific clinical manifestations of

kidney cancer, about 20-25% of patients have already

developed distant metastasis by the time of diagnosis (3). For

localized kidney cancer, local surgical resection in the form of

partial or radical nephrectomy offers the possibility of partial

cure. However, patients who have developed local recurrence or

distant metastases are relatively resistant to conventional

chemotherapy and radiotherapy and have a low 5-year

survival rate (4, 5). Immunotherapy, especially immune

checkpoint inhibitors, creates the hope for treating metastatic

kidney cancer. For instance, monotherapy (nivolumab) or

combined therapy (nivolumab and ipilimumab) shows

favorable results on prolonged oval survival (6). Combined

with other therapeutics such as tyrosine kinase inhibitors

(TKIs), prolonged progression-free survival can be also

realized in early phase trials (7). Nevertheless, a large

proportion of kidney cancer patients still could not benefit

from the immunotherapy due to individual differences.

Therefore, to benefit more patients from immunotherapy,

molecular subtyping may serve a role for assisting personalized

therapies and reducing unnecessary treatment. So far, we face a

lack of biomarkers for prognosis prediction and drug targets for

therapeutic intervention, target-specific precision therapy for

kidney cancer treatment, and KIRC patients often develop a

poor prognosis. Therefore, there is an urgent need to find

reliable new biomarkers to better understand the mechanisms

of kidney cancer progression and to further develop new

therapeutic strategies.

The essence of tumor occurrence and development is the

inactivation of tumor suppressor genes and the activation of

tumor-promoting genes. It takes a long time from the initial

genetic change to evolve to a solid tumor. There is an epigenetic

change prior to genetic change, or it is said that dysregulated

gene expressions are caused by epigenetic changes. Studies have

shown that epigenetic changes can regulate gene expression.

Common epigenetic modifications include DNA methylation

and acetylation, histone methylation and acetylation. Especially,
02
histones modification, which commonly refers to methylation

and acetylation, plays an important role in abnormal expression

of genes. The modification of histone acetylation is based on the

acetylation modification of histone lysine residues, which is

largely related to transcriptional activation (8), and such a

transcriptional activation is closely associated with the

phenotype of a variety of tumors (9). When hyperacetylation

occurs, particularly in proto-oncogenes, gene expression may be

activated, and the hypoacetylation of tumor suppressor genes is

usually located in the promoter, which will cause gene silencing

when co-occurring with DNA methylation (10). The function of

histone methylation modification is more complicated than that

of histone acetylation modification in tumors (11, 12), but it is

generally believed that the modification of histone methylation

will reduce the transcription of target genes (13). Still, the

relationship between such a modification and tumor

development needs further research.

Current studies have shown that abnormal histone

methylation is an independent prognostic marker of kidney

cancer and a potential clinical target of kidney cancer (14–16).

Various gene signatures related to epigenetic dysregulation have

been developed for predicting the prognosis of renal cell

carcinoma. For example, Zhou et al. analyzed the copy

number variations (CNVs) of N6-methyladenosine (m6A)

regulatory genes in clear cell renal cell carcinoma (ccRCC)

samples, and observed a significant correlation between their

CNVs and either overall survival or disease-free survival (17).

Based on the expression of 19 m6A regulators, Zheng et al.

constructed three molecular subtypes and established a seven-

gene signature for ccRCC patients (18). Using two-way

hierarchical clustering for methylation array data of ccRCC,

three candidate genes with hypermethylation were identified and

were significantly associated with metastatic free survival (19).

However, limited studies comprehensively analyzed the

epigenetic-dysregulated genes in kidney cancer, and less

findings on the effect of epigenetic dysregulation on

tumorigenesis and tumor pathology from different aspects

such as tumor microenvironment and immune response

were available.

Therefore, in this study, we focused on differential expressed

genes and epigenetic-dysregulated genes concerning H3K27ac,
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H3K4me1, and H3K4me3, and identified 51 epigenetic protein-

coding genes (epi-PCGs) associated with RCC prognosis. We

constructed three molecular subtypes based on 51 epi-PCGs, and

found significant differences on tumor microenvironment

among the three subtypes. Finally, with the epi-PCGs, we

constructed an 8-gene prognost ic r isk model that

demonstrated a stable prediction performance in both the

training set and the verification set. Our research results help

better understand the abnormal epigenetic regulation of PCG

expression in KIRC.
Materials and methods

Data download and preprocessing

The work flow of this study was shown in Figure 1. We

downloaded the gene expression profile of kidney renal clear cell

carcinoma (KIRC) and expression profile data such as fragments

per kilobase million (FPKM), count number of normal samples,

and clinical information of corresponding healthy control

samples from the TCGA database (The Cancer Genome Atlas,

https://www.cancer.gov/about-nci/organization/ccg/research/

structural-genomics/tcga),and converted FPKM to TPM

(transcript per million). Based on the gene annotation file of

GENCODE, the expression profile was divided into long-non

coding RNAs (lncRNAs) and positive correlation genes (PCGs),

and we converted the Ensembl ID of these genes into Gene

Symbol. At the same time, the RECA-EU data set with survival

time was downloaded from the International Cancer Genome
Frontiers in Immunology 03
Consortium (ICGC) (https://dcc.icgc.org/) database. A total of

526 and 91 KIRC samples were included finally in TCGA and

ICGC data sets respectively. See Table 1 for the clinical

information of the processed samples.
The 450K methylation chip data and
preprocessing

In this study, the KIRC chip data (HumanMethylation450

microarray) (20) was downloaded from TCGA database.

According to the provided chip data, CpG with cross-reactive

probes were removed. We further excluded the unstable

methylation sites including CpG sites and single nucleotide

sites locating in X/Y chromosome. Based on the sample

number of KIRC, the chip data was split into 319 KIRC

samples and 160 normal samples. The K-nearest neighbor

(KNN) method (21), which uses distance measurement to

identify neighboring points and can estimate missing values

with the complete data of neighboring observations, was

employed here to input missing values in the KIRC sample data.
Histone data and preprocessing

We downloaded the hg19 version of the GSE86091 dataset

with paracancerous samples and tumor samples from the Gene

Expression Omibus (GEO) database (22). The dataset contained

three histone information, namely, H3K4me1, H3K4me3,

and H3K27ac.
FIGURE 1

The work flow of this study.
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Identification of PCGs with epigenetic
dysregulation

The R package limma (23) was used to identify differentially

expressed PCGs in KIRC. The P value was determined by the

Benjami-Hochberg method, and PCGs with false discovery rate

(FDR)< 0.05 and |log2 fold change (FC)|> 1 were considered

significant. Secondly, we screened peaks specific to KIRC based on

the physical location of histones-modified peaks, and only the

peaks with p< 0.05 were retained as differential peaks. Then GTF

file from GENCODE was combined to obtain histone-modified

differentially genes. Human enhancer database was downloaded
Frontiers in Immunology 04
from FANTOM5 to screen gene enhancers. A gene promoter was

defined as 2 kb upstream and 0.5 kb downstream of the

transcription start site (TSS). The R package ChIPseeker (24)

was employed to identify gene promoter. DMRwas detected using

The Bumphunter method in the R package CHAMP, and the area

with BumphunterDMR.p.value< 0.001 was considered as a

significant DMR. Finally, PCGs abnormally regulated by

epigenetics were defined by the following criteria (1): PCGs

were differentially expressed in KIRC and normal samples; (2)

promoters or enhancers overlapped at least one differential

histone modification region or differentially methylated regions

(named epi-PCG, non-epi-PCG).

Genomic characterization of
epigenetically dysregulated PCG

To compare the genomic characteristics of PCGs with or

without epigenetic dysregulation, we analyzed the exons,

transcripts, and number and length of the four types of genes

epi-PCG and non-epi-PCG.
PCG genomic map of epigenetic
dysregulation characterized by different
histone modifications

To explore the epigenetic characteristics of PCG caused by

histone modification, the distribution characteristics of the

promoters and enhancers of different histone modification epi-

PCG on the genome were analyzed.
Functional enrichment analysis on
candidate PCGs with epigenetic
dysregulation specific in KIRC

To understand the function of epigenetically dysregulated

PCG, we used clusterProfiler in the R software package (v3.14.0)

(25) to perform KEGG pathway analysis and GO function

enrichment analysis on epi-PCGs related genes.
Molecular subtyping of PCGs based on
epigenetic dysregulation

From the TCGA and ICGC data sets, univariate analysis on

epi-PCGs was performed to screen prognosis-related genes (p<

0.05), followed by molecular subtyping. Genes related to survival

in the two data sets were selected as cluster genes, and the

samples from the TCGA and ICGC data set were clustered by

ConsensusClusterPlus (26) to determine the optimal cluster
TABLE 1 Clinical information of the sample in TCGA and ICGC
datasets.

Clinical Features TCGA ICGC

OS

Alive 356 61

Dead 170 30

Gender

Male 343 52

Female 183 39

T Stage

T1 267

T2 69

T3 179

T4 11

N Stage

N0 238

N1 16

NX 272

M Stage

M0 436

M1 80

MX 10

Stage

I 261

II 57

III 123

IV 82

X 3

Grade

G1 13

G2 226

G3 205

G4 74

GX 8

Age

>60 262 45

<=60 264 46
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number according to the cumulative distribution function

(CDF) number. Next, we compared the distribution of

pathways in different subtypes, and analyzed the immune

microenvironment and chances of KIRC patients benefiting

from receiving immunotherapy.
Random grouping of training set samples
and single-factor analysis

A total of 526 samples in the TCGA data set were divided

into a training set and a validation set. To avoid random

distribution error from affecting the stability of subsequent

modeling, all the samples were randomly grouped for 100

times without replacement. Here, the group sampling was

performed based on the ratio of training set: verification set =

3:2. The most suitable training set and validation set was selected

according to the following conditions: 1) The two groups were

similar in age distribution and gender ratio; 2) The two

randomly grouped data sets had similar numbers of samples

after clustering the gene expression profiles. Finally, the training

set and test set samples were assessed by chi-square test to

validate the grouping. In the training set data, for each epi-PCG,

the R package survival coxph function was used to perform

univariate Cox analysis. P< 0.05 was the threshold to screen

genes with prognostic significance.
Least absolute shrinkage and selection
operator (Lasso) cox regression for
multi-factor risk analysis

To facilitate clinical testing, it is necessary to further reduce

the number of prognostic genes in the model while maintaining

a high accuracy. The Lasso method shapes a more refined model

by constructing a penalty function, and it compresses certain

coefficients and sets some coefficients to zero at the same time

(27). This method has the advantages of subset shrinkage, and as

a biased estimation for processing data with multicollinearity, it

can realize the selection of variables while estimating the

parameters in solving the problem of multicollinearity in

regression analysis. We used glmnet in the R software package

to perform lasso cox regression analysis, observed the change

trajectory of each independent variable, and used 10-fold cross-

validation to build the model, and analyzed the confidence

interval under each lambda. Stepwise Akaike information

criterion (stepAIC) (28) was employed in ensuring the

statistical fit of the model and number of parameters used to

fit the model. The stepAIC method in the MASS package starts

with the most complex model and deletes a variable in turn to

reduce the AIC, with a lower value indicating a better model.

This algorithm was used here to reduce the number of genes.
Frontiers in Immunology 05
The RiskScore calculation formula was:

RiskScore =o
n k = 1Expk*Coefk

(Coef: regression coefficient of genes in multivariate Cox

regression analysis, n: total number of genes related to

prognosis). The RiskScore of each patient was calculated by

the formula. Survminer R package (http://www.sthda.com/

english/rpkgs/survminer/) was used to determine the optimal

cut-off values. We performed z-score transformation on

RiskScore, and z-score = 0 was set as a cut-off for dividing

samples into high-risk groups (z-score > 0) and low-risk groups

(z-score< 0). The Kaplan-Meier method was used to estimate the

survival rate and survival time of different groups.
Functional analysis on the model
pathways

The R software package GSVA (29) was used to perform

single-sample GSEA analysis on the gene expression profile of

the samples. The score of each sample on different functions was

calculated to obtain the ssGSEA score of each function in each

sample, and we further determined the correlation of these

functions with RiskScore.
Cell culture

The HK2 cell line (normal human renal tubular epithelial

cell line) and all the four human RCC cell lines (786-O, A498,

Caki-1 and ACHN) were obtained from the Cell Bank of Type

Culture Collection of the Chinese Academy of Sciences

(CBTCCCAS, Shanghai, China). The cells were cultured in

RPMI 1640 medium (Gibco, United States) or DMEM

medium (Gibco, United States) containing 10% fetal bovine

serum (Gibco, United States), 100 U/ml penicillin, and 100 mg/

ml streptomycin at 37°C in a humidified incubator with 5% CO2.
Quantitative real-time PCR

Total RNA extract was prepared from HK2 cells and RCC

cells using TRIzol Reagent (Beijing Solarbio Technology Co.,

Ltd., Beijing, China) according to the manufacturer’s

instructions. The reverse transcription was performed using

the TaKaRa PrimeScriptTM RT-PCR kit (TaKaRa, Mountain

View, CA). The qRT-PCR was conducted using the SYBR

Premix Ex TaqTM (TaKaRa). Eight epi-PCGs mRNA

expression levels were evaluated by the 2-DDCT method. The

expression of GAPDH served as an internal control. The primer

sequences utilized in the present study are listed in

Supplementary Table 1.
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Western blot

To measure the protein concentrations, RIPA lysis buffer (R0010,

Solarbio, China) supplemented with protease inhibitors (Roche) was

used to lyse the HK2 cell line and all four human RCC cell lines. The

BCA kit (Pierce, Rockford, IL) was used to measure the protein

concentrations. After adding the total protein to loading buffer, it was

separated using 10% sodium dodecyl sulfate polyacrylamide gel

electrophoresis (SDS-PAGE) and then transferred onto

polyvinylidene fluoride (PVDF) membrane (Merck Millipore,

Billerica, MA). The membrane was blocked with 5% skimmed milk

for one hour and subsequently blocked with primary antibodies

against ETV4 (Santa Cruz), SH2B3 (Thermo Fisher Scientific),

FATE1 (Santa Cruz), GRK5 (Abcam), MALL (Santa Cruz), HRH2

(ABclonal), SEMA3G (Abcam) and SLC10A6 (Santa Cruz) overnight

at 4°C. After the PVDF membrane was washed with TBST, it was

incubated with the corresponding secondary antibody for two hours.

Identification of the proteins was conducted using Pierce SuperSignal

West Pico Chemiluminescent Substrate (Termo Fisher, Waltham,

MA), following the instruction of the manufacturer. GAPDH

antibody was used as an internal reference.
Statistical analysis

R software (v4.1.0) was used to perform all statistical analysis.

Student’s t test was conducted between two groups. ANOVA test

was performed among three groups. Log-rank test was performed

in Kaplan-Meier survival analysis, univariate andmultivariate Cox

regression analysis. In the relation between RiskScore and clinical

features, Wilcoxon test was conducted between two groups, and

Kruskal-Wallis test was conducted among four groups. Benjamini

&Hochberg correction was used to adjust P values. All parameters

without special indication in the methods were set as default. P<

0.05 or FDR< 0.05 was considered as significant. *P< 0.05, **P<

0.01, ***P< 0.001, ****P< 0.0001. ns, no significant.
Results

Identification of PCGs with epigenetic
dysregulation

To analyze the relationship between PCGs expression and

epigenetic changes in KIRC, limma was used to identify

significantly differentially expressed genes (a total of 2755

PCGs). Combining histone modification data and methylation

data, we finally found 872 epi-PCGs and 18629 non-epi-PCGs.

Epi-PCGs accounted for only 4.47% of all the PCGs (872/19501).

The number and length of gene exons and transcripts of epi-

PCGs and non-epi-PCGs was compared to show the genomic

characteristics of epigenetically dysregulated PCGs. The number

of epi-PCG transcripts was more than that of non-epi-PCGs,
Frontiers in Immunology 06
while the length of epi-PCGs transcripts was shorter than that of

non-epi-PCGs (Figures 2A, B). Meanwhile, epi-PCGs had more

exons and longer length of exons than those of non-epi-PCGs

(Figures 2C, D). Furthermore, we systematically analyzed the

epi-PCGs in KIRC, and revealed the epi-PCG landscape

characterized by different histone modifications and

differentially methylated regions (Figure 1E). The data

demonstrated that most of the epigenetically dysregulated

PCGs were accompanied by a variety of histone modification

abnormalities, and that these abnormal histone modifications

were mainly concentrated in the promoter region (Figure 2F).
SsGSEA analysis of dysregulated
epi-PCGs

To characterize the potential functions of PCG dysregulation

caused by abnormal histone modifications, we systematically

analyzed the relationship between the expression of epi-PCGs

and the pathways in KIRC. Specifically, we extracted the

expression profiles of PCGs caused by different histone

modifications, and calculated the enrichment scores of each

sample in these PCGs using ssGSEA. It was found that the GSEA

scores of 6 kinds of dysregulated histones were significantly higher

in tumor samples than normal samples, indicating that these

dysregulated histones had cancer-promoting effect (Figure 3A).

In addition, we also evaluated the KEGG Pathway score of

each sample and analyzed the relationship between the

enrichment score of each type of epi-PCG and KEGG Pathway

to obtain relevant KEGG Pathway for each type of epi-PCG. A

total of 24 pathways, which were the most relevant KEGG

Pathways related to the 6 types of epi-PCG, were shown in

Figure 3B. The results indicated that different types of epi-PCG-

related pathways had certain consistency. Among these 24

pathways, there were tumor-related pathways such as

BLADDER_CANCER, hematopoietic cell lineage, JAK-STAT

signaling pathway, immune-related pathways such as Toll like

receptor signaling pathway, T cell receptor signaling pathway,

natural killer cell mediated cytotoxicity. These data suggested that

epi-PCGs were closely related to tumor occurrence, development

and immunity.
Epigenetic dysregulation of PCGs was
closely related to RNA modification

RNA modification is an important epigenetic feature related to

a variety of important biological processes. Here, we analyzed the

relationship between 6 types of epi-PCGs and m6A and m5C RNA

modifications. Specifically, we extracted the expression profile of

m6A, m5C, and m1A in KIRC from TCGA, and the correlation

between the enrichment scores of 6 types of epi-PCGs and m6A,

m5C, and m1A was analyzed (Figure 4A). We found that these
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enrichment scores were significantly correlated with m6A, m5C,

and m1A. The R software package clusterProfiler (v3.14.0) was

further used to perform KEGG pathway analysis and GO function

enrichment analysis on the epi-PCGs. For the GO function

annotation of genes, 519 BPs with significant differences

(FDR<0.05) were annotated; 79 CCs with significant differences

(FDR<0.05) were annotated; 48 MFs with significant differences

were annotated (FDR<0.05); KEGG pathway enrichment analysis

were annotated to 38 significant pathways (FDR<0.05). The top 10

enriched terms were visualized (Figures 4B–E).
Identification of 3 molecular subtypes
with prognostic differences based on
epi-PCGs

In the TCGA and ICGC data sets, single-factor survival

analysis was performed on epi-PCGs, and survival-related

genes in both data sets were selected as cluster genes for

molecular subtyping. Finally, 51 intersection genes were

included (Figure 5A). Analysis of expression differences of

the 51 genes between normal and tumor samples showed that

these genes had significant differences in expression

(Supplementary Figure 1A). In addition, a modification map
Frontiers in Immunology 07
of some genes on histones was drawn (Supplementary

Figures 1B, C). Based on 51 Epi-PCGs, the two data sets

were clustered by ConsensusClusterPlus, and the optimal

number of clusters was determined according to the

cumulative distribution function (CDF). Combining CDF

Delta area curve and survival Curve, k = 3 was used to

obtain three Epi-PCGs-related subtypes (Figures 5B, C). KM

analysis indicated that C2 had a poor prognosis in the TCGA

data set, while C1 had a better prognosis (Figure 5D). Similar

results were observed in the ICGC data set (Figure 5E).

Studies found that chemokines play a key role in the

occurrence and development of tumors. They can mediate a

variety of immune cells into the tumor microenvironment, help

T cells enter tumor and affect tumor immunity and therapeutic

effects. Therefore, we analyzed whether there were expression

differences in chemokines among the three molecular subtypes.

In the TCGA data set, 26 of 41 chemokines (63.41%) showed

significant expression differences in different subtypes

(Figure 6A), which suggested that the degree of immune cell

infiltration of different subtypes may be different, and that these

differences could lead to differences in tumor progression and

immunotherapy effects. In addition, 17 of the 18 chemokine

receptor genes (94.44%) had significant differences in the

expression of the three molecular subtypes (Figure 6B).
A B D

E F

C

FIGURE 2

Comparison of genomic characteristics of epigenetically dysregulated lncRNA/PCGs (n = 872) and non-epigenetically dysregulated lncRNA/
PCGs (n = 18629). (A) Comparison of the number of transcripts; (B) Comparison of the length of transcripts; (C) Comparison of the number of
exons; (D) Comparison of the lengths of exons; (E) Genomic landscape of epi-PCGs characterized by histone modification; (F) Location
distribution of histone modifications of epi-PCGs. *P < 0.05, ***P < 0.001.
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CD8 + T cells in the tumor microenvironment can

produce interferon-g (IFNg) to stimulate the up-regulation

of PD-1/PD-L1 and IDO1 gene expression (30, 31). Studies

have shown that the up-regulation of IDO1 expression is

positively correlated with poor prognosis and tumor

progression and metastasis (32, 33). We extracted Th1/IFNg
gene signatures and 47 immune checkpoint-related genes

from a previous study (34). In addition, according to

Rooney Michael S (35), the average value of GZMA and

PRF1 expression levels was used to evaluate the immune

cytolysis (CYT) of immune t cell of each patient, then the

angiogenesis-related gene set was obtained to evaluate each

patient’s angiogenesis score (36). The IFNg score, CYT score

and angiogenesis score of each patient were calculated using

ssGSEA. It can be observed that there were significant

differences in IFNg scores in each subgroup (Figure 6C).
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Among them, C1 and C3 had the highest immune T cell

cytolysis activity, while that of C2 was the lowest (Figure 6D).

C2 had the lowest angiogenesis score (Figure 6E). In the

correlation analysis of 47 immune checkpoint-related genes,

43 genes had significant differences in the three subgroups

(Figure 6F). These results indicated that different subgroups

may respond to immunotherapy differently.
The immune characteristics and pathway
characteristics of different molecular
subtypes were significant

In the TCGA data set, the CIBERSORT method was used to

evaluate the scores of 22 immune cells in each sample, and the

distribution of these immune cell scores in the three subgroups
A

B

FIGURE 3

Functional enrichment analysis of epi-PCGs. (A) Differential expression of 6 kinds of epigenetically dysregulated PCGs in cancer (n = 319) and
adjacent cancer (n = 160) tissues; (B) The most relevant KEGG Pathway enriched by the 6 kinds of dysregulated PCGs. ***P < 0.001.
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FIGURE 4

Epi-PCGs and RNA modification correlation and functional enrichment analysis. (A) Correlation between the enrichment scores of 6 kinds of
epigenetic modification; (B) Epi-PCGs-enriched BP annotation map; (C) Epi-PCGs-enriched CC annotation map; (D) Epi-PCGs-enriched MF
annotation map; (E) Epi-PCGs-enriched KEGG annotation map. The abscissa represents the enrichment score, and the ordinate represents the
enriched functions or pathways. The size represents the number of gene enrichment, and the color represents P-value. *P < 0.05, **P < 0.01,
***P < 0.001.
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FIGURE 5

Identification of epi-PCGs-related molecular subtypes. (A) Venn diagram of prognostic significant genes in TCGA and ICGC data set obtained by
univariate Cox regression analysis; (B) CDF curve and CDF Delta area curve of TCGA cohort samples (n = 526). Delta area curve of consensus
clustering, which indicates the relative change in area under the cumulative distribution function (CDF) curve for each category number k
compared with k – 1. The horizontal axis represents the category number k and the vertical axis represents the relative change in area under
CDF curve; (C) Cluster heat map of TCGA data set samples (n = 526) when k = 3; (D) KM curve of the prognosis of the three molecular
subtypes in the TCGA data set (n-C1 = 296, n-C2 = 77, and n-C3 = 153); (E) KM curve of the prognosis of the three molecular subtypes in the
ICGC data set (n-C1 = 45, n-C2 = 26, and n-C3 = 20).
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was observed, as shown in Figure 7A. 16 immune cells showed

significant differences in different subtypes (Figure 7B). We used

the method of ssGSEA to calculate the scores of 28 immune cells

(37), then compared their differences in the subtypes, and 28

immune infiltration scores were found to have significant

differences in the subtypes (Figure 7C).
C2 molecular subtype had a lower
TIDE score

We analyzed the differences of different molecular subtypes in

response to immunotherapy and chemotherapy. TIDE (http://

tide.dfci.harvard.edu/) software was used to evaluate the potential

clinical effects of immunotherapy on our defined molecular
Frontiers in Immunology 10
subtypes. A higher TIDE prediction score indicated a higher

possibility of immune escape, which suggests that the patient is

less likely to benefit from immunotherapy. As shown in

Supplementary Figure 2, in the TCGA data set, C2 had the

lowest TIDE score (Supplementary Figure 2A). At the same

time, we also compared the predicted T cell dysfunction scores

(Supplementary Figure 2B) and T cell exclusion scores

(Supplementary Figure 2C) in different molecular subtypes, and

there were also significant differences between different groups.
Establishing a prognostic risk model
based on epi-PCG-related genes

The final training set data had a total of 316 samples, and

the test set data had a total of 210 samples. See Table 2 for
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C

FIGURE 6

Differences in the distribution of chemokines, IFNg scores, immune T cell cytolysis activity, angiogenesis scores, and immune checkpoint genes
in different subgroups. (A) Difference in the expression and distribution of chemokines in the TCGA cohort; (B) Difference in the expression and
distribution of chemokine receptors in the TCGA cohort; (C) Difference in the distribution of IFNg scores in different subgroups in the TCGA
cohort; (D) Differences in immune T cell cytolysis activity in different subgroups; (E) Differences in angiogenesis scores in different subgroups;
(F) Differences in the expression and distribution of immune checkpoint genes in the TCGA cohort; the significance was tested by analysis of
variance, * means p< 0.05; ** means p< 0.01, *** means p< 0.001, **** means p< 0.0001, ns, not significant.
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sample information of training set and validation set. Chi-

square test was applied to assess the training set and test set

samples. The results showed that our grouping was reasonable

and there was no significant difference between groups (P

> 0.05).
Construction and evaluation of an
8-gene risk model

Using the training set data, univariate Cox analysis was

performed for each epi-PCG, and p< 0.05 was the threshold for

filtering. Finally, 46 prognostic genes were included. In this

study, 46 genes with differences have been identified. We used

the R software package glmnet to perform lasso cox regression

analysis. Firstly, the change trajectory of each independent

variable was analyzed, as shown in Figure 8A. It can be seen

that as the lambda gradually increased, the number of

independent variable coefficients close to 0 also gradually

increased. 10-fold cross-validation was employed to build a

model, and the confidence interval under each lambda was

determined, as shown in Figure 8B. It can be seen that the
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model was optimal when lambda = 0.0316. Thus, 10 genes when

lambda = 0.0316 were considered as the target genes for further

analysis. To reduce the number of genes, the stepAIC method in

the MASS package was used, we finally reduced 10 genes to 8

genes. The final RiskScore formula was as follows:

RiskScore=0.28*ETV4+0.631*SH2B3-0.338*FATE1+

0.363*GRK5-0.42*MALL-0.196*HRH2-0.354*SEMA3G-

0.431*SLC10A6

The RiskScore of each sample was calculated according to

the expression level of the samples, and the RiskScore of the

sample was shown in Figure 8C. Furthermore, we used the R

software package timeROC to analyze the ROC of RiskScore for

prognostic classification, and determined the classification

efficiency of 1-, 3-, and 5- year prognosis, respectively. As

shown in Figure 8D, the model had a high AUC area. Finally,

z-score was performed on Riskscore. Samples with Riskscore

greater than zero were divided into high-risk groups, while those

with Riskscore lower than zero were in low-risk groups, and the

KM curve was drawn, as shown in Figure 8E. A significant

difference of p< 0.0001 can be found, and here 143 samples were

classified into high-risk groups and 173 samples were classified

into low-risk groups.
A
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FIGURE 7

Evaluation of immune and pathway characteristics of different molecular subtypes. (A) The proportion of the 22 immune cell components of
samples in different subgroups. (B) Differences in 22 immune cell components of samples in different subgroups; (C) Differences in 28 immune
infiltration scores in different subgroups. *P < 0.05, **P < 0.01, ***P < 0.001. ns, not significant.
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The 8-gene signature had a strong
robustness in different cohorts

To evaluate the robustness of the model, the RiskScore of each

sample in theTCGAvalidation set,TCGAentiredata set and ICGC

data sets were calculating using the same model and the same

coefficients as the training set, according to the expression level of

the sample. The R software package timeROC was applied to

analyze the prognostic classification of the RiskScore of the

TCGA validation set. The ROC efficiencies of 1, 3, and 5 years

were 0.73, 0.69, and 0.63, respectively (Supplementary Figure 3A).

Finally zscore was performed on the Riskscore. Samples with

Riskscore greater than zero were divided into high-risk group,

whereas those lower than zero were in low-risk group, and the KM

curve was drawn. The results showed that the prognosis of patients

in the high-risk group was significantly worse than that of the low-
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risk group (p< 0.05, Supplementary Figure 3B). Specifically, 99

sampleswere classifiedas high-risk, and111 sampleswere classified

as low-risk.

In all TCGA data sets, the ROC efficiencies of 1, 3, and 5

years were 0.77, 0.73, and 0.70, respectively (Supplementary

Figure 3C). The prognosis of patients in the high-risk group was

significantly worse than that of the low-risk group (p< 0.001,

Supplement Figure 3D). Here, 242 samples were classified as

high-risk group, and 284 samples were classified as low-

risk group.

Furthermore, we used the independent verification set ICGC

to verify the applicability of the model. TimeROC was employed

to assess the prognostic classification of the RiskScore on ICGC.

The ROC efficiencies of 1, 3, and 5 years were 0.77, 0.73, and

0.70, respectively (Supplementary Figure 3E). Z-score on

Riskscore was then performed, and samples with a Riskscore

greater than zero were divided into the high-risk group, while

those lower than zero were in the low-risk group, and the KM

curve was drawn. The results demonstrated that the prognosis of

patients in the high-risk group was significantly worse than that

of the low-risk group (p< 0.001, Supplementary Figure 3F). Of

these, 49 samples were classified as high-risk group, and 42

samples were classified as low-risk group.
Riskscore can distinguish different
clinical subgroup characteristics

The clinical subgroup characteristics were divided by the

Riskscore into high- and low-risk groups. The results

demonstrated that Riskscore can significantly distinguish Age,

Gender, TMN stage and Grade into two groups with prognostic

differences (Figures 9A–M). Furthermore, comparison on the

correlation between RiskScore and clinical subgroup characteristics

also showed significantdifferencesofRiskscore inTStage,NStage,M

Stage, Stage, Grade, and Gender (Figures 9N–S, p< 0.05).
The relationship between RiskScore and
the pathways

We calculated the ssGSEA score of each sample on different

functions, and further analyzed the correlation between these

functions and RiskScore. The functions with a correlation greater

than 0.4 were selected and shown in Supplementary Figure 4A,

from which it could be found that one function was positively

correlated with the RiskScore, whereas the remaining 22 were

negatively correlated with the RiskScore. The most relevant 23

KEGG Pathways were selected and subjected to cluster analysis

based on their enrichment scores, as shown in Supplementary

Figure 4B. Among the 23 pathways, for example, P53 signaling

pathway, increased with the increase of RiskScore, while metabolic
TABLE 2 Clinical information of TCGA training set and validation set
samples.

Clinical Features TCGA-Train TCGA-test P-Value

Gender

Male 206 137 1

Female 110 73

T Stage

T1 158 109 0.6742

T2 46 23

T3 106 73

T4 6 5

N Stage

N0 141 97 0.3379

N1 7 9

NX 168 104

M Stage

M0 275 161 0.0786

M1 37 43

MX 4 6

Stage

I 157 104 0.1018

II 39 18

III 81 42

IV 39 43

X 0 3

Grade

G1 11 2 0.0911

G2 132 94

G3 127 78

G4 39 35

GX 7 1

Age

>60 163 99 0.3637

<=60 153 111
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pathways such as fatty acidmetabolism, glycolysis gluconeogenesis

gluconeogenesis, galactosemetabolism decreased with the increase

of RiskScore. Moreover, we characterized the protein-protein

interaction (PPI) among these eight prognostic genes using the

STRING online tool (https://www.networkanalyst.ca/). The result

showed that SEMA3G, ETV4, and SH2B3 had a close interaction,

and that GRK5 andHRH2 had a close interaction (Supplementary

Figure 5), suggesting that they may have a synergetic effect on

affecting KIRC prognosis.
The expression of the eight prognostic
genes was correlated with immune
infiltration and was differential in the
three molecular subtypes

Furthermore, we evaluated whether there was a correlation

between the expression of prognostic genes and immune cell

infiltration. Pearson correlation analysis revealed that the

enrichment of M0, M1, and M2 macrophages, and regulatory

T cells was obviously correlated with the prognostic genes

(Supplementary Figure 6). Especially, a relatively strong

correlation was observed between ETV4 and activated CD4

memory T cells (R = 0.30). SEMA3G, SLC10A6, and SH2B3

expression were significantly correlated with regulatory T cells

(R = -0.32, -0.38, and -0.35, respectively). In addition, we found

the distribution of the expression of eight prognostic genes in

three molecular subtypes. C2 subtype with the worst overall
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survival had the lowest expression of all eight genes in both

TCGA and ICGC datasets (Supplementary Figure 7), which was

consistent with the previous result that high-risk group had

relatively lower expression of these genes (Figure 8C).
The 8-gene signature was an
independent prognostic risk factor
for KIRC

To validate the independence of the 8-gene signature model

in clinical applications, single-factor and multi-factor cox

analysis were performed on the TCGA data set. Univariate

COX regression analysis demonstrated that RiskType was

significantly related to patients’ survival. Corresponding

multivariate COX regression analysis showed that RiskType

(HR = 1.77, 95%CI = 1.39–2.24, p< 1e-5) was still closely

related to survival. The above results indicated that the 8-gene

signature was an independent prognostic risk factor for KIRC

(Supplementary Figures 8A, B).

A nomogram is more effective to display the results of the

risk model, and it is more convenient to be applied for predicting

the outcome. The nomogram uses the length of the straight line

to indicate the degree of influence of different variables on the

outcome and the influence of different values of the variables on

the outcome. We combined the significant clinical features of

Age, M Stage, and RiskScore in multi-factor cox analysis to

construct a nomogram model (Supplementary Figure 8C). The
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FIGURE 8

Constructing a prognostic model in TCGA data set. (A) The change trajectory of each independent variable, the horizontal axis represents the
log value of the independent variable lambda, and the vertical axis represents the coefficient of the independent variable; (B) The confidence
interval under each lambda. (C) RiskScore, survival time and survival status and expression of the 8 genes in the TCGA training set; (D) ROC
curve and AUC of 8-gene signature classification; (E) KM survival curve distribution of the 8-gene signature in the training set.
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results demonstrated that RiskScore feature had the greatest

impact on the survival rate prediction, indicating that the risk

model established based on 5 genes can better predict the

prognosis. In addition, we corrected the nomogram data for 1-

, 3-, and 5-year survival to visualize the performance of the
Frontiers in Immunology 14
nomogram (Supplementary Figure 8D), proving that the

method had a strong prediction performance. Furthermore, we

plotted the DCA diagrams of Age, M Stage, RiskScore and

nomogram, and the results showed that our nomogram had a

high net benefit (Supplementary Figure 8E).
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FIGURE 9

Clinical subgroup survival analysis and correlation analysis based on Riskscore. (A–M) Prognostic survival curve of clinical characteristics based
on Riskscore; (N–S) RiskScore comparison in clinical characteristics of TCGA data set.
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Comparison of risk models with
other models

After referring to the literature, we finally selected 4

prognostic-related risk models, namely, 9-gene signature

(Zhong) (38), 7-gene signature (Jiang) (39), 7-gene signature

(Chen) (40), and 6-gene signature (Ren) (41), for comparing the

prediction performance with our 8-gene model. To make the

model comparable, we calculated the riskscore of each KIRC

sample in the TCGA using the same method based on the

corresponding genes in the 4 models. Z-score was performed on

RiskScore, and samples with RiskScore greater than zero were

classified into the high-risk group, while those with RiskScore

lower than zero were in the low-risk group. The prognostic

difference of KIRC samples between the two groups was

calculated. The ROC and KIRC-KM curves of the four models

were shown in Figure 10. It can be seen that the 1, 3, and 5-year

AUC values of the 9-gene signature (Zhong) model were all

lower than our model (Figure 10A); the 1- and 3-year AUC

values of the 7-gene signature (Jiang) (Figure 10C) and 6-gene

signature (Ren) (Figure 10G) models were lower than our model,

but the 5-year AUC value was higher than our model; the 1-year

AUC value of the 7-gene signature (Chen) model was higher

than our model, but the 3- and 5-year AUC values were lower

than our model (Figure 10E). The KIRC prognosis of the high-

and low group samples predicted by these five models were also

different (log rank p< 0.05) (Figures 10B, D, F, H).
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Verification of the expression level
of 8 epi-PCGs in vitro

Furthermore, we detected the mRNA and protein expression

levels of 8 epi-PCGs (ETV4, SH2B3, FATE1, GRK5, MALL,

HRH2, SEMA3G and SLC10A6) in 4 human kidney cancer cell

lines (786-O, A498, Caki-1 and ACHN) and the normal human

renal tubular epithelial cell line HK2. As shown in Figure 11A,

we observed that the mRNA expression level of ETV4 was

significantly increased and the expression levels of SH2B3,

FATE1, GRK5, MALL, HRH2, SEMA3G and SLC10A6 were

decreased prominently in kidney cancer cells when compared

with HK2 cell line. The protein expression level of 8 epi-PCGs

was similar to the mRNA expression level (Figure 11B). These

findings were consistent with the bioinformatics results,

indicating that the differentially expressed epi-PCGs identified

in multi-omics data analysis exhibited significant changes in

cancer cells.
Discussion

Surgery is currently the main treatment for KIRC, but about

20% of KIRC patients are already at advanced stage by the time

of diagnosis and have missed the optimal opportunity for taking

surgery (42). Moreover, even with surgical resection, about 30%

of patients with localized KIRC tend to develop recurrence and
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FIGURE 10

Comparison of our risk model with other models. (A) ROC of 9-gene signature (Zhong) risk model. (B) KM curve of 9-gene signature (Zhong)
risk model on high- (n = 253) and low-group (n = 273) samples; (C) ROC of 7-gene signature (Jiang) risk model. (D) KM curve of 7-gene
signature (Jiang) risk model on high- (n = 199) and low-group (n = 327) samples; (E) ROC of 7-gene signature (Chen) risk model. (F) KM Curve
of 7-gene signature (Chen) risk model on high- (n = 261) and low-group (n = 265) samples; (G) ROC of the 6-gene signature (Ren) risk model.
(H) KM curve of 6-gene signature (Ren) risk model on high- (n = 269) and low-group (n = 257) samples.
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metastasis, and the 5-year survival rate of patients with distant

metastasis is about 8-10% (43, 44). Therefore, there is an urgent

need to further understand the molecular mechanism of KIRC

occurrence and development to provide more accurate and

effective clinical treatment strategies.

Dysregulation of expression of functional proteins in the

cell plays a critical role in tumorigenesis, which mostly stems

from the dysregulation of expression of its protein-coding

genes (PCG). Based on this, we first screened differentially

expressed PCGs in KIRC, and then combined with histone

modification data and methylation data, we found 872 epi-

PCGs and 18629 non-epi-PCGs. Epi-PCGs accounted for only

4.47% of all the PCGs. Although the proportion of epi-PCG

was not high, it still pointed to the important role of epigenetic

modification in tumors. Previous studies have shown that

epigenetic dysfunction, including DNA methylation and

histone modification, may have an important impact on the

proliferation, apoptosis, migration and invasion of cancer cells.

Abnormal epigenetic modifications are detected in a variety of

tumor cells (45–48). Further research results showed that epi-

PCGs had more transcripts and exons than non-epi-PCGs, but

the transcript length was relatively short, indicating that

although epi-PCGs accounted for a relatively small

proportion, it is possible that the level of transcription

protein was decreased. These epi-PCG-related pathways

include “bladder cancer”, “hematopoietic cell lineage” (49–

51), and “JAK-STAT signaling pathway” (52–54), which are

related to tumor progression, indicating that these epi-PCGs
Frontiers in Immunology 16
play a pivotal role in the occurrence and development

of tumors.

To realize clinical application of these epi-PCGs, we

established a prognostic gene signature related to epi-PCGs.

Lasso regression analysis demonstrated the combination with

the largest frequency of occurrence that included 8 genes,

namely ETS variant 4 (ETV4), SH2B adapter protein 3

(SH2B3), Fetal and adult testis-expressed transcript protein

(FATE1), G protein-coupled receptor kinase 5 (GRK5), MAL-

like protein (MALL), Histamine H2 receptor (HRH2), Class-3

semaphorins (SEMA3G) and Solute carrier family 10 member

6 (SLC10A6). The role of these genes in tumors has been

reported, but the current research results showed that their

contradictory roles in tumors. ETV4, also known as

polyomavirus enhancer activator 3 protein (Pea3), is an

important member of the ETS transcription factor family.

Studies have shown that ETV4 is abnormally expressed in a

variety of tumors, and promotes tumor progression through

stimulating tumor cell proliferation and metastasis (55–57).

SH2B3 is a member of the SH2B family of adaptor proteins,

playing a role in negative feedback loop that controls cell

growth, development and survival signals. Activated target

kinase also induces SH2B3 expression and activation through

phosphorylation (58). In tumors, SH2B3 usually changes its

role in tumors due to mutations. In leukemias, the enrichment

of SH2B3 aberrations may indicate that the loss of SH2B3

contributes to the disease progression and increases the

sensitivity of leukemias to Tyrosine kinase inhibitors (59,
A B

FIGURE 11

Verification of the expression level of 8 epi-PCGs in vitro. (A) ThemRNA expression level of 8 epi-PCGs (ETV4, SH2B3, FATE1, GRK5, MALL, HRH2, SEMA3G
and SLC10A6) in 4 kidney cancer cell lines and HK2 cell line. (B) The protein expression level of 8 epi-PCGs. *P < 0.05, **P < 0.01, ***P < 0.001.
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60). FATE1 is a gene expressed in fetal and adult testis. In

normal tissues, the expression of FATE1 is mainly restricted to

the testis and adrenal glands (61), and its expression is up-

regulated in a variety of cancers. GRK5 affects the migration of

non-small cell lung cancer cells through vinculin (62),

moreover, it shows a high expression in breast cancer cells,

promotes breast cancer cell metastasis, and is therefore a target

for breast cancer treatment (63). MAL-like protein has a

transport function, but its molecular role is largely unclear.

MALL is normally expressed in laryngeal epithelial cells, and

its expression changes in the early stage of carcinogenesis. The

expression of MAL is significantly down-regulated (64), and it

plays an important role as a binding gene of MUC1 in breast

cancer (65). HRH2 is a member of the G protein-coupled

receptor family widely expressed in the gastrointestinal tract,

and its activity is mediated by cAMP. It has been found that the

HRH2 blocker nizatidine can be used for treating advanced

liver disease and liver cancer, and is a potential clinical target

for liver cancer treatment (66). SEMA3 is the only group of

secreted proteins in vertebrate semaphores. They are further

subdivided into seven members (SEMA3A to SEMA3G). The

members of the SEMA3 family have both tumor-promoting

and anti-tumor functions, which are related to cell type and

environment (67). SEMA3G has anti-migration and anti-

invasion effects on gliomas (68), and is a prognostic gene of

KIRC (69). SLC10A6 has been limitedly researched in tumors.

Studies have shown that it is widely expressed in breast cancer

and promotes breast cancer cell proliferation (70). These

results indicated that these genes play an important role in

the occurrence and development of tumors in different forms,

and may also function critically in the prognosis of KIRC, but

this requires further verification.

We also analyzed the RiskScore in different clinical

characteristics, and found that for tumors with poor

differentiation and higher malignancy (T3-4, N+, M1, and 3),

the score was higher, and the prognosis of patients in the high-

scoring group with different clinical characteristics was poor.

Univariate and multivariate COX regression analysis results

showed that RiskScore was an independent prognostic factor

for KIRC. The nomogram results confirmed that RiskScore had

the strongest ability in accurately predicting the prognosis of

KIRC, exceeding the existing TNM and staging. For some

clinical stages, the clinical application significance of the risk

scoring system constructed in this study was greater. In addition,

the RiskScore model was compared with the previous five

assessment models. The prognosis of KIRC in the high- and

low-risk samples of these five models were different, but our

model had a higher AUC value in one of or some of 1-, 3- or 5-

year survival predictions. This indicated that the model we

developed based on differentially expressed genes combined

with epigenetics can better indicate the occurrence and

development of KIRC, and was a more effective model, further

illustrating the clinical feasibility of our model. On the other
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hand, as the RiskScore changed, the pathways involved in tumor

occurrence and progression were different. For example, we

found that among the higher-scored pathways, the enrichment

score of pathways such as P53 signaling pathway (71) increased

with the increase of RiskScore, while the enrichment score of

metabolic pathways such as fatty acid metabolism (72),

glycolysis gluconeogenesis (73), galactose metabolism (74)

decreased with the increase of RiskScore. Previous literature

reports have shown that these pathways are all involved in tumor

progression, but they may play different roles in different

tumors, and this also requires follow-up research for verification.

Although previous research developed a series of gene

s ignatures for kidney cancer based on epigenet ic

dysregulation, they focused on m6A regulators or only

included limited cancer samples (17–19). Compared to the

previous research, the advantage of our study was that we

performed a comprehensive analysis on epigenetic

dysregulation using multiple data sets. Importantly, we

uncovered the relation between epigenetic dysregulation and

tumor microenvironment from different aspects such as

immune checkpoints, cytokines, immune cells and immune

signatures. The different performance of three molecular

subtypes to immune checkpoint blockade also demonstrated

the important role of epigenetic dysregulation or identified epi-

PCGs in tumor microenvironment modulation. The

observations highlighted the potential of epi-PCGs serving as

prognostic biomarkers for renal cell carcinoma. Compared

with the gene signatures of KIRC in the previous studies, our

8-gene prognostic model manifested a higher AUC, which

further indicated the critical role of epi-PCGs in the KIRC

development and progression. Notably, we verified the

expression level of the eight epi-PCGs in kidney cancer cell

lines, and the results showed a consistency with the

bioinformatics analysis, which further demonstrated the

reliability of our analysis and the importance of the eight

epi-PCGs in kidney cancer development.

However, in this study, we only analyzed the effect of

differential expression of PCGs on KIRC, but did not include

the abnormal expression of other non-transcriptional genes.

Also, such expression difference lacked verification in vivo

and in vitro. Similarly, the 8-gene signature was only

preliminary screened as part of the prognostic RiskScore,

but there was a lack of specific research on the role of these

genes in KIRC and the detailed relationship among these

genes. We will further supplement verification study in vivo.

In addition, there are some contradictions between some

research results in this study and previous research results,

and have not yet been fully explained only according to our

existing research results.

In conclusion, in this study, we systematically analyzed the

abnormal expression of PCGs in KIRC, and combined with histone

modifications, we screened 872 epi-PCGs and 18629 non-epi-

PCGs. Based on the differentially expressed epi-PCGs-related
frontiersin.org
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genes, KIRC samples were divided into three subtypes, and these

subtypes showed significant differences in prognosis. Based on the

epi-PCGs, we constructed an 8-gene prognostic risk models that

had a strong stability and predictive performance in both the

training set and the validation set, and different RiskScores can

fully reflect the clinical characteristics of patients. Compared with

other existing models, our model had a higher predicting

performance. The current findings help better understand the

abnormal epigenetic regulation of PCG expression in KIRC. This

model is expected to guide clinicians in the prognosis prediction

and clinical diagnosis and treatment of KIRC patients with

different phenotypes.
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SUPPLEMENTARY FIGURE 1

Prognosis-relatedepi-PCGsexpressionandRNAmodification. (A)Analysisof
thedifferential expressionofprognostic-relatedepi-PCGs innormal samples
and tumor samples. (B–C)Histone modification profile of epi-PCGs

SUPPLEMENTARY FIGURE 2

Comparison of TIDE score, T cell dysfunction score and T cell rejection
score of molecular subtypes. (A) In the TCGA data set, TIDE scores are

different in the three molecular subtypes. (B) In the TCGA data set, T cell
dysfunction scores are different in the three molecular subtypes. (C) In the

TCGA data set, T cell exclusion scores are different in the three

molecular subtypes.

SUPPLEMENTARY FIGURE 3

(A) ROC curve and AUC of the 8-gene signature in TCGA test set; (B) KM
survival curve of 8-gene signature in TCGA test set. (C) ROC curve and
AUC of 8-gene signature in TCGA entire data set; (D) KM survival curve of

8-gene signature in TCGA entire data set. (E) ROC curve and AUC of 8-
gene signature in the ICGC cohort; (F) KM survival curve of 8-gene

signature in the ICGC cohort.

SUPPLEMENTARY FIGURE 4

The relationship between RiskScore and the pathways. (A) The correlation

coefficient clustering of KEGG pathways greater than 0.4 and the
RiskScore; (B) ssGSEA scores of KEGG pathways with a correlation

greater than 0.4 in each sample as the RiskScore increases, the
horizontal axis represents the sample, and the Riskscore increases from

left to right.

SUPPLEMENTARY FIGURE 5

The PPI analysis for the eight prognostic genes.

SUPPLEMENTARY FIGURE 6

Pearson correlation analysis between the eight prognostic genes and the

ssGSEA score of immune cells. Red and blue indicates positive and
negative correlations respectively.

SUPPLEMENTARY FIGURE 7

The expression of eight prognostic genes in three molecular subtypes in
TCGA (A) and ICGC (B) datasets. Kruskal-Wallis test was performed. ns, no

significance. ****P < 0.0001.

SUPPLEMENTARY FIGURE 8

Single-factor and multi-factor cox analyses on the 8-gene signature(A)
Single-factor analysis of TCGA entire data set; (B) Multi-factor analysis of

TCGA entire data set. (C) Nomogram constructed with clinical

characteristics and RiskScore; (D) Correction chart of survival rate of
nomogram; (E) DCA chart.
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