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Aberrant expression of methyltransferases and demethylases may augment tumor
initiation, proliferation and metastasis through RNA modification, such as m6A and
m5C. However, activity of pseudouridine (Ψ) modification of RNA remains unknown in
glioma, the most common malignant intracranial tumor. In this study, we explored the
expression profiles of the Ψ synthase genes in glioma and constructed an efficient
prediction model for glioma prognosis based on the CGGA and TCGA datasets. In
addition, the risk-score signature was positively associated withmalignancy of gliomas and
the abundance of tumor-infiltrating immune cells such as macrophages M0 and regulatory
T cells (Tregs), but negatively associated with the abundance of monocytes, NK cell
activation and T cell CD4+ naive. In terms of mechanism, the risk-score signature was
positively associated with the expression of inflammatory molecules such as S100A11 and
CASP4 in glioma. Overall, this study provided evidence for the activity of RNA Ψ
modification in glioma malignancy and local immunity.
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INTRODUCTION

More than 160 distinct chemical modifications have been identified in RNA molecules (Boccaletto
et al., 2018), which may regulate RNA stability and function in eukaryotic cells. N6-methyladenosine
(m6A) modification (Dominissini et al., 2012) is involved in regulation of a broad range of cellular
activities, such as viral infection, vascular development, autoinflammatory disorders and cancer (Wang
L. J. et al., 2020; Zhou et al., 2020; Tang et al., 2021). The study of m6A promotes investigation of other
RNA modifications, such as 5-methylcytidine (m5C), N1-methyladenosine (m1A), N7-
methylguanosine (m7G), ribose methylations (Nm), N4-acetylcytidine (ac4C) and pseudouridine
(Ψ) modification (Wiener and Schwartz, 2021). These RNA modifications may directly affect the
activities of mRNA in several ways, including decay, translation efficiency and stability, and thus shape
the transcriptomic landscapes (Frye et al., 2018). Ψ is a prevalent type of nucleoside modification that
occurs in both non-coding RNA and mRNA (Carlile et al., 2014). Ψ plays an essential role in various
molecular mechanisms, such as the stabilization of RNA structure (Davis et al., 1998; Charette and
Gray, 2000), RNA-RNA and RNA-protein interactions (Basak andQuery, 2014) and themetabolism of
RNAs (Ma et al., 2003; Carlile et al., 2014). Pseudouridylation is catalyzed by pseudouridine synthases.
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In eukaryotic cells, there are 17 different pseudouridine synthases,
while 12 pseudouridine synthase genes have been discovered in
humans: PUS1, PUS3, PUS7, PUS7L, PUS10, DKC1, RPUSD1,
RPUSD2, RPUSD3, RPUSD4, TRUB1, and TRUB2 (Penzo et al.,
2017). The abnormality of Ψ modification is associated with
various diseases. For instance, DKC1 stabilizes the mRNA of
some ribosomal proteins depending on its pseudouridine
synthase activity, thereby promoting colorectal cancer
progression in vitro and in vivo (Kan et al., 2021). Increasing
evidences have suggested an association between abnormal
expression of Ψ synthases (such as PUS1, PUS7, PUS10 and
DKC1) and tumor malignant progression (Jana et al., 2017;
Elsharawy et al., 2020; Du et al., 2021; Stockert et al., 2021). In
addition, Ψ synthase inhibitors have been shown to repress tumor
growth (Gmeiner, 2020; Kan et al., 2021). However, the activity of
Ψ synthases remains unclear in glioma.

Primary gliomas are graded from I to IV according to the
classification scheme specified by the World Health Organization
(WHO) (Ostrom et al., 2018). WHO grade II and III gliomas,
including astrocytomas, oligodendrogliomas and mixed
oligoastrocytomas, are defined as lower-grade gliomas (LGG).
WHO grade IV gliomas (Glioblastoma, GBM) are highly
malignant, and its characteristics are significantly different
from those of LGG (Ostrom et al., 2019). A wide range of
efforts have been made during the past decades to improve
the diagnosis and prognosis of glioma. Notably, RNA
modification, especially m6A and m5C modification, have been
proposed as a new class of epigenetic markers in the diagnosis of
glioma malignancies, and the related enzymes have shown a great
value in prognostic of glioma (Wang P. et al., 2020; Lin et al.,
2020). However, there is no report on the relationship between Ψ
synthase gene expression and characteristics of glioma.

In this study, we explored the expression profiles ofΨ synthases
and found abnormal expression of seven synthase genes (PUS1,
PUS7, RPUSD1, RPUSD3, DKC1, TRUB1 and PUS7L) in GBM
relative to LGG in the CGGA dataset. The Ψ synthase genes that
are closely related to overall survival (OS) were extracted to
perform the least absolute shrinkage and selection operator
(LASSO) multivariate Cox regression algorithm. Five positive
genes (PUS1, PUS7, RPUSD1, DKC1 and TRUB1) were
selected to construct a high efficacy prediction model. We
identified differentially expressed genes (DEGs) between the
high-risk group and the low-risk group to explore the
mechanism by which risk-score signature affect prognosis. The
results of GO analysis suggested that the up-regulated DEGs were
significantly enriched in the signaling pathway of immune-related
reactions. Moreover, analysis of immune landscape suggested that
the tumor microenvironment (TME) and tumor-infiltrating
lymphocytes (macrophages M0, monocytes, NK cell activation,
T cell CD4+ naive and Tregs) were significantly different between
the high-risk group and low-risk group. Weighted correlation
network analysis (WGCNA) was applied to identify the
candidate hub genes that may regulate TME and immune cell
infiltration of glioma based on the CGGAdataset. Finally, we found
the expression of inflammatory molecules CASP4 and S100A11
were positively associated with Ψ synthase-related risk-score
signature. In summary, we identified the link of Ψ synthase

genes to glioma prognosis, and potential value of Ψ
modification in glioma malignancy and local immunity.

METHODS AND MATERIALS

Datasets and Samples
The Chinese Glioma Genome Atlas (CGGA) RNA-seq data
(#325) and clinical data were downloaded from the CGGA
data portal (http://www.cgga.org.cn/) as the training set. The
merged GBMLGG datasets (The Cancer Genome Atlas, TCGA)
were downloaded from the cBio Cancer Genomics Portal
(cBioPortal, http://www.cbioportal.org) as the validation set
(Cerami et al., 2012). After excluding samples with missing
clinical data such as survival and WHO grade, 309 (CGGA
dataset) and 674 (TCGA dataset) glioma patients were finally
enrolled in this study. In addition, the CGGA RNA-seq data
(#693), CGGA mRNA array data and the GSE59612 expression
data were downloaded from CGGA data portal and GEO website
(https://www.ncbi.nlm.nih.gov/geo/), respectively.

Five WHO grade II/III and fiveWHO grade IV glioma samples
were collected from patients undergoing surgical treatment from
November 2019 to December 2020 in Zhengzhou Central Hospital
Affiliated to Zhengzhou University. The clinical diagnosis was
confirmed by immunohistochemical staining. This study was
approved by the institutional review board of Zhengzhou
Central Hospital Affiliated to Zhengzhou University, and
informed consents were obtained from all patients.

Construction of the Risk Score Model
The difference in Ψ synthase gene expression between LGG and
GBM was identified in the datasets of CGGA, TCGA and
GSE59612. Univariate Cox regression analysis was performed
to identify the genes related to overall survival (OS). Five Ψ
synthase genes were screened out by performing the least absolute
shrinkage and selection operator (LASSO) multivariate Cox
regression algorithm in the R package “glmnet”. Finally, the
signature genes and coefficients in the risk-score signature
were constructed based on the most suitable penalty
parameter λ. The risk score formula used in this study was:

Risk score � ∑
n

i�1
(CoefipExpi)

where Coefi is the coefficient, and Expi is the normalized
expression of each signature gene.

Identification of DEGs and GO Enrichment
Analysis
The differentially expressed genes (DEGs) were identified by
executing the “limma” package in R software (Ritchie et al.,
2015). EDGs were determined with adjusted p-value < 0.05
and |log2FC| ≥ 1 in fold change between the high-risk and
low-risk groups in the CGGA and TCGA datasets,
respectively. Gene Ontology (GO) enrichment analysis was
conducted using the R package “clusterprofiler” (Yu et al., 2012).
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Immune Landscape Analysis
The immune scores, stromal scores and ESTIMATE scores of
gliomas were calculated using the “estimate” package in R
software. The Immunophenoscores of gliomas were calculated
using IPS algorithm (Charoentong et al., 2017). The abundance of
tumor-infiltrating immune cells were evaluated on the TIMER2
platform (http://timer.cistrome.org/) based on gene expression
profiles (Li et al., 2020).

Weighted Correlation Network Analysis
(WGCNA)
In order to identify the clinical traits-related modules and hub genes,
DEGs identified in both CGGA and TCGA datasets and clinical traits
were incorporated to perform Weighted correlation network analysis
(WGCNA) using R package “WGCNA”. The adjacency matrix was
then transformed into topological overlap matrix (TOM). Genes were
divided into different gene modules according to the TOM-based
dissimilarity measure. The soft-thresholding power was set at five in
the scale-free network. Hub genes of eachmodule were computed and
the close modules were integrated with setting the height to 0.25, the
deep split to two and the min module size to20.

Immunohistochemical Staining
After deparaffinization and rehydration, the tissue slices were
submerged in the peroxidase blocking solution which was mixed
with one part 30% hydrogen peroxide and nine parts methanol for
10 min. After that, the slices were treated with 0.01M citrate buffer
and incubated with serum blocking solution for 20 min, and
followed by incubation with anti-DKC1 (Abcam, ab156877, 1:
100) or anti-RPUSD1 (Merck, HPA041144, 1:500) primary
antibody overnight at 4°C. Thereafter, the slices were incubated
with biotin-labeled secondary antibody for 20min, and followed by
incubation with horseradish peroxidase-conjugated avidin for
20 min. Finally, the sections were stained with diaminobenzidine,
and nuclei were counterstained with hematoxylin.

Statistical Analysis
One-way ANOVA, wilcox test, and t test were used to identify
significant difference in gene expression and infiltration of immune
cells in gliomas with different WHO grades and different risk
groups. Univariate, multivariate, LASSO Cox regression and
Kaplan-Meier analyses were performed to construct and
evaluate the risk signature using the R packages “glmnet” and
“survival”. Roc curve analysis was performed to predict the OS of
glioma patients through the R package “survivalROC”. All
statistical analyses were conducted using GraphPad Prism six
software, R software v4.0.1 and SPSS v26, and a p value of less
than 0.05 was considered statistically significant.

RESULTS

Identification of Pseudouridine Synthase
Genes in Glioma
Abnormal expression of certain Ψ synthases can affect the
phenotype of cancer cells and behavior of tumor progression

(Jana et al., 2017; Elsharawy et al., 2020; Du et al., 2021). As
illustrated in the flowchart (Figure 1), we first analyzed the RNA-
seq data of the CGGA, TCGA and GSE59612 datasets to
characterize the expression pattern of 12 Ψ synthase genes in
glioma. In the CGGA cohort, compared with LGG, the expression
of PUS1, PUS7, RPUSD1, RPUSD3 and DKC1 were distinctly up-
regulated in GBM; meanwhile, the expression of TRUB1 and
PUS7L were significantly down-regulated in GBM (Figures
2A,B). In the TCGA cohort, except that PUS7L was not
differentially expressed, the expression of other genes between
LGG and GBM was similar to that of CGGA dataset (Figure 2C).
In the GSE59612 dataset, the expression of PUS1, PUS7, RPUSD1
and DKC1 were significantly increased in the tumor core tissues
relative to tumor marginal tissues and paracancerous tissues; and
the expression of TRUB1 was decreased from paracancerous
tissue to tumor core tissue (Figure 2D). Furthermore, the
expression levels of these seven genes were significantly
different in the groups compartmentalized by IDH-mutant
status, MGMT promoter status, 1p/19q codel status and age in
the CGGA dataset (Supplementary Figure S1).

Construction of the Risk-Score Signature
Univariate Cox regression analysis was performed to identify
relationship between Ψ synthase genes and patient survival in the
CGGA and TCGA datasets. Six Ψ synthase genes were associated
with the prognosis, of which the expression of PUS1, PUS7,

FIGURE 1 | Flow chart of this study.
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RPUSD1 and RPUSD3 was positively associated with the
malignancy of glioma (HR > 1), and TRUB1 was negatively
associated with the malignant grade (HR < 1) (Figure 3).
Moreover, univariate Cox regression analysis was performed in
different subgroups stratified according to pathological grade and
IDH status. The results showed that PUS1, PUS7, and DKC1 were
significantly correlated with the prognosis of gliomas in different
subgroups (Supplementary Table S1).

To predict the clinical outcomes of gliomas, the least absolute
shrinkage and selection operator (LASSO) Cox regression
algorithm was subsequently used to analyze the six Ψ synthase
genes in the CGGA dataset (Figures 4A–C). Finally, five genes
were screened out to construct the risk-score signature based on
the minimum criteria in the training dataset (CGGA)
(Figure 4D), and the signature was verified in the TCGA
dataset, CGGA RNA-seq (#693) and CGGA mRNA array
dataset (Figure 4G, Supplementary Figure S2). In order to
assess the difference of overall survival between the low-risk
and high-risk glioma patients, Kaplan-Meier analysis was
performed both in the CGGA dataset and TCGA dataset. The
results showed that the OS of glioma patients in the high-risk
group was much shorter than that in low-risk group (Figures
4E,H, Supplementary Figure S2). Thereafter, ROC curve
analysis was performed to assess the sensitivity and specificity
of risk score in prediction of the 1-, three- and 5-years survival of
glioma patients. The results showed that the risk score had high
accuracy in the prediction of OS of glioma patients in the CGGA
and TCGA datasets (Figures 4F,I, Supplementary Figure S2).

Considering age, WHO grade, IDH mutation status and 1p/
19q coding status are related to the prognosis of gliomas, we
analyzed the risk score signature in different subtypes stratified
according to these pathological conditions. As shown in
Supplementary Figure 3A, the risk scores of gliomas in
GBM, IDH wild-type, older and 1p/19q non-coding
subtypes were significantly higher than the corresponding
subtypes. In addition, risk-score signature also exhibited
high prognostic value in different WHO grade, IDH-mutant
status, age and 1p/19q coding status subtypes (Supplementary
Figure S3B–E).

Univariate and multivariate Cox regression analysis was
performed to investigate whether the risk score was an
independent prognostic factor for glioma. The results of
univariate analysis showed that risk score, age, WHO grade
and IDH status were significantly correlated with prognosis
(Supplementary Figure S4A). Multivariate analysis also
determined that risk score was significantly related to
prognosis (Supplementary Figure S4B). A survival nomogram
prediction model was then built based on independent prognostic
parameters for the OS of glioma patients in the CGGA dataset
(Supplementary Figure S4C). In addition, the calibration curves
for the probability of 1-, three- and 5-years survival displayed
excellent agreement between observation and prediction in the
CGGA dataset (Supplementary Figure S4D). These results
suggested that the risk-score signature of the five Ψ synthase
genes was a reliable and independent prognostic indicator for
gliomas.

FIGURE 2 | The expression levels of the 12 pseudouridine synthase genes in glioma (A)Heatmap depicting the expression levels of the 12 pseudouridine synthase
genes in the CGGA dataset (B–C) Violin plot showing the expression levels of the 12 pseudouridine synthase genes between LGG and GBM in the CGGA and TCGA
datasets, respectively (D) Violin plot showing the expression levels of the 12 pseudouridine synthase genes between paracancerous tissue (n � 17), tumor marginal
tissues (n � 36) and tumor core tissue (n � 39) in the GSE59612 dataset. p values were calculated using wilcox test (B–C) and Student’s t-test (D). *, p < 0.05; **, p <
0.01; ***, p < 0.001, ****, p < 0.0001.
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Verify the Expression of the Prognostic Ψ
Synthase Genes
To validate the expression of the prognostic Ψ synthase genes in
glioma, we performed immunohistochemical staining on tissue
samples collected from glioma patients undergoing surgical
treatment. As shown in Figure 5, the expression levels of
RPUSD1 and DKC1 in high-grade gliomas were higher than
that in low-grade gliomas.

Identification and Enrichment Analysis of
DEGs Between High-Risk and Low-Risk
Groups
To understand the impact of risk-score signature in the
prognosis, we used R package “limma” to screen DEGs
between the high-risk and low-risk groups. In the CGGA and
TCGA datasets, 10,515 and 2,508 DEGs were screened,
respectively (Figure 6A). 1794 genes that could be identified

in both two datasets, including 1,008 up-regulated genes and
786 down-regulated genes, were selected for GO enrichment
analysis (Figures 6A,B). Notably, the up-regulated genes were
significantly enriched in immune-related signaling pathways such
as the regulation of immune effector process, the regulation of
T cell activation, the regulation of cell adhesion, and the
mononuclear cell proliferation signaling pathway
(Figures 6C,D).

Immune Microenvironment Landscape of
Glioma
The DEGs between the high-risk and low-risk groups were
enriched in the immune-related signaling pathways, suggesting
that the risk scores might be related to the tumor immune
microenvironment. To test the possibility, we analyzed the
distribution of immune scores, stromal scores and ESTIMATE
scores in the groups with different risk scores. The results

FIGURE 3 | Identification of pseudouridine synthase genes that correlate with overall survival (A) Univariate Cox regression analysis of seven pseudouridine
synthase genes in the CGGA dataset (B) Kaplan-Meier overall survival curves of certain genes in the CGGA dataset (C) Univariate Cox regression analysis of seven
pseudouridine synthase genes in the TCGA dataset (D) Kaplan-Meier overall survival curves of certain genes in the TCGA dataset.
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revealed that the higher risk scores were significantly correlated
with the higher immune scores, stromal scores and ESTIMATE
scores, respectively (Figures 7A–D). Moreover, correlation
analysis suggested that the expression levels of the five

prognostic Ψ synthase genes were associated with the immune
scores, stromal scores and ESTIMATE scores, especially TRUB1
(Figures 7A,B). Immunophenotype were analyzed by IPS
algorithm, the IPS scores of the high-risk group were lower

FIGURE 4 | Construction of the risk-score signature using five pseudouridine synthase genes (A) LASSO coefficient profiles of the six pseudouridine synthase
genes in the CGGA dataset (B) Partial likelihood deviance of different numbers of variables revealed by the LASSO regression model (C) Barplot displaying the
coefficients constructed using the LASSO method (D) Distribution of risk score, patients’ survival status, and expression pattern of the five pseudouridine synthase
genes in the CGGA dataset (E) Kaplan-Meier curves of overall survival according to risk score in the CGGA dataset (F) ROC curves showing the sensitivity and
specificity of risk score in predicting the 1-, 3- and 5-years survival of glioma patients in CGGA dataset (G) Distribution of risk score, patients’ survival status, and
expression pattern of the five pseudouridine synthase genes in the TCGA dataset (H) Kaplan-Meier curves of overall survival according to risk score in the TCGA dataset
(I). ROC curves showing the sensitivity and specificity of risk score in predicting the 1-, 3- and 5-years survival of glioma patients in TCGA dataset.
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than that of the low-risk group (Supplementary Figure 5),
indicating the immunogenicity of gliomas in high-risk group
was reduced. We examined the expression of immune-related
genes, and found the expression of most immunosuppressive
genes in the high-risk group was up-regulated, including the
checkpoint genes such as PD-1, PD-L1 and CTLA4 (Figures
7E,F). Therefore, the Ψ synthase genes and risk-score might be
related to the immunosuppressive microenvironment of glioma.

Thereafter, we investigated the association of risk scores
and immune infiltration in CGGA and TCGA datasets.
Twenty-two types of immune cells were analyzed using the
CIBERSORT algorithm in the online tool TIMER2 (Figures
8A,B). The results suggested that the tumor infiltrating
leukocytes including macrophages M0, monocytes, NK cell
activation, T cell CD4+ naive and T cell regulatory (Tregs)
were significantly different in number between the high-risk
and low-risk groups. In detail, the infiltration of M0 and Tregs
were increased in the high-risk group, while the infiltration of
other cell types was decreased (Figures 8C,D,F,G). Based on
the correlation analysis, we found the five types of immune
cells were significantly associated with the risk scores (Figures
8E,H) and the expression of the five prognostic Ψ synthase
genes (Supplementary Figure S6). As shown in Figures
9A,D, there were also significant differences in the
infiltration levels of these five immune cells in different
WHO grades. Similar to the comparison between different
risk-score groups, the infiltration levels of M0 and Tregs
increased in high grade gliomas, while the infiltration levels
of the other three immune cells were significantly reduced in
high grade gliomas (Figures 9B,E). Moreover, Kaplan-Meier
survival analysis revealed that high infiltration levels of M0 or
Tregs, and low infiltration levels of monocytes, NK cell
activation or T cell CD4+ naive were associated with poor
prognosis and low survival rates of gliomas (Figures 9C,F). In
addition, the immune cell infiltration of different risk groups
was analyzed in LGG and GBM subtypes, respectively. The
infiltration levels of M0 and Tregs increased in high-risk
gliomas, while the infiltration levels of other immune cells
were significantly reduced in high-risk gliomas
(Supplementary Figure S7).

WGCNA and Module Analysis
We performed WGCNA to determine the hub genes that
regulated TME and immune infiltration. The expression
profile of 1794 DEGs and clinical traits of the CGGA samples
were incorporated to construct a gene co-expression network.
After merging similar modules with a threshold of 0.25, a total of
eight modules were identified from the co-expression network
(Figure 10A). As shown in the heatmap of module-trait
relationships, the blue module was most relevant to clinical
traits, especially traits such as immune scores, stromal scores,
ESTIMATE scores, macrophages M0 infiltration (Figure 10B). In
addition, two hub genes, CASP4 and S100A11, were identified
from the bluemodule by setting the correlation relevant threshold
to 0.9 (Figure 10C). Correlation analysis showed that the
expression levels of CASP4 and S100A11 were correlated with
the expression levels of the five prognostic Ψ synthase genes, and
were significantly related to the infiltration levels of M0,
monocytes, NK cell activation, T cell CD4+ naive and Tregs
(Supplementary Figure S8, 9). Gene set enrichment analysis
(GSEA) was further used to explore potential functional
mechanisms or immunological associations of hub genes, the
immune pathways such as antigen processing and presentation,
leukocyte transendothelial migration, natural killer cell mediated
cytotoxicity, JAK STAT signaling pathway, cytokine receptor
interaction were significantly enriched (Figures 10D,E).
Therefore, the risk-score signature might affect the expression
of CASP4 and S100A11, resulting in changes in TME and the
infiltration levels of the five immune cells.

DISCUSSION

Glioma is the most common malignant tumor in the brain of
adults, and is considered one of the most devastating cancers due
to the aggressive behavior and lack of effective therapies (Ostrom
et al., 2017). It is necessary to find new prognostic biomarkers and
therapeutic strategies. In recent years, increasing evidence
suggests that RNA modifications, especially m6A and m5C,
play a crucial role in tumorigenesis, and the corresponding
regulatory enzymes are potential candidates of prognostic

FIGURE 5 | Validation the expression of prognostic pseudouridine synthase genes (A–B) Immunohistochemical staining analysis of the protein levels of DKC1 and
RPUSD1 between the low-grade (n � 5) and high-grade gliomas (n � 5). p values were calculated using Student’s t-test. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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biomarkers and therapeutic targets (Wang P. et al., 2020; Lin
et al., 2020). In this line, Ψ synthase genes have been found to be
involved in tumor progression and prognosis (Jana et al., 2017;
Elsharawy et al., 2020; Du et al., 2021). In current study, we
demonstrated the value of Ψ synthase genes in prediction of the
prognosis of gliomas, and constructed a novel five-gene-based
prognostic model (Figures 2–4).

Since a large amount of Ψ can be detected in urine of various
malignant neoplasms, the level ofΨ in urine has been proposed as
a potential tumor marker (Nombela et al., 2021). The level ofΨ in
urine mainly depends on the metabolism and turnover of RNA,
thus dysregulation of Ψ synthases may cause Ψ to accumulate in

urine (Gehrke et al., 1979). Although the relationship between
elevated Ψ level and imbalance of pseudouridine synthases
remains to be elucidated, performing transcriptomic analysis
of Ψ synthases and evaluating Ψ levels in the blood, urine or
tissue of patients in relevant clinical characteristics such as WHO
grade, IDH status, may greatly aid in identifying the differences
between gliomas of various clinicopathological parameters, and
potentially promote the diagnosis and treatment of glioma.
Notably, the DKC1 inhibitor pyrazofurin and the MEK1/2
inhibitor trametinib can synergistically suppress colorectal
cancer growth, suggesting the Ψ synthases are very promising
therapeutic targets for cancer (Kan et al., 2021). 5-Fluorouracil (5-

FIGURE 6 | Identification and enrichment analysis of DEGs between high-risk and low-risk groups (A) Venn diagram showing the differentially expressed genes
between the high-risk and low-risk groups in the CGGA and TCGA datasets (B) Heatmap depicting 1794 selected differentially expressed genes between the high-risk
and low-risk groups in the CGGA dataset (C–D) GO analysis of the 1,008 up-regulated genes and 786 down-regulated genes, respectively.
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FU), the most widely used fluorinated pyrimidine in cancer
treatment (Gmeiner, 2020), has been shown to inhibit
pseudouridine synthases. Regardless of whether the related
cytotoxicity of 5-FU is due to the overall decrease of RNA
pseudouridylation or the loss of specific modified RNAs,
evaluating the expression model of Ψ synthases may
contribute to accurate application of 5-FU in cancer treatment
and improve the prognosis. For glioma, small-molecule inhibitors
that can cross the blood-brain barrier and specifically target Ψ
synthases urgently need to be developed.

Among all of the post-transcriptional modifications identified
on RNA molecules, Ψ is the most abundant modification
(Charette and Gray, 2000; Ge and Yu, 2013).
Pseudouridylation in the 3′-UTRs of mRNA may serve as a
key factor in stabilization of mRNA (Kierzek et al., 2014;
Schwartz et al., 2014; He et al., 2021). In addition,
pseudouridylation fine-tunes the effects of codon bias to affect
translation fidelity and efficiency (Karijolich and Yu, 2011;
Karijolich et al., 2015; He et al., 2021). PUS1, PUS7, DKC1
and TRUB1 have been reported to modify pseudouridylation
in mRNA (Li et al., 2015). In current study, the prognostic model
was constructed based on expression of these Ψ synthase genes

and RPUSD1 (Figure 4). The Ψ synthase genes might shape a
new component in the signature of transcriptomic landscapes of
gliomas (Figure 6).

Intriguingly, the up-regulated genes were significantly
enriched in the immune-related signaling pathways,
including the regulation of immune effector process, the
regulation of T cell activation, the regulation of cell
adhesion, and the mononuclear cell proliferation signaling
pathway (Figures 6C,D). Therefore, the relationship of Ψ
modification and landscape of immune microenvironment
in gliomas was subsequently analyzed based on the
expression data (Figures 7, 8). Consistent with previous
studies, the immune scores, matrix scores, and ESTIMATE
scores of high-risk gliomas were higher (Figure 7), but the
immunophenoscores were lower (Supplementary Figure S5),
indicating that the immune microenvironment had undergo
significant suppressive changes (Fu et al., 2020a; Fu et al.,
2020b). To characterize whether the risk scores were
associated with the suppressive immunophenotype, an
immune signature containing 39 immunosuppressive genes
were analyzed. As expected, almost all of the
immunosuppressive genes were up-regulated in the high-

FIGURE 7 | Correlation analysis of risk-score and immune microenvironment in glioma (A–B) Correlation analysis of risk-score and five pseudouridine synthase
genes with immune scores, stromal scores and ESTIMATE scores in the CGGA and TCGA datasets, respectively (C–D) Ridge plot showing the distribution of immune
scores, stromal scores and ESTIMATE scores of different risk groups in the CGGA and TCGA datasets, respectively (E–F) Boxplot displaying the expression levels of 39
immune signature genes in the CGGA and TCGA datasets, respectively. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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FIGURE 8 | Analysis of immune cell infiltration in different risk-score groups (A–B) Heatmap depicting the infiltration levels of 22 immune cells in the CGGA and
TCGA datasets, respectively (C,F) The average frequencies of 22 immune cells in low-risk and high-risk groups in the CGGA and TCGA datasets, respectively (D,G)
Boxplot displaying the infiltration levels of macrophages M0, monocytes, NK cell activation, T cell CD4+ naive and Tregs between the high-risk and low-risk groups in the
CGGA and TCGA datasets, respectively (E,H) Correlation analysis of risk-score with the infiltration levels of macrophages M0, monocytes, NK cell activation, T cell
CD4+ naive and Tregs in the CGGA and TCGA datasets, respectively. p values were calculated using wilcox test. *, p < 0.05; **, p < 0.01; ***, p < 0.001, ****, p < 0.0001.
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risk group, including the checkpoint genes such as PD-1, PD-
L1 and CTLA4 (Figures 7E,F). Moreover, decreased
infiltration of monocytes, NK cell activation and T cell
CD4+ naive, as well as increased infiltrating of M0 and
Tregs were found in the tumor microenvironment, which
may contribute to the characteristic of local immune
suppression in the high-risk group (Figure 8). These
findings provide a novel insight into the relationship
between Ψ modification and immunosuppressive
microenvironment.

An association of the inflammatory molecules, CASP4 and
S100A11, with the immune cell infiltration (including M0,
monocytes, NK cell activation, T cell CD4+ naive and Tregs)
was identified in TME through WGCNA analysis. In addition,
their expression levels may be regulated by the five prognostic Ψ
synthase genes, especially TRUB1 (Figure 10, Supplementary
Figure S8, 9). CASP4 (Caspase-4) is the key molecule in the
noncanonical inflammasome pathway, which can result in
inflammatory cell death (pyroptosis) via cleavage of gasdermin

D in monocytes and macrophages, accompanied with release of
inflammatory cytokines (Schmid-Burgk et al., 2015). S100A11 is a
member of S100 protein family (S100s), which participates in a
variety of physiological and pathological processes, including
inflammation, cell proliferation, apoptosis and cancer
development (Zheng et al., 2021). S100A11 can induce
chemokine response and regulate monocyte recruitment in
vivo, but its release depends on activation of caspase
(Safronova et al., 2019). Whether CASP4 (Caspase-4) and
S100A11 act synergistically in gliomas remains unclear. Tumor
cells may promote the inflammatory status by releasing a wide
range of cytokines (Coussens and Werb, 2002; Sharma and
Kanneganti, 2021). Chronic inflammation at the local and/or
systemic level contributes to tumor pathobiology, progression,
metastasis and drug resistance by reprogramming tumor cells and
reorganizing the tumor immune microenvironment (Faria et al.,
2021). Up-regulation of CASP4 and S100A11 may contribute to
the inflammatory status in the tumor immune microenvironment
for the proliferation, differentiation and survival of tumor cells.

FIGURE 9 | Analysis of immune cell infiltration in different WHO grades (A,D) Radar chart depicting the infiltration levels of macrophages M0, monocytes, NK cell
activation, T cell CD4+ naive and Tregs between different WHO grades in the CGGA and TCGA datasets, respectively (B,E) Boxplot displaying the infiltration levels of
macrophages M0, monocytes, NK cell activation, T cell CD4+ naive and Tregs between LGG and GBM in the CGGA and TCGA datasets, respectively (C,F) Kaplan-
Meier overall survival curves of the infiltration levels of macrophages M0, monocytes, NK cell activation, T cell CD4+ naive and Tregs in the CGGA and TCGA
datasets, respectively. p values were calculated using wilcox test. *, p < 0.05; **, p < 0.01; ***, p < 0.001, ****, p < 0.0001.
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FIGURE 10 |WGCNA andModule Analysis (A) Dendrogram of the differentially expressed genes clustered with dissimilarity measure based on topological overlap
(B) Heatmap of the correlation between module eigengenes and clinical traits (C) Cytoscape analysis of the intersecting genes in the blue module (D) GSEA analysis
based on the expression of CASP4 in the CGGA dataset (E) GSEA analysis based on the expression of S100A11 in the CGGA dataset.
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However, whether Ψ synthase genes can directly regulate the
expression of CASP4 and S100A11, and whether the abnormal
expression of CASP4 and S100A11 will affect the abundance of
immune cell infiltration still requires experimental research.
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