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Effects of stand age on carbon 
storage in dragon spruce forest 
ecosystems in the upper reaches of 
the Bailongjiang River basin, China
Jianjun Cao1, Yifan Gong1, Jan F. Adamowski2, Ravinesh C. Deo3, Guofeng Zhu   1, 
Xiaogang Dong1, Xiaofang Zhang1, Haibo Liu1 & Cunlin Xin1

At an ecosystem level, stand age has a significant influence on carbon storage (CS). Dragon spruce 
(Picea asperata Mast.) situated along the upper reaches of the Bailongjiang River in northwest China 
were categorized into three age classes (29–32 years, Y1; 34–39 years, Y2; 40–46 years, Y3), and age-
related differences in total carbon storage (TCS) of the forest ecosystem were investigated for the first 
time. Results showed that TCS for the Y1, Y2, and the Y3 age groups were 323.64, 240.66 and 174.60 Mg 
ha−1, respectively. The average TCS of the three age groups was 255.65 Mg C ha−1, with above-ground 
biomass, below-ground biomass, litter, and soil in the top 0.6 m contributing 15.0%, 3.7%, 12.1%, and 
69.2%, respectively. CS in soil and TCS of the Y1 age group both significantly exceeded those of the 
Y3 age group (P < 0.05). Contrary to other recent findings, the present study supports the hypothesis 
that TCS is likely to decrease as stand age increases. This indicates that natural resource managers 
should rejuvenate forests by routinely thinning older stands, thereby not only achieving vegetation 
restoration, but also allowing these stands to create a long-term carbon sink for this important eco-
region.

Covering roughly 4.0 × 108 km2 (30.8%) of the earth’s land surface in 20151, forested land dominates the earth’s 
terrestrial ecosystems. Besides their key role in supplying timber2, forests have generated considerable attention 
for their primal role in the functioning, productivity and sustainability3 of the global ecosystem as well as in 
the protection of soil and restoration of landscapes4. Forests also play a special role in mitigating atmospheric 
CO2 concentrations. This is especially significant considering that about two-thirds of the terrestrial ecosystems’ 
organic carbon stocks are in forests, of which 81% is soil storage and 19% is plant storage5,6. However, forest land-
scapes have been significantly modified by human activities over hundreds of years7, leading to concern about 
restoration.

With the global implementation of forest landscape restoration to balance different functions at the landscape 
scale including water regulation, wildlife habitats, biodiversity and carbon storage (CS)8, the CS capacity of for-
est stands based on type and age has been studied extensively9,10. However, studies more often focus on carbon 
storage in soil (SCS) than on CS at the ecosystem level. At the ecosystem level, there are generally three intercon-
nected carbon pools, namely live biomass, dead biomass, which plays an important role between soil carbon and 
biomass carbon, and organic soil horizons11,12. Based on a few ecosystem level studies on CS2,9,13–18, we found that 
forests in the latter stages of stand development could either be carbon neutral19–21, sequester a small quantity of 
carbon22, or exhibit a declining carbon pool23. This indicates that the dependent relationship between total forest 
ecosystem carbon storage (TCS) and stand age may be species- and site-specific24,25.

Dragon spruce (Picea asperata Mast.) is one of the preferentially planted trees for water and soil conservation 
in the upper reaches of the Bailongjiang River, China, and the present research aims to investigate the influence 
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of stand age, focusing particularly on CS at the ecosystem level. With the knowledge gained from this investiga-
tion, the connection between plantation forestry strategy and CS is likely to be better understood19, allowing for 
more informed decisions26 on the management of current plantation practices in the region. The hypotheses of 
this study are: (1) stand age may have different influences on CS within live biomass, dead biomass, and organic 
soil horizons due to positive feedback between plants and soil, and (2) TCS is inversely proportional to stand age.

Results
Plant and soil properties under different age groups.  With regard to tree growth, it was observed 
that diameter at breast height (DBH) was significantly greater in the Y3 age group compared with the other two 
groups (P < 0.05), but stand density (SD) was significantly greater in the Y1 age group compared to that in the Y3 
age group (P < 0.05; Table 1). There was no significant difference in canopy density (CD) among the three groups 
(P > 0.05). Although the above- and below-ground biomass of trees, shrubs, and litter biomass were smaller in the 
Y1 and Y2 age groups than in the Y3 age group, the above- and below-ground biomass of herbs was greater in the 
Y3 age group, and there were no statistically significant differences between the three age groups for above- and 
below-ground biomass and dead biomass (P > 0.05, Table 1).

No significant difference in pH was measured among the three age groups (P > 0.05). In the Y1 age group soil 
bulk density (ρ) was significantly lower while soil moisture content (θ) and soil porosity (f) were relatively higher 
(P < 0.05) than the other two age groups. Total nitrogen (TN), total phosphorus (TP), and alkaline hydrolysis 
nitrogen (AN) were significantly higher in the Y1 group (2.98 g kg−1, 2.00 g kg−1, and 206.62 mg kg−1, respectively) 
compared to those in the Y3 age group (0.83 g kg−1, 0.75 g kg−1, and 69.38 mg kg−1, respectively). Total potassium 
(TK), available phosphorus (AP), and available potassium (AK) had similar values among all three age groups. 
The average soil organic carbon (SOC) of the 0–0.6 m soil depth was substantially greater in the Y1 age group 
(37.46 g kg−1) compared to the Y2 (23.00 g kg−1) and the Y3 (11.10 g kg−1) age groups (P < 0.05, Table 1; Fig. 1).

Vertical distribution of SOC in different age groups.  Decreasing SOC with increasing soil depth was 
observed across all age groups (Fig. 2). The greatest SOC in the 0–0.1 m top soil was found in the Y1 age group 
(60.5 g kg−1), while the smallest value (20.8 g kg−1) was found in the Y3 age group. In both these age groups, there 
were no significant differences in SOC values among the three deeper soil layers (P > 0.05). In the Y2 age group, 
from the 0–0.1 m to the 0.1–0.2 m soil depth, SOC levels decreased from 38.99 g kg−1 to 23.34 g kg−1, but no sig-
nificant difference was found between them (P > 0.05). However, SOC in the 0–0.1 m soil layer was significantly 

Measured variables

Stand designation and age

Y1 29–32 years Y2 34–39 years Y3 40–46 years

Plants

DBH (cm) 15.42 ± 1.96a 16.43 ± 2.09a 19.82 ± 2.96b

SD (tree ha−1) 1425.67 ± 306.41a 1134.34 ± 394.12ab 804.67 ± 63.96b

CD (%) 0.77 ± 0.08a 0.76 ± 0.10a 0.70 ± 0.00a

Above-ground biomass

Trees (104 kg ha−1) 7.36 ± 1.19a 7.37 ± 2.63a 7.29 ± 3.72a

Shrubs (104 kg ha−1) 0.61 ± 0.92a 0.69 ± 0.66a 0.25 ± 0.18a

Herbs (104 kg ha−1) 0.16 ± 0.03a 0.20 ± 0.08a 0.23 ± 0.04a

TBMag (104 kg ha−1) 8.13 ± 1.59a 8.26 ± 2.65a 7.77 ± 3.52a

Dead biomass Litter (104 kg ha−1) 7.20 ± 1.93a 6.18 ± 1.82a 6.95 ± 0.97a

Below-ground biomass

Trees (104 kg ha−1) 1.47 ± 0.24a 1.47 ± 0.53a 1.46 ± 0.74a

Shrubs (104 kg ha−1) 0.36 ± 0.54a 0.40 ± 0.39a 0.15 ± 0.11a

Herbs (104 kg ha−1) 0.13 ± 0.03a 0.16 ± 0.07a 0.19 ± 0.04a

TBMbg (104 kg ha−1) 1.96 ± 0.62a 2.04 ± 0.63a 1.79 ± 0.63a

Soil

pH 7.39 ± 0.53a 7.57 ± 0.44a 7.84 ± 0.21a

θ (%) 43.03 ± 16.16a 34.08 ± 16.36b 30.96 ± 11.85b

ρ (Mg m−3) 1.11 ± 0.14a 1.24 ± 0.22ab 1.45 ± 0.05b

f (%) 58.50 ± 5.32a 53.45 ± 8.07ab 45.33 ± 2.08b

SOC (g kg−1) 37.46 ± 24.41a 23.00 ± 22.28b 11.10 ± 6.62b

TN (g kg−1) 2.98 ± 0.96a 1.87 ± 1.46ab 0.83 ± 0.24b

TP (g kg−1) 2.00 ± 0.98a 1.32 ± 0.81ab 0.75 ± 0.06b

TK (g kg−1) 32.39 ± 4.87a 33.13 ± 5.89a 28.74 ± 2.14a

AN (mg kg−1) 206.62 ± 51.95a 146.85 ± 109.39ab 69.38 ± 19.22b

AP (mg kg−1) 1.94 ± 0.91a 1.81 ± 1.23a 1.23 ± 0.63a

AK (mg kg−1) 218.31 ± 92.24a 200.61 ± 103.6a 139.99 ± 41.30a

Table 1.  Differences of plants and soil physical properties by stand age (mean ± standard deviation). Different 
letters indicate differences by stand age (row-wise) at P < 0.05. Where CD = canopy density; SD = stand density; 
DBH = diameter at breast height; θ = soil water content; ρ = soil bulk density; f = soil porosity; SOC = soil 
organic carbon; TN = total nitrogen; TP = total phosphorus; TK = total potassium; AN = alkaline hydrolysis 
nitrogen; AP = available phosphorus; AK = available potassium; TBMag and TBMbg = total above- and below-
ground biomass.
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Figure 1.  The distribution of soil organic carbon (SOC) by stand age and by soil layer. Different letters indicate 
differences at P < 0.05 level. Capital letters: difference in stand age. Lowercase letters: differences among soil 
depths.

Figure 2.  Biplot of the first two PCA axes of biological factors, soil factors, and the three stand age ranges. 
CD = canopy density; SD = stand density; TBMag and TBMbg = total above- and below-ground biomass; 
DBH = diameter at breast height; θ = soil moisture content; ρ = soil bulk density; f = soil porosity; TN = total 
nitrogen; TP = total phosphorus; TK = total potassium; AN = alkaline hydrolysis nitrogen; AP = available 
phosphorus; AK = available potassium; TCBMag, TCBMbg and Clitter = carbon storage in TBMag, TBMbg and litter; 
SCS = soil carbon storage; TCS = forest ecosystem total carbon storage.
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higher than that of the 0.2–0.4 m and 0.4–0.6 m soil layers (P < 0.05), with no significant difference between the 
latter two soil layers (P > 0.05).

Carbon pools at different elevations and age groups.  The highest value of TCS was 312 Mg ha−1 at the 
2520 m elevation, significantly higher than the 204 Mg ha−1 observed at the 2640 m elevation (P < 0.05), but not 
different from the 249 Mg ha−1 observed at the 2848 m elevation (P > 0.05). Although there was variation in TCS 
between the 2640 m and 2848 m elevations, this difference was not statistically significant (P > 0.05).

TCS and SCS trended negatively with stand age, as there were significant differences between the Y1 and the Y3 
age groups for both variables (P < 0.05; Table 2). Other carbon pools did not change significantly with increasing 
stand age (P > 0.05), although they presented a decreasing trend. SCS was the largest carbon pool in the forests, 
accounting for up to 69.2% of the TCS. CS in total above-ground biomass (TCBMag) and in total below-ground 
biomass (TCBMbg) contributed 15.0% and 3.7%, respectively, while carbon storage in litter (Clitter) made up 12.1% 
of the TCS (Table 2).

Relationships between the measured variables.  Principal component analysis (PCA) revealed that 
the first two PCs (i.e., PC1 and PC2) accounted for 40.13% and 21.45%, respectively, of the total variance of 
data obtained in the 21 study plots (Table 3). This indicated that the first two principal components accounted 
for 61.58% of the standardized variance. As evident in Fig. 2, the PCA generated two distinct clusters, with soil 
characteristics forming one cluster and forest characteristics forming the other, which were well discriminated 
between the Y1 and the Y3 age groups. Physical and chemical soil properties contributed predominantly to PC1, 
whereas forest characteristics contributed predominantly to PC2.

Significant negative correlations appeared between SD and DBH, and CD and DBH, whereas significant pos-
itive correlations were found between SD and CD, and litter and CD (P < 0.05). The θ had a significant negative 
correlation with ρ, but a significant positive correlation with f, SOC, TN, TP, AN and AP (P < 0.05). The ρ had a 
significant positive relationship with DBH and a significant negative relationship with SD, f, SOC, TN, TP, AN 
and AP (P < 0.05), while f exhibited the opposite trend. In addition, SOC had significant positive relationships 
with TN, TP, AN and AP (P < 0.05) (Table 4).

Discussion
Vertical distribution of SOC across forest age.  In accordance with other forest ecosystem studies27,28, 
this study showed that SOC generally decreased with increased soil depth. SOC in the 0–0.1 m soil layer was 
the highest in each age group because this layer incorporated ground litter and created organic matter through 
bioturbation27, whereas, at a depth of 0.4–0.6 m, there was a significantly lower level of SOC (Table 1) due to root 
distribution29. The vertical distributions of soil pH and ρ also influenced the vertical distribution of SOC. The 
present study showed a trend of increasing soil pH and ρ with the soil depth in each age group (Fig. 3), but SOC 
exhibited the opposite trend, as low soil pH and ρ are more favorable to an accumulation of SOC27. Generally, 
lower soil pH could enhance the availability of micronutrients, such as copper, iron, and manganese, which are 
important for root growth30. Also, the low ρ indicated a better soil structure, and thus can stabilize soil organic 
matter by soil particles and associated iron oxides31,32.

Age range

Mean %Y1 29–32 years % Y2 34–39 years % Y3 40–46 years %

TCBMag 38.80 ± 7.57a 12.0 38.68 ± 12.26a 16.1 37.06 ± 16.83a 21.2 38.47 ± 11.15 15.0

TCBMbg 9.37 ± 2.97a 2.9 9.57 ± 2.91a 4.0 8.55 ± 2.99a 4.9 9.36 ± 2.80 3.7

Clitter 33.83 ± 9.08a 10.5 29.05 ± 8.54a 16.2 32.65 ± 4.55a 18.7 31.02 ± 8.21 12.1

SCS 241.64 ± 68.81a 74.7 163.36 ± 98.13ab 67.9 96.34 ± 19.39b 55.2 176.79 ± 93.85 69.2

TCS 323.64 ± 77.03a 100 240.66 ± 100.38ab 100 174.60 ± 12.44b 100 255.65 ± 97.51 100

Table 2.  Magnitude of CS (Mg ha−1), mean ± standard deviation in different age groups, and average 
percentage contribution to total forested ecosystem carbon storage. Different letters indicate differences at 
P < 0.05. TCBMag and TCBMbg = carbon storage in total above- and below-ground biomass; Clitter = carbon storage 
in litter; SCS = soil carbon storage; TCS = total forested ecosystem carbon storage.

Component Eigenvalues
Contribution 
rate (%)

Cumulative 
contribution rate (%)

1 9.23 40.13 40.13

2 4.93 21.45 61.58

3 2.56 11.13 72.71

4 1.56 6.80 79.51

5 1.27 5.52 85.03

6 1.11 4.80 89.84

Table 3.  Eigenvalues and contributions based on principal component analysis (PCA).
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Variation of plant, soil and TCS along with the forest age.  No differences in TBMag and TBMbg were 
observed among the three age groups, which concurred with results from studies by Frouz et al.33 and Ligot et 
al.34. This was likely due to SD decreasing as DBH increased with stand age (Table 1). Generally, larger trees had 
high individual growth rates, but biomass production decreased with the abundance of larger trees in comparison 
to that of small trees34. However, this result was contrary to the studies of He et al.35 and Dai et al.13. This disparity 
was likely due to the primary forest samples used in these previous studies, which often contained more native 
species, greater biodiversity, and higher biomass density than plantation forests. In the present study, stable litter 
levels indicated that litter was almost unaffected by stand age, as confirmed by Rodin and Bazilevich36. This is 
consistent with the concept that, as trees continue to age, resources are allocated only for maintenance and sur-
vival19,35, limiting biomass34 and therefore, litter production.

Soil pH is primarily determined by litter, which can create more acidic soil due to organic matter decompo-
sition27, and by tree evaporation and transpiration, which can result in a higher soil pH37. In the present study, 
there was no difference in soil pH among the three age groups, which is inconsistent with previous studies27. This 
may suggest that the differences in litter, tree evaporation and transpiration among the three stand age groups 
were insufficient to cause pH variation. The ρ increased with stand age, but f presented an inverse trend. This 

SD DBH CD TBM Litter θ ρ f pH SOC TN TP TK AN AP AK

SD 1

DBH −0.63** 1

CD 0.63** −0.54* 1

TBM 0.54* 0.02 0.39 1

Litter 0.42 −0.38 0.59** 0.33 1

θ 0.45* −0.44 −0.09 0.01 −0.03 1

ρ −0.54* 0.46* 0.03 −0.03 0.04 −0.84** 1

f 0.53* −0.47* −0.04 0.02 −0.05 0.84** −1.00** 1

pH −0.24 0.41 −0.22 −0.08 −0.29 −0.19 0.08 −0.10 1

SOC 0.43 −0.32 −0.22 0.10 0.01 0.89** −0.83** 0.82** −0.19 1

TN 0.39 −0.26 −0.22 0.13 0.03 0.71** −0.77** 0.77** −0.25 0.94** 1

TP 0.35 −0.10 −0.35 0.10 −0.26 0.55* −0.72** 0.72** −0.13 0.77** 0.86** 1

TK 0.17 −0.09 0.03 0.15 0.20 0.13 −0.20 0.18 0.02 0.38 0.43 0.40 1

AN 0.37 −0.25 −0.30 0.001 −0.14 0.83** −0.88** 0.88** −0.16 0.94** 0.90** 0.81** 0.19 1

AP 0.16 −0.27 −0.15 −0.08 0.03 0.67** −0.60** 0.60** −0.19 0.63** 0.55* 0.27 −0.23 0.71** 1

AK 0.09 −0.05 −0.16 −0.05 0.14 0.33 −0.29 0.29 0.18 0.40 0.27 0.11 0.15 0.37 0.19 1

Table 4.  Relationships between measured variables assessed on the basis of Pearson’s correlation r value. 
**,*Significant at P < 0.01, P < 0.05, respectively. CD = canopy density; SD = stand density; TBM = total 
above-ground biomass + total below-ground biomass; DBH = diameter at breast height; θ = soil water content; 
ρ = soil bulk density; f = soil porosity; SOC = soil organic carbon; TN = total nitrogen; TP = total phosphorus; 
TK = total potassium; AN = alkaline hydrolysis nitrogen; AP = available phosphorus; AK = available potassium.

Figure 3.  The vertical distribution of soil pH and ρ in each age group. Different letters indicate differences 
among soil depths at P < 0.05 level.
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might have resulted from a decrease in the soil’s biological activities due to declining root penetration33 and an 
increase in anthropogenic soil compaction38. The θ decreased as stands aged as confirmed by others39–41; older 
trees consume more soil water due to more intensive evapotranspiration. In some cases, older trees may have a 
larger understory composed of grasses and this can also cause more soil water consumption. This was not the case 
in the present study as there were no differences in understory biomass among the three age groups (Table 1).

It is important to assess the soil carbon budget with respect to plantation age9,42. Generally, a high SOC is likely 
to maintain and improve soil fertility and quality43. Based on the three age groups investigated in the study area, 
the average SOC decreased with stand age (Table 1, Fig. 2). This result coincided with the results of Dangal et al.19, 
and was due to an increase in the rate of organic matter decomposition and variation in the soil’s hydrothermal 
regime for maintaining tree survival. TN, AN and TP were found to be significantly lower in the Y3 age group 
than in the Y1 age group, but TK, AP and AK were similar (Table 1), which was consistent with Fan et al.44. This 
was explained by the amount of litter, which tended to decrease with stand age and would thus release fewer soil 
nutrients from the litter into the soil45. Combined with other indicators such as the tendency for plant root mass 
to decrease with stand age (Table 1), it is conceivable that soil nutrients from these sources also diminished with 
stand age46,47. In addition, as f and θ decreased with stand age, higher soil respiration occurred43 in the Y3 age 
group, resulting in more soil nutrients being consumed by soil microbes and roots. Finally, as AP was mainly 
affected by the decomposition of litter, and TK and AK were affected by the soil parent material and the stability 
of its properties45, no significant differences were found among the three age groups.

SCS in the Y1 age group was significantly higher than that in the Y3 age group (Table 2), suggesting that dragon 
spruce may continue to decline in productivity with age, as seen in other tree species19,35. The average SCS (176.79 
Mg ha−1) in this study (Table 2) was lower than the forest average for SCS across China estimated by Zhou et al. 
(194 Mg C ha−1)48, but was higher than that estimated by Tang et al. (126 Mg C ha−1)49. The latter authors took the 
spatial discrepancies of soil depths and soil gravel content into account when assessing SCS. Differences in SCS 
among the three age groups in the current study were inconsistent with the results of Dai et al.13, which showed a 
significant positive relationship between SCS and stand age.

Factors influencing SOC and TCS of the forest.  According to the results of the PCA (Fig. 2), the influ-
ence of TBMag, TBMbg, and litter biomass on SOC was negligible while the soil properties were the major influ-
encing factors. In forest lands, most previous studies found that soil pH was negatively related to SOC (e.g.30,50). 
However, soil pH was not related to SOC within the study area (Table 4) as supported by Wang et al.51 in Larix 
gmelinii plantations in northeast China. This suggests that the relationship between soil pH and SOC requires 
further research. The relationships between SOC and ρ, f and θ (Table 4) could be explained by soil permeability; 
with greater soil permeability comes more favorable water infiltration and thus SOC can be increased by increas-
ing decomposition and input of litter52,53, enhancing the growth rate of plants47. In general, higher ρ indicates 
poor soil permeability and results in reduced carbon mineralization46. However, Wang et al.54 found a significant 
positive correlation between SOC and ρ, suggesting that the mechanisms linking these two variables must be 
explored further. Moreover, soil respiration, an important indicator of soil quality and soil fertility, often decreases 
with an increase of θ43,55. In the present study, θ decreased as stands aged (Table 1), which might have led to higher 
soil respiration, in turn causing a decrease in SOC. A previous study in central Ireland, however, found that soil 
respiration of dragon spruce stands showed a decreasing SOC trend with increasing stand age56. This suggests 
that the relationship between soil respiration and stand age may depend on the specific regional climate and on 
human activities.

Except for TK and AK, the relationship between other soil nutrients and SOC (Table 4) concurred with Cao 
et al.57. Since SOC is usually closely coupled with N and P58, potential increases in AN and AP may depend on 
soil organic matter decomposition59. TP and AP were also positively related to SOC as well as to TN and AN. 
Although the exact cause of these relationships is not yet clear, a plausible explanation is that P can be fixed rel-
atively slowly by clay minerals, carbonates and soil organic matter as part of biochemical cycling, and a higher P 
could further fix N and support greater accumulation of organic matter57. TK and AK were not related to SOC, 
which was consistent with Liu et al.60. The reasons for this lack of a relationship require further study.

Based on the PCA (Fig. 2), TN and θ were the dominant factors, which was consistent with Tian et al.61, since 
they have important roles in increasing SOC62. As biotic and abiotic interactions strongly impact ecological pro-
cesses, many studies have explored the effects of these interactions on variables (e.g.63,64). For example, Wu et al.65 
found that grassland community coverage and above- and below-ground biomass were related to the interaction 
of plant diversity and θ, and Merino et al.66 found that soil carbon level was correlated with the interactions of 
plants, microorganisms, and mineralogy. However, no significant interaction was shown between θ and other 
variables in the present study. Further research is required to support the results of the current investigation.

As described above, TCS was highest at the lowest elevation. This may be due to good soil conditions, specifi-
cally good physical properties (Tables 1 and 2). However, as elevation increased, TCS did not present a clear trend, 
which countered the findings of Seedre et al.21. In their study, they found that a significant decrease (P < 0.05) in 
TCS occurred with increasing elevation. This suggests that elevation has a complicated effect on TCS and has no 
common trend. As TCBMag, TCBMbg, and Clitter were similar among three stand ages (Table 2), it can be concluded 
that TCS was determined by SCS, as SCS was the largest C pool (69.2% of TCS) in the whole forest ecosystem.

Implications for forest management.  Generally, dragon spruce plantations in the upper reaches of the 
Bailongjiang River basin were water conservation forests. Interestingly, the capacity for water conservation and 
TCS were lower in the Y3 age group than the younger age groups. The fact that trees of a certain maturity level 
have reduced biomass production and merely maintain their own survival indicates that old forests could become 
a net source of carbon or be carbon neutral20,21. Since forest landscape management has the potential to influence 
the net carbon sink, governments must address the current situation and take measures to minimize carbon losses 
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and maintain water resources when considering the economic benefits of forests22. In the twenty-first century, 
any landscape management strategy should be integrated with economic and environmental dimensions to create 
a sustainable long-term plan8,67. For example, using a landscape management approach in the Missouri Ozarks, 
even-aged and uneven-aged forests are being planted to conserve biodiversity, improve wildlife habitat, enhance 
forest health and sustain timber production26. In the central hills of Nepal, the rotation age for forest plantations 
was determined to be between 40 and 45 years old68, as older forests lost the potential for enhancing CS23. The 
present research suggests that dragon spruce plantation forests of the Y3 age group should be thinned and seed-
lings planted in order to renew the forest. These measures would not only support the realization of the economic 
value of older forests, but also increase TCS and maintain water resources in the study area.

Conclusions
The dragon spruce plantation forest located along the upper reaches of the Bailongjiang River was found to be 
carbon negative as stand age increased. The average TCS of the three age groups was 255.65 Mg C ha−1. While no 
difference was observed among other carbon pools of the three age groups, the Y3 age group with a TCS of 174.60 
Mg C ha−1 showed greater carbon losses than the Y1 age group (323.64 Mg C ha−1), due to significant differences 
in SCS and TCS. This suggests that even-aged (about 30 years) forest spruce plantation forests should be preferred 
for forest landscape management in this region.

The dragon spruce stands in this mountainous region were already mature and since carbon loss continues 
when growth stagnates, keeping tree plantations young through rotations may be a useful measure to increase 
TCS in the long term. Policy-makers would have to create legislation to protect the region at the landscape level 
in order to improve the efficiency of forest management and the region’s adaptability to future climate change.

Materials and Methods
Study area.  Located in the northeastern part of the Qinghai-Tibetan Plateau, west of the Qinling Mountains, 
dragon spruce plantations in the upper reaches of the Bailongjiang River (latitude 33°04′N-35°09′N, longitude 
102°46′E-104°52′E, Fig. 4) are among key protected areas that provide water and reduce soil erosion for the 
Yangtze River basin. The Bailongjiang River basin covers roughly 3.3 × 107 ha and has an annual mean runoff of 
about 4.0 × 109 m3 y−1. The upper reaches of the Bailongjiang River are situated in a zone that crisscrosses north-
ern subtropical and warm temperate climatic zones, along with semi-humid mountain ravines that receive heavy 
and largely concentrated rainfall. Over the past 50 years, the air temperature in this region has increased signif-
icantly. There has also been a slight reduction in precipitation and a significant reduction in surface run-off69.

Field sampling.  In 2013, based on the local Forestry Bureau’s records of planting times, the dragon spruce 
plantations in this region were determined to be between 29 to 46 years old, and considered to be mature70. As 
a longer chronosequence-based scale would more accurately reflect the variation of TCS with stand age9,21, tree 
age was divided into three categories (i.e. 29–32 years, Y1; 34–39 years, Y2; 40–46 years, Y3). According to local 
officials, dragon spruce trees were often planted with other species, such as Betula albosinensis, and Larix gmelinii, 
meaning that areas of pure dragon spruce forest were relatively small. Furthermore, a majority of the pure stands 
were located at three elevations: about 2520 m, 2640 m and 2848 m. To ensure comparability among the sample 
sets in terms of the other environmental covariates, plots of each age group were established at each elevation. 
However, there was an uneven distribution of plots at each elevation due to an uneven distribution of pure stands 
with different ages. This protocol was used in previous studies71,72, as it precludes topographical factor effects (e.g., 
the effects of altitude and slope).

Stand density (SD), diameter at breast height (DBH), and canopy density (CD, the ratio of the sum of the 
crown area of all trees within a plot to the plot’s area72), were measured in each plot (20 m × 20 m). To estimate 
the fresh weight of the trees, one standard dragon spruce was cut down in each plot and the Monsic Layered cut 
method was used to section and weigh biomass35. Because this region is a natural conservation area, further cut-
ting of trees was not permitted. In addition, the difference in the DBH of trees within any plot in each age group 
was small (Table 1). The total above-ground portions of the tree were weighed by dividing them into sections 
of particular lengths. For understory vegetation with shrubs, three 2 m × 2 m quadrats were sampled along the 

Figure 4.  Study area in the Bailongjiang River Basin, China.
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diagonal of the plot, at ends and midpoint. For herbaceous layers, 1 m × 1 m quadrats were similarly used. For the 
litter layer, a 0.1 m × 0.1 m quadrat was used at the midpoint of the diagonal in all plots.

In each quadrat, vegetation biomass composed of leaves and branches of shrubs and herbs and litter were col-
lected. The soil profile was then excavated to a depth of 0.6 m, with three replications sampled along the diagonal 
of the quadrat (at the ends and midpoint). Soil samples were taken at depths of 0–0.1 m, 0.1–0.2 m, 0.2–0.4 m, and 
0.4–0.6 m, using a cutting ring (volume, 1.0 × 10−4 m3), and divided into two parts. Compared with other meth-
ods, this approach provided researchers with a better comparison of soil properties at multiple depths39,63,71,73. 
One part of each soil sample was used to measure ρ, f and θ, while the other part was used to measure pH, SOC, 
TN, TP, AN, AP and AK in each layer of the soil profile.

Sample analysis.  The fresh herb and litter biomass were oven-dried at 80 °C to a constant weight over a 
24-hour period. Dragon spruce trunks were cut into 1 m segments and the crown was divided into leaves and 
branches with branches further categorized into thin (<0.01 m) and coarse (>0.01 m). All were weighed. 
Following this, the total dragon spruce biomass (kg ha−1) was estimated using the following equation74:

= ×BM BM SD (1)all Pa one Pa

where, BMall Pa is the total above-ground biomass of dragon spruce in a given plot, BMone Pa is the above-ground 
biomass of one average dragon spruce in a given plot, and SD is the stand density.

To convert the fresh weight of tree and shrub biomass to dry biomass (kg ha−1), a default moisture content of 
30–40% can be used75. In the present study, the median value of moisture content, 35%, was used.

The below-ground tree biomass estimation was based on a “root-to-shoot” ratio of 0.276. The larg-
est “root-to-shoot” shrub ratio was 0.93 and the smallest was 0.2577. In this study, we used the median shrub 
“root-to-shoot” ratio of 0.59 to estimate below-ground shrub biomass. The below-ground herbaceous biomass 
was established as an average of 82% of the total herbaceous biomass78, and the ratio was found to be 4.6.

Soil pH was measured with a standard pH meter using a 2.5:1 water: air-dried soil ratio. The SOC (g kg−1) was 
determined by wet dichromate oxidation of a homogenized air-dried soil subsample (0.2 g), followed by titration 
with FeSO4

73. Both TN (g kg−1) and TP (g kg−1) were measured using a Smartchem 140 (AMS/Westco, Italy) 
chemical analyzer71. AN (mg kg−1) was measured by the Kjeldahl method62, while TK (g kg−1), AP (mg kg−1) and 
AK (mg kg−1) were determined using the method adopted by Verma et al.79.

SCS (Mg ha−1), ρ (Mg m−3), θ (%), and f (%) were calculated using the following equations62:

ρ= ⋅ ⋅SCS [SOC] T (2)

ρ =
m
V (3)

d
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where, [SOC] is the concentration of C in the soil (%), T is the soil layer thickness (m), Vs is the volume of soil 
(1 × 10−4 m3), md is the dry weight (mass) of soil (g), mf is the fresh weight (mass) of soil (g), and Gs is the soil 
particle density (Mg m−3).

Accordingly, TCS was calculated as:

= + + +TCS TC TC C SCS (6)BM BM litterag bg

where, TCBMag is total CS in above-ground dry biomass, TCBMbg is total CS in below-ground dry biomass, and 
Clitter is CS in litter dry biomass.

The above- and below-ground dry biomass and litter dry biomass were converted into carbon by multiplying 
by a factor of 0.47, as adopted by the MFSC80.

Data analysis.  Data were analyzed using SPSS 22.0 (SPSS Inc. Chicago, USA) statistical software and expressed as 
the mean value ± standard deviation. One-way analysis of variance (ANOVA) was applied to determine the differences 
in the measured variables for the three stand ages. A two-tailed least significant difference test was conducted when 
significant differences were detected by the ANOVA process. The Spearman correlation was used to identify the possi-
ble relationships between soil physicochemical properties and the vegetation characteristics. To eliminate any possible 
redundancy among the biological factors and the relevant soil property variables, this study also adopted principal 
components analysis (PCA), which aimed to reduce data dimensionality while capturing most of the variations in the 
dataset61. The Origin Pro 9.0 software was used to draw graphs and a probability threshold of P < 0.05 was applied as 
the critical threshold for the significance level to determine differences in the studied variables.

Data Availability
The datasets generated and/or analyzed during the current study are available from the corresponding author on 
request.
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