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Abstract

Stationary complex networks have been extensively studied in the last ten years. However, many natural systems are known
to be continuously evolving at the local (‘‘microscopic’’) level. Understanding the response to targeted attacks of an
evolving network may shed light on both how to design robust systems and finding effective attack strategies. In this paper
we study empirically the response to targeted attacks of the scientific collaboration networks. First we show that scientific
collaboration network is a complex system which evolves intensively at the local level – fewer than 20% of scientific
collaborations last more than one year. Then, we investigate the impact of the sudden death of eminent scientists on the
evolution of the collaboration networks of their former collaborators. We observe in particular that the sudden death, which
is equivalent to the removal of the center of the egocentric network of the eminent scientist, does not affect the topological
evolution of the residual network. Nonetheless, removal of the eminent hub node is exactly the strategy one would adopt
for an effective targeted attack on a stationary network. Hence, we use this evolving collaboration network as an
experimental model for attack on an evolving complex network. We find that such attacks are ineffectual, and infer that the
scientific collaboration network is the trace of knowledge propagation on a larger underlying social network. The
redundancy of the underlying structure in fact acts as a protection mechanism against such network attacks.
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Introduction

Many natural and man-made complex systems such as

biological networks, the WWW, airport network and stock markets

network, evolve intensively at the local level [1–3]. In fact, local

level evolution is both characteristic and typical of human

dynamics, where people constantly change their affinity, cooper-

ation strategies and communication patterns [4–6]. There are now

several notable models of network evolution including the

preferential attachment model [7] and the adaptive network

models in which network topology evolves as a feedback to the

state change of nodes [8]. However in the real world, both network

nodes and edges may appear and disappear through a variety of

other mechanisms. For example, none of the above mentioned

models consider the life span of connections among nodes, which

may naturally have a broad distribution uncorrelated with their

topological properties.

On the other hand, it has been widely observed that many

stationary networks are robust to random failure but vulnerable to

targeted attacks [9,10]. For example, the analysis of the North

America blackout in 2003 shows that disturbances affecting key

transmission substations greatly reduce the grid’s ability to

function [11]. Immunization strategies based on the network

vulnerability have also been proposed to stop epidemic spreading

on complex networks [12]. The scientific collaboration network,

which bears the same statistical properties as many stationary

complex networks [13], has also been shown, in numerical

simulations, to be vulnerable to targeted removal of important

nodes [9]. However, exactly how the intensively evolving scientific

collaboration network responds to such attacks in the real world

has not been carefully studied.

In this paper we analyze the collaboration network of US-based

life scientists to address two main topics. First, we examine the

topological evolution of the network and show that the scientific

collaboration network is intensively evolving. When compared to

recently proposed theoretical models of such networks [14–18] we

find that the data is consistent with changes in link configuration

being driven by an autonomous process, rather than in response to

the change of state of adjacent nodes. Second, we analyze the

impact of unanticipated death of high profile scientists to their

collaborators’ collaboration network building. We use sudden

death within the network as an observed experimental proxy for

targeted attack on an evolving complex network. We find the

network to be very robust against the removal of even these hub

nodes. Furthermore, we conjecture that the scientific collaboration

network should be considered the trace of knowledge spreading on

a larger and denser mapping of hidden social ties among scientists.

That is, not only is there a network of active collaboration, but

there is a secondary larger hidden network of latent potential

collaborations. When nodes in the active collaboration network

are removed, this latent network helps to replace that structure in a

robust manner.
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Results

Topological evolution on the networks
Collaborations between scientists do not last forever. In the

scientific collaboration network – where nodes are scientists and

links are collaborations – the network can therefore have

drastically different constitution when sampled in different time

intervals. In this section we study the topological evolution on the

collaboration network first by examining the life span of scientific

collaborations. Five thousand scientists are sampled from the

AAMC Faculty Roster according to the criteria that their

academic life spans are longer than 10 years and each of them

has more than 10 collaborators. By using this criterion, we actually

assure that the life span of collaboration will not be restricted by

the observation period. Then by retrieving their publications from

PubMed, the life span and productivity (in term of numbers of

journal articles published) of each pair of collaboration can be

studied.

Figs. 1A and B show the distribution of life span s and the

distribution of collaboration productivity r of all pairs of scientific

collaborations. The extremely skewed distributions indicate that

most of the scientific collaborations last for only one year and have

only one research article published. Fig. 1C shows the correlation

between scientific collaboration life span and output. There is no

clear evidence that collaborations with long life span will have

higher productivity than those with short life span. Notice from

Fig. 1A that fewer than 20% of scientific collaboration last more

than one year, indicating that long term collaborations are actually

fairly infrequent. We define the ‘‘long term’’ collaborations of a

researcher as those last longer than half of the scientist’s academic

life span. As shown in Fig. 2A, the probability P(l ) of a scientist

having l21 long term collaborators roughly decays with a power

law, where most of the scientists have no long term collaborators.

Fig. 2B shows that the number of long term collaborators to total

number of collaborators ratio l=d stays stationary for all degrees,

which means that no matter how big the collaboration network a

scientist has, approximately among every 50 of his/her collabo-

rators, only one will turn out to be a long term collaboration.

Hence, the dominance of short life span collaborations character-

izes the scientific collaboration network as an intensively evolving

network. The lack of competitive advantage of long term

collaborations to short term ones in both productivity and team

building actually implies that when selecting collaborators, short

term collaborations are intrinsically preferred over long term long

term co-operation.

To fully characterize the dynamics of the topological network

evolution, egocentric scientific collaboration networks are con-

structed based on a sliding window. The egocentric network of a

scientist contains the scientist and his/her first tier collaborators,

i.e. the scientists co-authored papers with him/her, and/or the

second tier collaborators, i.e. the co-authors of the first tier

collaborators excluding the center scientist him/her-self, within a

certain period of time. Here we consider the egocentric networks

in two different scales:

1. T-1 network: (i) the center node (the scientist) and (ii) its first

tier neighbors;

2. T-2 network: (i) the center node (the scientist), (ii) its first tier

neighbors and (iii) second tier neighbors.

Then we define the academic age of a scientist as the number of

years since his/her first academic publication. Starting from age 0,

for every age y of a scientist, the egocentric network is constructed

using the co-authorship of research articles published from age y to

Figure 1. Statistics of scientific collaboration life span and
productivity. (A) The probability distribution p(s) of collaboration life
span s. Most collaborations lasts for only one year. The dashed line is a
power law with exponent 22.3. (B) The probability distribution p(r) of
number of journal articles r published by each collaboration. The
dashed line is a power law with exponent 22.4. (C) Average yearly
productivity for collaboration of different life spans. The average
publications produced by each pair in a collaboration stays a bit lower
than 1 per year, whereas for collaborations with longer life spans, the
productivity varies.
doi:10.1371/journal.pone.0026271.g001
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y+4 (both inclusive, hence forming a window of 5 years). Figs. 3A

and B illustrate the egocentric scientific collaboration networks of

the same scientist (the red dot) in two consecutive non-overlapping

time windows.

Once the egocentric networks of all windows are formed, we

measure the scale and connectivity of the networks with four

parameters: numbers of nodes N, number of edges M, clustering

coefficient c and network efficiency e. The clustering coefficient c is

calculated as follows:

c~
3 | number of triangles in the network

number of connected triples of nodes
: ð1Þ

The clustering coefficient measures the conditional probability

that two scientists may collaborate if they both collaborate with

same (third-party) scientist. The network efficiency e is obtained by:

e~
1

N(N{1)

X

i=j

1

dij

, ð2Þ

where dij is the shortest path distance between node i and j. The

network efficiency of a fully connected network is 1, whereas for a

network of isolated nodes, its efficiency will be 0. Fig. 4 shows the

measure of sizes and connectivity of the egocentric collaboration

networks of two scientists in the first 20 windows of their academic

careers.

Previous research of the US airport network [2] indicates that

large complex system can display stationary ‘‘macroscopic’’

structure properties but retain intensive ‘‘microscopic’’ evolution

over time. Despite of the ubiquitous global structure of scientific

collaboration networks in different fields [13,14,18], our analysis

shows that same to the airport network, the collaboration

network is also intensively evolving at the local scale, where

collaborations between scientists are rather temporal than

stationary. Furthermore, Fig. 4 also shows that the scientists

may have their egocentric collaboration networks evolving in

entirely different tracks. The different patterns of evolution can

be caused by the fact that in a certain period of time the scientist

switches his/her work emphasis to (for example) clinical duties or

that at some time the scientist is granted a large amount of

money and is able to make more collaborations with peer

researchers. Hence we argue that when elaborating a model of

the evolving scientific collaboration network and other social

networks, except for considering the growing mechanism based

on existing topology [14,18] and modifying connections as a

feedback of the dynamical process on the network [8], future

study should also take the ability of nodes attracting connections

and the life spans of links as intrinsic properties embedded in the

systems.

Targeted attacks on the networks
Recent studies have shown that, following the death of an

eminent life scientist (‘‘superstar’’), collaborators experience a 5%

to 8% decline in their publication rates [19]. Yet, apart from

numerical simulations [9], there are few reports regarding the

structural response to real life ‘‘attacks’’ on the scientific

collaboration networks (or in any other application domain). In

this section we evaluate the impact of sudden deaths of superstars

to their former collaborators’ scientific collaboration networks in

order to capture the robustness and resilience of these naturally

evolving complex systems.

Twenty one superstars who died unexpectedly are selected as

the subject of our study. We define the ‘‘former collaborators’’ of a

dead superstar as the superstar’s direct collaborators in five years

preceding death. To study the impact of the superstars’ sudden

death, we compare the collaboration networks of the former

collaborators in the last 5 years before the superstar’s death and in

the first 5 years afterwards. The T-1 and T-2 egocentric networks

of the dead superstars in the last window characterize, respectively,

the collaboration among the former collaborators and their

collaboration networks right before the death of the superstar.

Then, in the first 5-year window after the superstar’s death, two

new networks T9-1 and T9-2 are constructed analogously to T-1

and T-2 networks, as shown in Fig. 3C, but with the publications

of the former collaborators in this certain period. The before and

after-death networks T-1 and T9-1 have almost identical nodes,

while for the T-2 and T9-2 networks, the network components can

be quite different.

Figure 2. Statistics of long term scientific collaborations. (A) The
probability distribution p(l) of number of long term collaborations l{1
a scientist can have. The average number of long term collaborations
the 5000 selected scientists have is 0.73. Most of the scientists do not
have long term collaborations with peer researchers. The dashed line is
a power law with exponent 22.4. (B) The correlation between the a
scientist’s number of collaborators d and probability of having long
term collaborators (denoted by the proportion of long term ones in all
the collaborators l=d). Each point on the graph shows the average l=d
ratio of scientists with d+10 collaborators.
doi:10.1371/journal.pone.0026271.g002
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Having constructed the former collaborators’ collaboration

networks in two consecutive windows, we measure the changes

(DN, DM, Dc, and De) of the number of nodes N, number of edges

M, clustering coefficient c (Eqn. 1) and network efficiency e (Eqn.

2). Table 1 presents the average values of the parameters of the

networks before and after the sudden deaths of the superstars as

well as the average change of parameters as a percentage. The

results show that in comparison with the T-1 networks, the

number of nodes in the T9-1 networks only decreases by about two

while the number of edges decreases sharply and along with the

disappearance of edges, the clustering coefficient and network

efficiency have both dropped significantly. Comparing to the T-2

Figure 3. Illustration of egocentric scientific collaboration network evolution. (A) and (B) are the T-2 egocentric scientific collaboration
networks of the same eminent scientist in two consecutive non-overlapping time windows (window size = 5 years). The red node is the center of the
network, i.e. the superstar. The blue and gray nodes are the first and second tier neighbors of the superstar in that particular time window. The sizes
of the nodes and thickness of the edges in the figure are proportional to the numbers of journal articles published by the scientists and the numbers
of journal articles co-authored by the pairs of collaborations. (C) is the T’-2 network after the superstar’s death. The blue nodes are the dead
superstar’s first tier neighbors in the last window before his death (the former collaborators). The gray nodes are the neighbors of the former
collaborators in the first window after the superstar’s death.
doi:10.1371/journal.pone.0026271.g003

Figure 4. Measures of parameters of two egocentric scientific collaboration networks in their first 20 windows. Figures labeled A–B
and C–D represent two scientists respectively. A and C: Numbers of nodes N, number of edges M, clustering coefficient c and network efficiency e in
T-1 networks. B and D: Numbers of nodes N, number of edges M, clustering coefficient c and network efficiency e in T-2 networks in each window.
The two scientists have their collaboration networks evolve in two different patterns. The egocentric networks of the first scientist (A and B) have a
boost in size during window 10 to 13, while the egocentric networks of the second scientist (C and D) have two peaks of their sizes around window 7
and 16.
doi:10.1371/journal.pone.0026271.g004
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networks, in the T9-2 networks the number of nodes and number

of edges have increased by certain amount while the clustering

coefficient varies by a small proportion and the network efficiency

of the networks decreases by a half.

This result suggests that the sudden deaths of the superstars

have stimulated their former collaborators to rearrange their

networks in an efficient manner. To determine whether the impact

of sudden death is significantly different from the natural network

evolution (i.e. without the sudden death of the superstar), two non-

parametric statistical tests are conducted.

Test 1: 77 scientists are selected from a group of eminent life

scientists as the control group. Having a superstar suddenly died in

age y, we first find all the scientists in the control group who were

still active in research in age y+5. Then we measure the properties

of T-1 and T-2 networks of control groups scientists in the window

of age y24 to y and the properties of T’-1 and T’-2 networks in the

window of age y+1 to y+5. For each change of the parameters, say

h, of each suddenly died scientist, we want to know whether it falls

into the range of all the h’s of the control group. Of the active

superstars, let U~max hð Þ and V~min hð Þ. For each of the dead

scientists i, if U§hi§V , let di~1 (else di~0). Then the

probability of any dead superstars’ h fall inside U and V is:

P U§h§Vð Þ~
X

di

21
:

The results of the measured parameters are summarized in

Table 2. Almost all the parameter changes of individual egocentric

networks after the sudden death of superstars fall in range of the

parameter changes due to normal evolution of the collaboration

networks.

In Test 2 the Wilcoxon’s two-sided rank sum test is used. The

observed data is the parameter changes h of all the 21 sudden

deaths; the control group is the h of 42 normal superstars, who are

also in the control group in Test 1 and are removed from their

egocentric networks at ages following the same academic ‘‘age-of-

death’’ distribution as the observed data. For each h, we test the

observed data and control group for the null hypothesis: observed

and control group data are independent samples from identical

continuous distributions with equal medians, against the alterna-

tive that they do not have equal medians. The p-values for each

parameter is presented in Table 2. Let significance level be 95%,

then all the changes of network parameters of dead superstars are

actually not different (i.e. p-values are all larger than 0.05) from the

change of network evolutions of active scientists.

Our statistical tests show that there is no evidence that the

sudden death of a superstar may have a significant impact on the

evolution of its collaborators’ scientific collaboration networks.

Previous research shows that improving the robustness of diverse

networks often involves increasing the redundancy of the network

at critical positions [20]. Our findings of the evolving scientific

collaboration network reveal, on the other hand, that the network

with intensive evolution also show great resilience even under

attacks on important nodes, which could severely disrupt the

functionality of stationary networks.

Discussion

Of course, the premature deaths of eminent scientists may be

considered a great loss to their particular discipline. Nonetheless, it

is known that after the (unanticipated) deaths of some eminent

scientists, the scientific productivity of collaborators suffer from a

5% – 8% drop. In this paper we have examined, from another

aspect, the impact of the sudden deaths of these superstars to the

structure evolution of their former collaborators’ collaboration

networks. We have firstly shown that the scientific collaboration

network is a complex system which intensively evolves at the local

level. Most collaborations among scientists have short life spans and

the relative incidence of long term collaboration is very low. We

have compared the behavior of network evolution between

collaborators of suddenly deceased eminent scientists and active

ones. Surprisingly, statistics show that the evolution of collaborators’

networks are not affected by the sudden deaths of the superstars.

In particular, we have observed that the egocentric scientific

collaboration networks evolve in such a manner that: direct

collaborators of a superstar in one period of time tends not to

collaborate with each other in the next, whereas the collaborators’

own egocentric networks grow bigger. This evolution pattern is

actually an analogy to the diffusion process on an arbitrary form of

network, where nodes can generate a stimulus and spread it out to

their first then second tier neighbors and so on. Hence we

conjecture that, rather than mapping the social networks of

scientists, the scientific collaboration network is actually the

‘‘trace’’ of information propagation on a larger and denser

invisible social network than the trace itself.

Table 1. Parameter changes of the former collaborators’
networks after superstars’ deaths.

N M c e

T-1 (before death) 12.57 28.24 0.48 0.75

T’-1 (after death) 10.33 4.57 0.08 0.11

Change in % 218% 284% 283% 286%

T-2 (before death) 81.57 203.90 0.48 0.43

T’-2 (after death) 105.29 306.81 0.51 0.21

Change in % +29% +50% +7% 250%

Average values of network parameters (i.e. number of nodes N, number of
edges M, clustering coefficient c and network efficiency e) and the changes of
these parameters in the collaboration networks of superstars’ former
collaborators. Assuming a superstar died in year y, T21 and T22 networks are
his egocentric networks containing only the first tier neighbors and both the
first and second tier neighbors from year y24 to y. T

0
{1 and T

0
{2 networks

are the former collaborators’ collaboration networks of themselves and with
their first tier collaborators from year y+1 to y+5. After the superstars’ death, the
former collaborators tend to disconnect with each other and find other
collaborations elsewhere.
doi:10.1371/journal.pone.0026271.t001

Table 2. Results of Test 1 and Test 2.

Change
between DN DM Dc De

Test 1 (P) T’-1 and T-1 21/21 20/21 21/21 21/21

T’-2 and T-2 21/21 20/21 20/21 21/21

Test 2 (p-value) T’-1 and T-1 0.52 0.45 0.68 0.36

T’-2 and T-2 0.27 0.24 0.22 0.53

The test results of Test 1 (P) and Test 2 (p-value) for the changes of numbers of
nodes DN, number of edges DM, clustering coefficient Dc and network
efficiency De in T

0
{1 and T

0
{2 networks comparing to T21 and T22

networks. The large values of P’s (close to 1) and p2value’s (larger than 0.05)
indicate that the deaths of superstars did not have significant impact on the
way of evolving of their collaborators.
doi:10.1371/journal.pone.0026271.t002
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Actually the trace of information propagating and disease

spreading in human society share the same evolution mechanism

with scientific collaboration network and that the redundancy of

the underlying social structure in fact acts as a protection

mechanism when these networks are under attack. From this

perspective, future study of effective network attacks (such as

immunization strategies) should consider the underlying rapid

evolving social structure. Moreover, the designing of robust

information transmission systems could also gain from the robust

system formed by human social and collaborative endeavors. For

example in the Internet, routing strategies with constantly

changing paths between nodes might give extra robustness to

the system even under targeted attacks.

Materials and Methods

In this paper the collaborations of three groups of US based life

scientists are studied. The first group are the scientists listed in the

Faculty Roster of the Association of American Medical Colleges

until the end of 2010. The second group contains 77 eminent life

scientists (‘‘superstars’’), including (i) current members of National

Academy of Sciences major in life science; (ii) emeritus members of

National Academy of Sciences major in life science; (iii) top 500

highly cited life scientists retrieved from ISI Web of Knowledge

until the end of 2010. Moreover all of the 77 scientists had been

active in their academic life for not less than 10 years and had

collaborated with not less than 20 other scientists in the Faculty

Roster. The third group of scientists are 21 life scientists who died

unexpectedly and prematurely in the early stage of their scientific

career and had comparable academic achievements with the

previous group of superstars at the time of their death [19]. These

21 scientists had also been active in their academic life for not less

than 10 years and had collaborated with not less than 20 other

scientists in the Faculty Roster.

Scientists are connected only when they co-author a journal

article. The publication information are retrieved from online

database PubMED, which is provided by the National Library of

Medicine and stores intact biomedical research literature. The

authors’ names in PubMED are stored in the form of name

identifier which takes the initials of the first names and the whole

last name, i.e. Xiao Fan Liu is stored as XF Liu. However in the

Faculty Roster which stores the full names of all the faculties, some

of the names may have the same identifiers. For example the

identifiers of John Doe and Jane Doe are all J Doe. Hence from

the information provided by PubMED we cannot determine

whether a paper published by J Doe is actually written by John

Doe or Jane Doe. In our work, different names with the same

identifiers are eliminated from the Faculty Roster, thereby

reducing the size of the Faculty Roster to 112,753.

The superstars are not only excellent in their academic

achievements but also important in terms of network measure in

the network of scientists. Constructing a scientific collaboration

network covering all the publications the scientists have in their life

time, Fig. 5 shows the degree distribution of the three groups of

scientists. The degree distribution of scientists in the Faculty

Roster follows an exponential distribution and has an average

degree of 31.83; the average degree of the 77 eminent life scientists

is 56.56, which is almost twice as much as that of all the scientists

in the Roster; and the average degree of the 21 scientists who died

suddenly is 35.29. Note that the 21 scientists died in their early

ages and had obtained comparable academic achievements with

the 77 eminent ones at the time of death, we can assume that their

collaboration network would also have continued to grow to

comparable sizes as the ones alive.
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5. Grujić J, Fosco C, Araujo L, Cuesta J, Sanchez A, et al. (2010) Social
experiments in the mesoscale: Humans playing a spatial prisoner’s dilemma.

PloS one 5: e13749.

6. Palla G, Barabási AL, Vicsek T (2007) Quantifying social group evolution.

Nature 446: 664–667.

7. Albert R, Barabási AL (2002) Statistical mechanics of complex networks.

Reviews of Modern Physics 74: 47–97.

8. Gross T, Blasius B (2008) Adaptive coevolutionary networks: a review. Journal of
the Royal Society Interface 5: 259.

9. Holme P, Kim BJ, Yoon CN, Han SK (2002) Attack vulnerability of complex

networks. Physical Review E 65: 056109.

10. Albert R, Jeong H, Barabási A (2000) Error and attack tolerance of complex
networks. Nature 406: 378–382.

11. Albert R, Albert I, Nakarado G (2004) Structural vulnerability of the north

american power grid. Physical Review E 69: 25103.

12. Cohen R, Havlin S, Ben-Avraham D (2003) Efficient immunization strategies for
computer networks and populations. Physical Review Letters 91: 247901.

13. Newman MEJ (2001) The structure of scientific collaboration networks.

Proceedings of the National Academy of Sciences of the United States of
America 98: 404–409.

14. Jin E, Girvan M, Newman M (2001) Structure of growing social networks.

Physical Review E 64: 046132.

15. Holme P, Kim BJ (2002) Growing scale-free networks with tunable clustering.

Physical Review E 65: 026107.

 

 

Figure 5. Degree distributions of three groups of scientists. The
degree distributions of 7555 samples from the Faculty Roster, 77
eminent life scientists and 21 suddenly died eminent life scientists are
shown in the figure. The average degree of the three groups are 31.83,
56.56 and 35.29.
doi:10.1371/journal.pone.0026271.g005

Resilience of the Scientific Collaboration Network

PLoS ONE | www.plosone.org 6 October 2011 | Volume 6 | Issue 10 | e26271
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