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A B S T R A C T   

The diagnosis of cancer is typically based on histopathological sections or biopsies on glass slides. Artificial 
intelligence (AI) approaches have greatly enhanced our ability to extract quantitative information from digital 
histopathology images as a rapid growth in oncology data. Gynecological cancers are major diseases affecting 
women’s health worldwide. They are characterized by high mortality and poor prognosis, underscoring the 
critical importance of early detection, treatment, and identification of prognostic factors. This review highlights 
the various clinical applications of AI in gynecological cancers using digitized histopathology slides. Particularly, 
deep learning models have shown promise in accurately diagnosing, classifying histopathological subtypes, and 
predicting treatment response and prognosis. Furthermore, the integration with transcriptomics, proteomics, and 
other multi-omics techniques can provide valuable insights into the molecular features of diseases. Despite the 
considerable potential of AI, substantial challenges remain. Further improvements in data acquisition and model 
optimization are required, and the exploration of broader clinical applications, such as the biomarker discovery, 
need to be explored.   

1. Introduction 

Gynecological cancers (GCs), primarily comprising ovarian cancer 
(OC), endometrial cancer (EC, also known as uterine cancer), and cer
vical cancer (CC), present a significant global public health concern with 
profound implications for women’s health and quality of life, leading to 
substantial disease burden. The high mortality rate and poor prognosis 
associated with these cancers have imposed significant pressure for 
effective prevention and management strategies [1]. According to the 
2020 global cancer statistics, the new cases of OC, CC and EC were 313, 

959, 604,127, and 417,367, the new deaths were 207,252, 341,831, and 
97,370, respectively [2]. The high mortality rate of OC is related to 
late-stage diagnoses and a high rate of recurrence [3–5], with 5-year 
survival rates < 50% in most countries [6]. Premenopausal women ac
count for 14% of EC cases, and 5% of them were younger than 40 years 
[7]. The standard treatment modalities for GCs entail surgical cytor
eduction and systemic chemotherapy; nevertheless, a large proportion 
of patients experiences disease recurrence after completing chemo
therapy [5]. Despite advancements in medical imaging techniques 
enhancing cancer detection rates, histopathological evaluation remains 
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the gold standard for accurate cancer diagnosis and subsequent man
agement. However, the escalating global incidence of GCs poses a 
growing challenge due to the expanding volume of pathological data 
and the shortage of pathologists [8]. 

Driven by high-dimensionality datasets, advances in computing 
hardware, and the utilization of deep learning (DL) models, the 
oncology is increasingly benefiting from artificial intelligence (AI) [9, 
10]. Various clinical applications of AI in oncology range from cancer 
detection [11] and classification [12], to predicting patient responses to 
therapy [13], lymph node metastasis [14,15], and prognosis [16,17]. 
The cancer types cover breast cancer [11,18], colorectal cancer [12,16], 
gastric cancer [17], lung cancer [19,20], prostate cancer [21], and 
lymphoma [22]. As the volume of healthcare data in cancer manage
ment continues to grow, the integration of AI holds promises for 
comprehensive utilization throughout the entire spectrum of cancer 
prevention and treatment, ultimately guiding clinical decision-making 
processes [10]. 

This review will describe the basic concepts and principles of digital 
pathology and AI in histopathology images analysis. Then, we will 
present the clinical applications achieved by AI in the digital pathology 
of GCs. Finally, the challenges of applying AI to the clinic will also be 
discussed. 

2. Digital pathology 

Histopathology is the examination and analysis of glass slides under 
a microscope, and it serves as the cornerstone of cancer diagnosis. 
Manual annotation of histological slides by pathologists is time- 
consuming, subjective, and susceptible to intra- and inter-observer 
variability [23,24]. The demand for diagnostic accuracy in cancer his
topathology is increasing because accurate biomarker evaluation is 
required for personalized cancer therapy [25]. Digital pathology, orig
inating in the 1960 s, is the process of digitizing histopathology slides 
into whole-slide images (WSIs) that can be reviewed by pathologists on 
computer monitor [26,27]. Digital slides are easier to preserve, share 
and annotate, and facilitate remote diagnosis or educational purposes 
[23]. The automation and efficiency afforded by digital pathology can 
enhance productivity and cost-efficiency [26], with its performance 
having demonstrated superiority over conventional microscopy [28,29]. 
Recently, the Food and Drug Administration (FDA) has approved the use 
of digital pathology for primary diagnosis [30]. Nevertheless, the 
abundance and intricate information among different cell types, along 
with the spatial context provided by digital pathology, has underscored 
the necessity for precise analysis of large datasets [31–33]. Thus, 
implementing robust and reproducible AI-based methods might poten
tially resolve the challenges faced by oncologists and pathologists. 

3. AI in digital pathology 

AI, which originated in the 1950 s, refers to a broad field of computer 
science that involves utilizes machine-based techniques to model the 
human decision-making process and generate predictions [34]. Machine 

learning (ML) refers to computer programs that process data for intel
ligent analysis, serving as a fundamental research method in the field of 
AI [35]. The main steps of ML involve annotation, feature extraction, 
and model prediction, empowering machines to automatically train and 
optimize models through statistical methods [25]. Supervised, unsu
pervised, and reinforcement learning represent the key learning types in 
ML, addressing tasks such as classification, regression, clustering and 
dimensionality reduction [23]. Weakly supervised learning represents 
an intermediate learning paradigm that lies between supervised and 
unsupervised learning. Common ML algorithms encompass linear or 
logistic regression, decision tree-based methods, and support vector 
machine (SVM) [23]. DL is a subset of ML which based on neural 
network structures, comprising interconnected input, hidden, and 
output layers that automatically extracts data features, overcomes the 
limitations and challenges of handcrafted features in ML [35]. Con
volutional neural networks (CNNs) have gained widespread deployment 
in pathology image analysis since 2012 when AlexNet secured the first 
place in the ImageNet Large Scale Visual Recognition Challenge [35]. 
Subsequently, other deep CNN models have been developed and applied 
in medical domains. Fig. 1 provides a succinct summary of important 
historical events in AI and digital pathology. 

4. AI in digital pathology for GCs 

The application of AI in GCs predominantly commenced after 2017, 
with the classification of histopathological subtype accounting for the 
largest proportion (Table 1). DL methods are the most commonly used 
AI algorithms (Fig. 2), with CNNs being the most extensively employed 
model (Table 2). The model’s performance, as assessed by the area 
under the curve (AUC), ranges from 0.71 to 0.99 across all tumor types 
(Table 3). 

4.1. Classification of histopathological subtype 

The treatment strategies and clinical prognosis for distinct histo
pathological types of GCs exhibit variability. ML and DL have been 
tested as methods for the classification of GCs subtypes. 

4.1.1. Ovarian cancer 
In 2017, BenTaieb et al.[36] utilized weakly-supervised ML ap

proaches based on SVM for the classification of OC subtypes. The model 
achieved an average multi-class classification accuracy of 90%, obtain
ing substantial agreement with clinicians (Kappa=0.89). In discerning 
between the two epithelial OC types, ML models achieved 91–95% ac
curacy [37]. Meanwhile, in the cell-level classification of both tumor 
and stroma cells, the models demonstrated accuracy exceeding 90%. Wu 
et al. [38] employed deep CNNs (DCNN) based on AlexNet for OC 
subtype classification, achieving an accuracy of 78.20% on augmented 
data. In Farahani’s investigation, DCNNs achieved a diagnostic 
concordance of 81.38% in the training set and 80.97% in the external set 
for classifying OC subtypes [39]. 

Fig. 1. A timeline of important historical events in artificial intelligence and digital pathology. FDA: Food and Drug Administration.  
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Table 1 
Basic features for the included studies.  

Author [ref], year Cancer type WSI 
type 

Objectives Sample size Participants 

BenTaieb et al. 
[36], 2017 

Ovarian cancer H&E Subtype classification 133 Ovarian carcinoma patients with different subtypes (HGSC, EN, MC, LGSC, 
CC) 

Jiang et al.[37], 
2021 

Ovarian cancer H&E Subtype classification 30 SBOT and HGSOC patients were retrieved from the institutional pathology 
system database 

Wu et al.[38], 2018 Ovarian cancer H&E Subtype classification 85 Ovarian cancer patients with different subtypes (serous carcinoma, MC, 
endometrioid, and CC) were obtained from the First Affiliated Hospital of 
Xinjiang Medical University 

Farahani et al.[39], 
2022 

Ovarian cancer H&E 
IHC 

Subtype classification 485 Patients from the OVCARE archives and the University of Calgary 

Hong et al.[40], 
2021 

Endometrial cancer H&E Subtype classification 456 Train, validate, and test data from the TCGA and the Clinical Proteomic 
Tumor Analysis Consortium (CPTAC). Independent dataset from New York 
University (NYU) hospitals 

Song et al.[41], 
2022 

Endometrial cancer 
and Cervical cancer 

H&E Subtype classification 230 (70 for 
CC, 160 for 
EC) 

Data from The Cancer Genome Atlas (TCGA) program and The National 
Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) 
endometrial cancer dataset 

Li et al.[42], 2023 Cervical cancer H&E Subtype classification 229 Cervical specimens from January 2018 and December 2020 were acquired 
from the Department of Pathology, Xinhua hospital Chongming branch 
affiliated with Shanghai Jiaotong University 

Habtemariam et al. 
[43], 2022 

Cervical cancer H&E Subtype classification 915 WSIs Four cervical cancer classes (normal, precancer, adenocarcinoma, and 
squamous cell carcinoma) were gathered from Jimma University Medical 
Center (JUMC) and St. Paul Hospital 

Shin et al.[44], 
2021 

Ovarian cancer H&E Diagnosis (tumor vs 
non-tumor) 

142 Ovarian serous cystadenocarcinoma (HGSC) data from the Cancer Image 
Archive and the Ajou University Medical Center 

Sengupta et al.[45], 
2022 

Ovarian cancer IHC Diagnosis (tumor vs 
non-tumor) 

NR Ovarian cancer patients were obtained during frontline surgery at Tata 
Medical Center (TMC), Kolkata 

Mohammadi et al. 
[46], 2022 

Endometrial cancer H&E Diagnosis (benign vs 
malignant) 

2910 The tissue blocks originate from Glasgow Royal Infirmary (NG), Southern 
General Hospital (SG), Royal Alexandria Hospital (RAH), and Queen 
Elizabeth University Hospital (QEUH) (all in Glasgow, Scotland) 

Zhang et al.[47], 
2022 

Endometrial cancer H&E Diagnosis (tumor vs 
non-tumor) 

1190 WSIs Endometrial specimens collected from PUPH, including all main 
pathological subtypes of the endometrium and the Chinese PLA General 
Hospital (PLAGH) 

Sun et al.[48], 
2020 

Endometrial cancer H&E Diagnosis (benign vs 
malignant) 

498 Patients from the Third Affiliated Hospital of Zhengzhou University from 
October 2017 to August 2018 

H.J. Fick et al.[49], 
2021 

Cervical cancer H&E Diagnosis (benign vs 
malignant) 

1015 WSIs NR 

Du et al.[50], 2018 Ovarian cancer H&E Prognosis 154 WSIs Breast cancer and ovarian cancer tissue, the former came from the Stanford 
Tissue Microarray Database (TMAD) and the latter came from the OUHSC 

Laury et al.[51], 
2021 

Ovarian cancer H&E Prognosis 30 Stage III-IV high-grade extrauterine serous carcinoma who underwent 
primary cytoreductive surgery, and at least 6 cycles of adjuvant platinum- 
based chemotherapy from HUS Helsinki University Hospital between 1982 
and 2013 

Zeng et al.[52], 
2021 

Ovarian cancer H&E Prognosis 229 HGSOC patients from The Cancer Genome Atlas (TCGA) 

Nero et al.[53], 
2022 

Ovarian cancer H&E Prognosis 664 EOC patients from the Fondazione Policlinico Universitario “Agostino 
Gemelli” IRCCS of Rome, Italy, from November 2016 to November 2020 

Fremond et al.[54], 
2022 

Endometrial cancer H&E Prognosis 2028 Endometrial cancer patients from three randomised trials and four clinical 
cohorts: the randomised PORTEC-1 trial (recruited in the Netherlands); the 
randomised PORTEC-2 trial (the Netherlands); the randomised PORTEC-3 
trial (the Netherlands, UK, France, Italy, Canada, Australia, and New 
Zealand); the retrospective TransPORTEC pilot Study (the Netherlands, UK, 
and France); the prospective Medisch Spectrum Twente (MST) cohort (the 
Netherlands); patients with POLEmut endometrial cancer from the Leiden 
Endometrial Cancer Repository (the Netherlands); and TCGA-Uterine 
Corpus Endometrial Carcinoma cohort (TCGA-UCEC), extracted from the 
cBioPortal for Cancer Genomics 

Chen et al.[55], 
2023 

Cervical cancer H&E Prognosis 251 Patients with the International Federation of Gynecology and Obstetrics 
(FIGO) Stage IA1–IIA2 cervical cancer were collected from Nanfang 
Hospital of Southern Medical University (Guangzhou,China) from January 
2009 to December 2016 and other hospitals 

Wang et al.[56], 
2022 

Ovarian cancer H&E Therapeutic response 288 WSIs HGSOC patients are collected from the tissue bank of the TriService General 
Hospital and the National Defense Medical Center, Taipei, Taiwan 

Heindl et al.[57], 
2018 

Ovarian cancer H&E 
IHC 

Cancer 
microenvironment 

514 Patients with International Federation of Gynecology and Obstetrics (FIGO) 
stage II-IV HGSOC from TCGA 

Desbois et al.[58], 
2020 

Ovarian cancer IHC Cancer 
microenvironment 

370 Epithelial ovarian cancer from mixed histology were collected from the 
Phase III ICON7 clinical trial. Independent validation collection was 
procured from Cureline, Inc (Brisbane, CA, USA) 

Abbreviation: CC: clear cell carcinoma, EN: endometrioid carcinoma, EOC: epithelial ovarian cancer, H&E: hematoxylin and eosin, HGSC: high grade serous carci
noma, HGSOC: high grade serous ovarian cancer, IHC: immunohistochemistry, LGSC: low grade serous carcinoma, MC: mucinous carcinoma, NR: not reported, PUPH: 
Peking University People’s Hospital, PLAGH: Chinese PLA General Hospital, SBOT: serous borderline ovarian tumor, WSIs: whole slide images. 
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4.1.2. Endometrial cancer 
The DCNN model achieved a per-patient level AUC of 0.969 

(0.905–1) for differentiating samples into endometrioid or serous his
tological subtypes. Additionally, this model offers insights into molec
ular subtypes and mutation status [40]. On the other hand, the 
Inception-v3 model attained an AUC value of 0.944 for classifying the 
EC subtype [41]. 

4.1.3. Cervical cancer 
In 2023, Li et al. [42] employed AlexNet, VGG-19, Xception, and 

ResNet-50 with five-fold cross-validation to identify cervical malig
nancies and provide diagnostic interpretability. The AUC for internal 
validation varied from 0.73 to 0.98. Habtemariam et al. used the Effe
cientNetB0 pre-trained model for CC classification, and the results were 
validated using histogram-matched histopathological images. The 
model achieved a test accuracy of 94.5% for classifying CC [43]. 

4.2. Cancer diagnosis 

The diagnostic task involved the differentiation between tumors and 
non-tumors, as well as between benign and malignant lesions. All 
diagnostic tasks were based on DL methods (Table 2). 

4.2.1. Ovarian cancer 
In 2021, Shin et al. [44] utilized the Inception V3 model for the 

detection of malignancy on tissue slides. They examined a public set of 
tissue slide images comprising 142 patients diagnosed with ovarian se
rous cystadenocarcinoma from The Cancer Genome Atlas Ovarian. 
Notably, the researchers evaluated the classifier’s performance stability 
using style transfer techniques on a limited institutional dataset. After 
the style transfer, the AUC and area under the precision recall curve 
improved from 0.737 (0.708–0.764) and 0.710 (0.672–0.748) to 0.916 

(0.899–0.930) and 0.898 (0.872–0.922), respectively. The Inception V3 
model was also used by Sengupta et al. [45] for OC diagnosis, with 
lamin-induced morphological changes of the nuclei as the input 
parameter. The model showed a higher performance in distinguishing 
between normal and OC tissues, achieving an AUC of 0.99 in both the 
training and validation sets. 

4.2.2. Endometrial cancer 
Mohammadi et al. [46] employed the CLAM (attention multiple 

instance learning) model to differentiate between malignant and benign 
tumors, achieving a validation accuracy of 85% and a test accuracy 
exceeding 87%. The attention heatmapping, feature visualization, and 
end-to-end saliency-mapping improved the interpretability of the 
model. Zhang et al. [47] utilized DeepLab v3 and ResNet-50 for the 
diagnosis of EC and non-EC in multiple datasets, demonstrating good 
performance (AUC, sensitivity, and specificity all >0.8). Sun and col
laborators [48] proposed the HIENet framework, based on VGG-16 and 
incorporates two crucial blocks that utilize the visual attention mecha
nism. HIENet exhibited an AUC of 0.96 ± 0.01, with a sensitivity of 
81.04 ± 3.87% and specificity of 94.78 ± 0.87% in the detection of 
endometrioid adenocarcinoma. 

4.2.3. Cervical cancer 
In 2021, models utilizing CNN and SVM algorithms achieved an 85% 

classification accuracy in 1015 annotated WSIs [49]. The CNN was 
employed to predict the probability of each of the four lesion classes at 
the patch level, and the SVM was utilized to predict the final slide-level 
lesion status. 

4.3. Cancer prognosis 

The prognosis of cancer is affected by various complex factors, and 

Fig. 2. The clinical applications of AI in digital pathology of gynecological cancer.  
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AI-based methods hold the potential to enhance prognosis prediction in 
GCs. 

4.3.1. Ovarian cancer 
Du et al. [50] explored diverse transfer learning strategies to effec

tively differentiate between epithelial and stromal regions in hematox
ylin and eosin (H&E) stained histological images. Utilizing DCNNs 
(AlexNet, Places365-AlexNet, GoogLeNet, and two modified AlexNet 
models), they extracted natural-image features without fine-tuning, 
subsequently conducting end-to-end fine-tuning by training the 

classifiers at certain layers. An accuracy of 90.2 was achieved with the 
implementation of GoogLeNet. In study by Laury et al. [51], 205 WSIs 
from 30 patients with high-grade serous ovarian cancer exhibiting 
distinct treatment responses (platinum-free intervals of ≤6 months or 
≥18 months) were analyzed for outcome prediction. CNN-based models 
effectively differentiated extreme patient responses to primary 
platinum-based chemotherapy, achieving a sensitivity of 73% and a 
specificity of 91%. Furthermore, besides prognostication, ML models 
combined with other data were utilized to infer molecular features. In 
Zeng’s [52] study, the model’s AUC for predicting 5-year overall sur
vival (OS) was 0.825 and 0.703 in the test and validation sets, respec
tively. Notably, for the prediction of molecular features (BRCA 
mutation, microsatellite instability, and molecular subtypes), all AUC 
values were > 0.9. The CLAM method demonstrated an AUC of 0.71 for 
predicting progression-free survival in 664 epithelial OC patients, while 
the AUC for predicting BRCA mutation was 0.55 [53]. Despite the 
relatively modest predictive performance, it also suggests that the AI 
model has the potential to provide information on molecular features of 
the disease. 

4.3.2. Endometrial cancer 
A comprehensive analysis integrating data from the PORTEC ran

domized trials and clinical cohorts was conducted to develop an inter
pretable DL pipeline aimed at predicting progression (5-year recurrence- 
free survival) [54]. This model could be clinically applied for 
pre-screening EC to identify occurrences of p53abn for further confir
matory immunohistochemistry or molecular testing. 

4.3.3. Cervical cancer 
Chen et al. [55] developed a CNN-based pathological risk score (RS) 

to predict patient prognosis. The performance of the RS in predicting OS 
and disease-free survival (DFS) was validated through Kaplan–Meier 
survival analysis in both the training and testing datasets. In the testing 
cohort, the RS exhibited an AUC of up to 0.80 for predicting both OS and 
DFS. 

4.4. Cancer therapeutic response and microenvironment 

In addition to the tasks mentioned above, DL models based on H&E 
staining have also been used to predict the therapeutic efficacy (invalid 
vs. effective) of bevacizumab in OC. The method achieved an accuracy of 
0.882 ± 0.06, a precision of 0.921 ± 0.04, a recall of 0.912 ± 0.03; and 
an F-measure of 0.917 ± 0.07. The findings suggest that the utilization 
of DL techniques holds promise in providing valuable guidance for 
treatment decisions [56]. Furthermore, ML combined with omics and 
clinical data has elucidated the microenvironment of OC, including 
dysregulation of DNA repair, loss of nuclear integrity [57], and 
tumour-immune phenotypes [58]. 

5. Limitations and challenges 

The studies illustrates that the utilization of AI has facilitated tech
nological advances in GC’s digital pathology, showing promising po
tential in various applications. However, the translation of these 
techniques into clinical practice may take several years attributable to 
existing limitations and challenges. 

5.1. ‘Black box’ problem and interpretability 

Despite the robust capabilities of AI-based models, the development 
of explainable AI models is imperative for clinical practice. Under
standing and explaining how AI-based algorithms work and how the 
model arrives at its decisions is an important hurdle for the adoption of 
AI-based methods in clinical practice. This ‘black box’ nature limits its 
clinical application. In handcrafted approaches, relevant features from 
the data are manually selected, which requires close collaboration 

Table 2 
Model, algorithm, and model validation for the included studies.  

Author [ref], 
year 

Model Algorithm CV External 
validation 

AI vs 
clinicians 

BenTaieb 
et al.[36], 
2017 

ML SVM leave- 
one- 
out 

No Yes 

Jiang et al. 
[37], 2021 

ML SVM NR No No 

Wu et al.[38], 
2018 

DL CNN (AlexNet) 10- 
fold 

No No 

Farahani et al. 
[39], 2022 

DL CNN 3-fold Yes No 

Hong et al. 
[40], 2021 

DL CNN 
(InceptionResnet) 

NR Yes No 

Song et al. 
[41], 2022 

DL CNN (Inception- 
v3) 

5-fold Yes No 

Li et al.[42], 
2023 

DL CNN (AlexNet, 
VGG-19, 
Xception, ResNet- 
50) 

5-fold Yes Yes 

Habtemariam 
et al.[43], 
2022 

DL EffecientNetB0 10- 
fold 

Yes No 

Shin et al. 
[44], 2021 

DL CNN (Inception 
V3) 

NR Yes No 

Sengupta et al. 
[45], 2022 

DL CNN (Inception 
V3) 

5-fold No No 

Mohammadi 
et al.[46], 
2022 

DL CLAM NR Yes No 

Zhang et al. 
[47], 2022 

DL DeepLab v3, 
ResNet-50 

NR Yes No 

Sun et al.[48], 
2020 

DL CNN (VGG-16) 10- 
fold 

Yes Yes 

H.J. Fick et al. 
[49], 2021 

DL SVM, CNN 
(DenseNet) 

10- 
fold 

No No 

Du et al.[50], 
2018 

DL CNN (AlexNet, 
Places365- 
AlexNet, 
GoogLeNet) 

NR Yes No 

Laury et al. 
[51], 2021 

DL CNN NR No No 

Zeng et al. 
[52], 2021 

ML RF, GBDT, 
AdaBoost, LR, DT, 
SVM, NB, KNN 

5-fold Yes No 

Nero et al. 
[53], 2022 

DL CLAM NR No No 

Fremond et al. 
[54], 2022 

DL HoVer-Net, SVM 4-fold Yes No 

Chen et al. 
[55], 2023 

DL CNN (ResNet-50) NR Yes No 

Wang et al. 
[56], 2022 

DL Inception V3 5-fold Yes No 

Heindl et al. 
[57], 2018 

ML SVM NR Yes No 

Desbois et al. 
[58], 2020 

ML RF, k-means 
clustering 

NR Yes No 

Abbreviation: AI: artificial intelligence, AdaBoost: adaptive boosting, CV: cross- 
validation, CNN: convolutional neural network, CLAM: clustering-constrained 
attention multiple instance learning, DT: decision tree, DL: deep learning, 
GBDT: gradient boosting decision tree, KNN: K-nearest neighbor, SVM: support 
vector machine, LR: logistic regression, ML: machine learning, NB: naive 
Bayesian, NR: not reported, RF: random forest. 
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between clinicians and experts. The integration of DL with handcrafted 
strategies leverages domain expertise to ensure the biological inter
pretability of the results generated [27]. Furthermore, some visualiza
tion methods have been developed to improve interpretability [46]. On 
the other hand, the integration of algorithms with other patient data, 
such as follow-up and clinicopathological information, has also 
contributed to improving interpretability to a certain extent [54]. 

5.2. Quality of data 

The performance of an algorithm is influenced by the nature of the 
task, including the required level of accuracy and the quality of the 
samples being assessed [24]. To achieve optimal predictive performance 
and utility, AI algorithms need to be trained on clean and accurate data 
with a high signal-to-noise ratio [24,27]. This can be challenging when 
dealing with histological data obtained from various laboratories. 
Various color normalization methods, such as spectral sensing [59], 
stain color adaptive normalization [60], adaptive color deconvolution 
[61], and transfer learning approaches [23,50], can be employed to 
address this issue. Moreover, loss of data fidelity may occur when the 
scanner exceeds its maximum scanning capacity. Super-resolution mi
croscopy techniques offer a solution by enabling higher resolution 
focusing on specific biological elements [62]. 

5.3. The generalization of AI models 

The model’s performance is affected by intrinsic variations in data
sets [39]. Therefore, improving the model’s generalization ability as a 
pressing issue that necessitates resolution. Cross-validation is a common 
method employed to improve the generalization ability of models. 
However, due to data constraints, several studies omit the imple
mentation of cross-validation (Table 2). Additionally, refining the model 
through fine-tuning has the potential to reduce the generalization error 
[50]. 

5.4. AI algorithms and validation 

The dataset utilized for training AI models is typically divided into 
training and validation sets. The training set is typically balanced, while 

the validation set is derived either from the original dataset or sourced 
from another institution [27]. Validation sets are necessary to prevent 
overfitting. However, external validation is often lacking due to the 
difficulty in acquiring data (Table 2). In addition, AI algorithms may 
exhibit limitations in specific domains, such as mutation detection, 
where their performance is typically lower [25,53]. 

6. Future directions 

The advent of digital pathology has ushered in new prospects for 
generating extensive, high-resolution digital data. The integration of AI 
in image analysis has catalyzed advancements across various areas of 
medical imaging. Anticipated future developments in AI for GCs include 
the identification of biomarkers. However, this new technology is con
fronted with several challenges that necessitate resolution before its 
integration into clinical practice. For instance, it is still uncertain 
whether AI applications can replace some expensive molecular tests for 
cancer screening and molecular phenotype stratification. However, 
given the increasing global incidence of cancer and the auspicious po
tential of AI-based methods in accurately classifying pathological im
ages at a lower cost, it is likely that these challenges will be overcome. 

7. Conclusions 

Digital pathology facilitates the digitized acquisition, management, 
and interpretation of information. AI in digital pathology provides op
portunities for computational analysis. This review summarizes the 
application of AI-based digital pathology in the diagnosis, histopatho
logical classification, prognosis, and assessment of therapeutic responses 
in GCs. DL algorithms, particularly CNNs, have demonstrated superior 
performance. Despite the advantages offered by AI, significant chal
lenges such as interpretability, data quality, model generalization, and 
validation need to be addressed. Moreover, certain areas such as 
biomarker detection and multi-center studies remain underexplored. 
However, with the ongoing advancements in AI algorithms, it is envis
aged that their application will improve and become more widespread in 
clinical practice. Furthermore, the anticipation is that large, prospective 
studies and clinical trials testing AI methods will become universal in the 
future. 

Table 3 
The performance of the model for the included studies.  

Author [ref], year Performance 

Accuracy (%) AUC SE (%) SP (%) Precision Recall Kappa F1 score 

BenTaieb et al.[36], 2017 90.00 / / / / / 0.89 0.66 
Jiang et al.[37], 2021 > 90.00 / / / / / / / 
Wu et al.[38], 2018 78.20 / / / / / / / 
Farahani et al.[39], 2022 / 0.95 / / / / 0.74 0.79 
Hong et al.[40], 2021 / 0.97 (0.91-1.00) / / 1 0.60 / 0.75 
Song et al.[41], 2022 89.90 0.94 (0.92-0.97) 84.60 93.90 / / / 0.88 
Li et al.[42], 2023 92.50 ± 1.90 0.95 ± 0.01 / / 0.94 ± 0.02 0.95 ± 0.03 / / 
Habtemariam et al.[43], 2022 94.50 / / / 0.96 1 0.92 0.98 
Shin et al.[44], 2021 80.80 0.92 (0.90-0.93) 95.80 65.80 0.74 0.96 / 0.83 
Sengupta et al.[45], 2022 / 0.99 / / / / / / 
Mohammadi et al.[46], 2022 85.57 0.95 / / / / / / 
Zhang et al.[47], 2022 / 0.93 92.40 80.10 / / / / 
Sun et al.[48], 2020 93.53 ± 0.81 0.96 ± 0.01 81.04 ± 3.87 94.78 ± 0.87 / / / / 
H.J. Fick et al.[49], 2021 85.00 / / / / / / / 
Du et al.[50], 2018 90.20 / / / / / / / 
Laury et al.[51], 2021 82.00 / 73.00 91.00 / / / / 
Zeng et al.[52], 2021 / 0.83 / / / / / / 
Nero et al.[53], 2022 / 0.71 / / / / / / 
Fremond et al.[54], 2022 / 0.87 (0.86-0.89) / / / / / / 
Chen et al.[55], 2023 / 0.87 (0.77-0.96) / / / / / / 
Wang et al.[56], 2022 88.20 ± 6 / / / 0.92 ± 0.04 0.91 ± 0.03 / 0.92 ± 0.07 
Heindl et al.[57], 2018 85.00 / / / / / / / 
Desbois et al.[58], 2020 91.00 / / / / / / / 

Abbreviation: AUC: area under the curve, SE: sensitivity, SP: specificity, /: The results were not reported. 
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