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Abstract: The aim of this study is to identify potential biomarkers for early diagnosis of gynecologic
cancer in order to improve survival. Cervical cancer (CC) and endometrial cancer (EC) are the most
common malignant tumors of gynecologic cancer among women in the world. As the underlying
molecular mechanisms in both cervical and endometrial cancer remain unclear, a comprehensive and
systematic bioinformatics analysis is required. In our study, gene expression profiles of GSE9750,
GES7803, GES63514, GES17025, GES115810, and GES36389 downloaded from Gene Expression
Omnibus (GEO) were utilized to analyze differential gene expression between cancer and normal
tissues. A total of 78 differentially expressed genes (DEGs) common to CC and EC were identified
to perform the functional enrichment analyses, including gene ontology and pathway analysis.
KEGG pathway analysis of 78 DEGs indicated that three main types of pathway participate in the
mechanism of gynecologic cancer such as drug metabolism, signal transduction, and tumorigenesis
and development. Furthermore, 20 diagnostic signatures were confirmed using the least absolute
shrink and selection operator (LASSO) regression with 10-fold cross validation. Finally, we used
the GEPIA2 online tool to verify the expression of 20 genes selected by the LASSO regression
model. Among them, the expression of PAMR1 and SLC24A3 in tumor tissues was downregulated
significantly compared to the normal tissue, and found to be statistically significant in survival rates
between the CC and EC of patients (p < 0.05). The two genes have their function: (1.) PAMR1 is a
tumor suppressor gene, and many studies have proven that overexpression of the gene markedly
suppresses cell growth, especially in breast cancer and polycystic ovary syndrome; (2.) SLC24A3 is a
sodium–calcium regulator of cells, and high SLC24A3 levels are associated with poor prognosis. In
our study, the gene signatures can be used to predict CC and EC prognosis, which could provide
novel clinical evidence to serve as a potential biomarker for future diagnosis and treatment.

Keywords: cervical cancer; endometrial cancer; bioinformatics; LASSO regression; prognostic
biomarkers

1. Introduction

Gynecologic cancer is a type of malignant tumor that begins in the female reproductive
system. Of all the gynecologic cancers, cervical cancer (CC) and endometrial cancer
(EC) are the most common tumors of the female genital tract in the world, followed by
ovarian cancer [1]. In recent years, numerous studies have demonstrated that abnormally
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expressed tumor markers may be involved in cancer initiation and progression, such as
p16INKa/ki-67, E6/E7, PTEN, and ANXA2 [2–6]. Despite large efforts to develop novel
biomarkers, cervical and endometrial cancers continue to be a serious health problem
among women [7,8]. Patients with early stage (or locally advanced) CC and EC have
access to a standard treatment comprising a combination of surgery, radiotherapy, and
chemotherapy [9–11]. However, precise biomarkers and targeted therapy for CC and EC
remain limited [12–14].

With the development of gene chip technology, understanding cervical and endome-
trial cancers from the perspective of the genome and proposing more effective biomarker
genes provide potentially relevant information for clinical drug development [15]. Al-
though CC and EC are two completely different types of cancer with different courses,
symptoms, and treatments, it has been hypothesized that certain tumor-specific markers
and a shared molecular mechanism in both cancers may be common to their tumorigenesis
and development [16–18]. Therefore, a comprehensive analysis is required to improve
understanding of these two types of tumor.

One of the popular machine learning models is the LASSO regression, which is a high-
dimensional gene expression data analysis method that performs both feature selection
and classification [19,20]. In our study, we analyzed gene expression profiles of CC and EC
patients from the GEO public database in order to understand early molecular changes as
well as biological mechanisms. For the early diagnosis of patients, we established a LASSO
regression model to develop a gene signature for predicting gynecologic cancer. Analysis
of overall survival (OS) in the cohort of cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC) and uterine corpus endometrial carcinoma (UCEC) downloaded
from TCGA allowed us to identify potential biomarkers of gynecologic cancer. The goal of
our study was to identify early diagnostic molecules and improve the survival of patients.

2. Materials and Methods
2.1. Microarray Data Mining in Gene Expression Omnibus (GEO)

Raw microarray data of CC (GSE9750, GSE7803, GSE63514) and EC (GSE17025,
GSE115810, GSE36389) were downloaded from the GEO database (Table 1). In the six
datasets of our study, GSE9750, GSE7803, GSE115810, and GSE36389 were processed using
the GPL96 platform (Affymetrix Human Genome U133A Array, HG-U133A, https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL96, accessed on 3 July 2021), while GSE63514
and GSE17025 were based on GPL570 platform (Affymetrix Human Genome U133 Plus 2.0
Array, HG-U133_Plus_2, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL570,
accessed on 3 July 2021). The detailed information of datasets is as follows: GSE9750
included 33 cervical tumor and 24 normal tissue samples. GSE7803 covered 21 cervical
tumor and 10 normal tissue samples. GSE63514 included data from 28 cervical tumor and
24 normal samples. GSE17025 covered 91 endometrial tumor and 12 normal tissue samples.
GSE115810 comprised 24 endometrial tumor and 3 normal samples. GSE36389 consisted of
13 endometrial tumor and 7 normal samples.

Table 1. The detail of gene expression profiles of cervical cancer (CC) (GSE9750, GSE7803, GSE63514)
and endometrial cancer (EC) (GSE17025, GSE115810, GSE36389).

Datasets Tissues Tumor Normal Platform

GSE9750
cervix

33 24 GPL96
GSE7803 21 10 GPL96

GSE63514 28 24 GPL570

GSE17025
endometrium

91 12 GPL570
GSE115810 24 3 GPL96
GSE36389 13 7 GPL96

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL96
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL96
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL570
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2.2. Data Processing

A robust multi-array average (RMA) approach in the R affy package (Version 1.70) [21,22]
was performed for background correction and normalization. Then, the normalized cervical
and endometrial cancers gene expression data were merged and adjusted by batches by
using ComBat function from the R sva package (Version 3.40) [23], respectively. For each
given microarray platform, GEO provides the annotation details that contain the probe ID
and gene id/symbol. Using the annotation table, the probes were easily converted into
the corresponding gene symbols. For genes that were mapped by multiple probes, only
those with highest average value across all samples were kept. All log2 transformed gene
expression values were subjected to z-score standardization.

2.3. Differentially Gene Expression Analysis

The DEGs between tumor and normal tissue samples were screened using the R
package limma (Version 3.48) [24]. The p value was adjusted to control the false discovery
rate (FDR) based on the method of Benjamini and Hochberg. A false discovery rate
(FDR) < 0.05 and |log2 fold change (FC)| > 1 was set as the criteria. Volcano plot and
heatmap for DEGs were plotted by performing the R package ggplot2 (https://cran.r-
project.org/web/packages/ggplot2/index.html, Version 3.3.5, accessed on 3 July 2021)
and pheatmap (https://cran.r-project.org/web/packages/pheatmap/index.html, Version
1.0.12, accessed on 3 July 2021). The 78 common DEGs among the two cancers were
obtained for further analysis using a Venn diagram.

2.4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment
Analysis of DEGs

GO functional annotation and KEGG pathway (Release 98.0) analysis were conducted
and visualized by using the R package clusterProfler (Version 4.0.5) [25] to understand
biological meaning and key pathways associated with the DEGs of gynecologic cancers.
The GO functional enrichment analysis of DEGs was divided into three parts: biological
process (BP), cellular component (CC), and molecular function (MF). The significant GO
terms and KEGG pathways were selected with p < 0.05.

2.5. Feature Selection Using the LASSO Regression Model

LASSO is a regression analysis method that performs both gene selection and clas-
sification. To select candidate cancer-related gene combinations that were reliably associ-
ated with gynecologic cancers (cervix and endometrium), the R package glmnet (Version
4.1.2) [26] was used to fit a logistic LASSO regression model on the 78 DEGs. In our study,
10-fold cross-validation was performed for tuning parameter selection, and the partial
likelihood deviance met the minimum criteria. Using the ROCR package (Version 1.0.11) in
R, the area under the receiver operating characteristic (ROC) curve was calculated to detect
the accuracy of the predictive survival model.

2.6. Integration of Protein–Protein Interaction (PPI) Network

The potential relationship among these 20 feature genes was analyzed using Search
Tool for the Retrieval of Interacting Genes (STRING, https://string-db.org/, version 11.5,
accessed on 3 July 2021), which is a commonly used online tool designed to search for
known proteins and evaluate PPI information. The PPI network was then plotted.

2.7. Validation of Hub Genes Using Survival Analysis

Survival analysis of hub genes was achieved using the gene expression profiling
interactive analysis 2 (GEPIA2) online tool (http://gepia2.cancer-pku.cn/#index, accessed
on 3 July 2021), which is based on TCGA datasets. In this study, we utilized the GEPIA2
database to validate the expression of hub genes and explore the relationship between
expression value and survival time in 292 CESC patients and 172 UCEC patients. Survival
curves were plotted by the expression profiles from TCGA-CESC and -UCEC patients,

https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://string-db.org/
http://gepia2.cancer-pku.cn/#index
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which were divided into two groups based on the average expression value of each gene
(high vs. low). A p-value less than 0.05 was considered as statistically significant.

3. Results
3.1. Identification of the Common DEGs in Cervical and Endometrial Carcinoma

The gene expression profiles and corresponding clinical information for 210 gyneco-
logic cancers and 80 normal tissues were obtained from the GEO database. Using the R
package limma, 920 (572 upregulated and 348 downregulated) and 843 (213 upregulated
and 630 downregulated) DEGs were identified in cervical (Figure 1A) and endometrial
(Figure 1B) cancers, respectively. A total of 78 common DEGs among the two gynecologic
tumor types are shown in Figure 2, and the expression profiles of 78 DEGs in each dataset
was visualized by hierarchical clustering analysis. Sample clustering was also performed,
with red representing tumor samples and blue representing normal samples annotated at
the left of the plot (Figures 3 and 4). Detailed information of these up- and downregulated
genes is shown in Supplementary Tables S1 and S2.
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Figure 1. Volcano plot for the differentially expressed genes (DEGs) in two gynecologic tumor types: (A) The volcano
plot of 920 DEGs between cervical cancer and normal tissue, including the 572 upregulated genes (red color) and 348
downregulated genes (green color). (B) The volcano plot of 843 DEGs between endometrial cancer and normal tissue,
including the 213 upregulated genes (red color) and 630 downregulated genes (green color).
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Figure 4. Heatmap of the 78 DEGs between endometrial cancer and normal samples. Each row
represents a DEG and each column represents a sample. The color represents the raw Z-score ranging
from green (low expression) to red (high expression).

3.2. GO and KEGG Enrichment Analysis of the Common 78 DEGs

Gene enrichment analysis was used for the identification of 78 DEGs involved in
known pathways and functional association. As demonstrated in Figure 5A, the result
of GO functional enrichment analysis shows that DEGs are mostly enriched in nuclear
division, organelle fission (BP), spindle (CC), and tubulin binding (MF). The KEGG analysis
result reveals that most DEGS were enriched in platinum drug resistance and glutathione
metabolism (Figure 5B).
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3.3. Selection of Significant Genes in Gynecologic Tumor Types Using the LASSO Regression
Model

A total of 78 DEGs were selected between two groups to fit a LASSO regression
model. The next step was to find the most appropriate values for λ (=0.0095) using 10-fold
cross-validation (Figure 6A). Finally, 20 genes (SPP1, MTHFD2, SLC20A1, TRIP13, PLA2G7,
MKI67, ENO2, MICAL2, MMP9, GSTM5, GALNT2, STAG1, TSPAN31, ECHDC2, ATP10D,
PAMR1, SLC24A3, GULP1, ID4, and KLF4) with non-zero coefficients were identified
in cervical and endometrial cohorts (Figure 6B; Supplementary Table S3), and used for
survival analysis. The accuracy of the predictive survival model based on 20 selected genes
was confirmed by the area under curve (AUC = 0.99), as shown in Figure 6C. In addition,
the PPI network of the 20 feature genes is shown in Figure 6D.

3.4. Verification of Prognostic Value for 20 Significant Genes

To verify the prognostic value of the 20 significant genes identified by the LASSO
regression model, OS analysis was performed using TCGA-CESC and -UCEC datasets
using the GEPIA2 online tool. Among the 20 significant genes, three genes, PAMR1,
GALNT2, and SLC24A3, were found to be statistically significant in survival rates between
the two groups of patients (p < 0.05) (Figure 7; Supplementary Figure S1). Survival curves
showed that the higher expression of PAMR1 was associated with better prognosis of
patients, as was the lower expression of GALNT2 and SLC24A3.
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(A) A coefficient profile plot was generated against the log (lambda) sequence. (B) LASSO coefficients of 20 significant genes
in gynecologic cancers. The left blue vertical line represents the minimum error. (C) The receiver operating characteristic
(ROC) curve showed the accuracy of the predictive survival model by the area under curve (AUC) for GEO datasets
(GSE9750, GSE7803, GSE63514 GSE17025, GSE115810, and GSE36389). (D) The PPI network of the 20 feature genes.

In addition, we compared the mRNA expression of PAMR1, GALNT2, and SLC24A3
in TCGA-CESC and -UCEC types. The boxplot demonstrated that mRNA expression levels
of PAMR1 and SLC24A3 were significantly lower in tumor tissues than in normal samples
(p < 0.05) (Figure 8; Supplementary Figure S2). Finally, the results suggested that PAMR1
and SLC24A3 may act as prognostic biomarkers for gynecologic cancer in our study.
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and (B) GALNT2 and (C) SLC24A3 with low expression level were significantly associated with
better outcomes in patients with TCGA-CESC and -UCEC. CESC, cervical squamous cell carcinoma
and endocervical adenocarcinoma; UCEC, uterine corpus endometrial carcinoma.
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Figure 8. The expression levels of hub genes in TCGA-CESC and -UCEC types using GEPIA2 online tool. Boxplot shows
(A) PAMR1, (B) GALNT2, and (C) SLC24A3 expression in tumor (T, red box) and normal tissues (N, grey box), respectively.
The asterisk (*) indicates significant difference in comparison with normal samples (p < 0.05). CESC, cervical squamous cell
carcinoma and endocervical adenocarcinoma; UCEC, uterine corpus endometrial carcinoma. T, tumor; N, normal.

4. Discussion

Despite great efforts to study the molecular mechanisms of two types of gynecologic
cancer (CC and EC), the precise biomarkers and targeted therapy for patients with CC
and EC remain limited. To investigate potential biomarkers for better detection and
therapy, we integrated the gene expression profiles of GSE9750, GSE7803, GSE63514,
GSE17025, GSE115810, and GSE36389, which contained 210 tumor samples from cervix
and endometrium and 80 normal tissues.

In this study, 78 DEGs were identified with the criteria of FDR < 0.05 and |log2
FC| > 1 in both cancer types. As a result of the functional annotation obtained by the
R package clusterProfiler, the GO enrichment analysis revealed that the 78 DEGs were
mainly associated with “nuclear division”, “condensed chromosome”, and “tubulin bind-
ing”. The KEGG pathway analysis showed “platinum drug resistance” and “glutathione
metabolism” pathways were significantly enriched, which suggests that these genes may
be involved in the action process or metabolic reaction of drugs. Notably, multiple different
cancer-association pathways, including “melanoma”, “bladder cancer”, and “non-small
cell lung cancer”, were also identified. This indicates gynecologic cancer types may exhibit
similar molecular mechanisms with tumor types of other systems. With the LASSO logistic
regression model, 20 hub genes (SPP1, MTHFD2, SLC20A1, TRIP13, PLA2G7, MKI67,
ENO2, MICAL2, MMP9, GSTM5, GALNT2, STAG1, TSPAN31, ECHDC2, ATP10D, PAMR1,
SLC24A3, GULP1, ID4, and KLF4) were identified and could effectively distinguish be-
tween gynecologic cancer and normal tissues. Similar to previous studies, SPP1 [27,28],
MTHFD2 [29,30], TRIP13 [31,32], MKI67 [33,34], MMP9 [35,36], and KLF4 [37,38] were
some of the most clinically valuable tumor markers, especially in CC and EC.

Moreover, using GEPIA2, the expression of PAMR1 and SLC24A3 in tumor tissues
was downregulated significantly compared with the normal tissue and was related to
the OS of patients with gynecologic cancer. The results demonstrated that PAMR1 and
SLC24A3 may serve as potential prognostic biomarkers in gynecologic cancer.

Peptidase domain containing associated with muscle regeneration 1 (PAMR1) is a
tumor suppressor gene and expressed in various tissues such as skeletal muscle [39,40],
brain [40], and mammary gland [39,41]. Many studies have proven that overexpression
of PAMR1 markedly suppresses cell growth, especially in breast cancer [39,41], polycystic
ovary syndrome [42], EC [43], and CC [40]. Consistent with our observation, the suppres-
sion of PAMR1 can lead to poor prognosis and an increased risk of death.

Solute carrier family 24 member 3 (SLC24A3), also known as NCKX3, is a sodium–
calcium regulator of cells [44,45]. Its expression is most abundant within the human
endometrium at the mRNA and protein levels, and plays a role in the reproductive function
of the endometrium [46,47]. In accordance with our results, high SLC24A3 levels are
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associated with poor prognosis. Thus, angiogenesis has an important impact on the
pathogenesis of gynecologic cancer.

5. Conclusions

In our research, 78 DEGs were identified in gynecologic cancer. The LASSO regression
model and survival analysis further suggested that two hub genes (PAMR1 and SLC24A3)
could serve as potential biomarkers for the treatment or diagnosis of cervical and endome-
trial cancers. More work is need to clarify the pathogenesis of gynecologic cancer in which
these genes are involved and to validate their value as prognostic biomarkers both in vitro
and in vivo.

Furthermore, limitations of our study include the lack of analysis of the clinical
characteristics of gynecologic cancer, such as grade, stage, and lymph node metastasis. In
future investigations, we will further explore hub genes and their potential function based
on detailed clinical information.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jpm11111177/s1, Figure S1: Survival analyses of 17 genes were performed using gene
expression profiling interactive analysis 2 (GEPIA2) online tool. (A) ATP10D (B) ECHDC2 (C) ENO2
(D) GSTM5 (E) GULP1 (F) ID4 (G) KLF4 (H) MICAL2 (I) MKI67 (J) MMP9 (K) MTHFD2 (L) PLA2G7
(M) SLC20A1 (N) SPP1 (O) STAG1 (P) TRIP13 (Q) TSPAN31, Figure S2: The expression of 17 genes in
TCGA-CESC and -UCEC types were performed using gene expression profiling interactive analysis
2 (GEPIA2) online tool. (A) ATP10D (B) ECHDC2 (C) ENO2 (D) GSTM5 (E) GULP1 (F) ID4 (G) KLF4
(H) MICAL2 (I) MKI67 (J) MMP9 (K) MTHFD2 (L) PLA2G7 (M) SLC20A1 (N) SPP1 (O) STAG1 (P)
TRIP13 (Q) TSPAN31. The asterisk (*) indicates significant difference in comparison with normal
samples (p < 0.05), Table S1: The DEGs between cervical cancers and normal tissues were identified
by Limma, Table S2: The DEGs between endometrial cancers and normal tissues were identified by
Limma, Table S3: Lasso regression coefficients values for 78 common genes.
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