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Abstract

Wolbachia bacteria are common endosymbionts of insects, and some strains are known to protect their hosts against RNA
viruses and other parasites. This has led to the suggestion that releasing Wolbachia-infected mosquitoes could prevent the
transmission of arboviruses and other human parasites. We have identified Wolbachia in Kenyan populations of the yellow
fever vector Aedes bromeliae and its relative Aedes metallicus, and in Mansonia uniformis and Mansonia africana, which are
vectors of lymphatic filariasis. These Wolbachia strains cluster together on the bacterial phylogeny, and belong to bacterial
clades that have recombined with other unrelated strains. These new Wolbachia strains may be affecting disease
transmission rates of infected mosquito species, and could be transferred into other mosquito vectors as part of control
programs.
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Introduction

Wolbachia are common intracellular bacteria that are estimated

to infect 40% of insect species [1]. They are typically vertically

transmitted from infected females to their offspring, and are best

known for manipulating host reproduction in ways that enhance

their own transmission to future host generations. The commonest

manipulations involve either distorting the offspring sex ratio of

infected females towards daughters [2–4] or inducing cytoplasmic

incompatibility [5,6]. These manipulations allow the bacteria to

rapidly spread through insect populations, often to the point where

virtually all individuals are infected [7].

Some Wolbachia strains also protect infected insects against RNA

viruses, and have the potential to prevent the transmission of

human pathogens by insect vectors [8–10]. This effect was first

reported in Drosophila, where Wolbachia-infected insects had

increased survival and/or lower viral titres when infected with

a range of positive-sense RNA viruses [8,10,11]. Subsequently, it

was found that when D. melanogaster Wolbachia strains were

transinfected into Ae. aegypti or Ae. albopictus, the mosquitoes had

increased resistance to dengue and chikungunya viruses [9,12,13].

Furthermore, the bacteria also induced cytoplasmic incompatibil-

ity in their new hosts, so they have the potential to spread through

wild and naı̈ve mosquito populations [12–14]. Therefore, releasing

Wolbachia-infected mosquitoes may provide a way to interrupt the

transmission cycle of these viruses.

The effects of Wolbachia on metazoan parasites of public health

importance have also been investigated. A virulent strain of

Wolbachia, wMelPop, which over-replicates in somatic tissues and

reduces the lifespan of infected hosts [15,16], caused an

upregulation of immune genes responsive to filarial worm

infections when transinfected into Ae. aegypti [17]. wMelPop also

reduced the intensity of the avian malaria parasite, Plasmodium

gallinaceum, in Ae. aegypti [9] and the rodent parasite, P. berghei, in

Anopheles gambiae [18].

While the ability of Wolbachia to spread rapidly through

populations and impair the development of pathogens makes it

an excellent candidate for reducing disease transmission by vector

species, the choice of Wolbachia strain for such interventions needs

to be carefully considered. For example, while wMelPop can

prevent the normal replication of viruses and development of

metazoans, it also shortens the life of infected mosquitoes and this

high fitness cost may prevent it from stably establishing in

mosquito populations [16,18]. Furthermore, Wolbachia strains vary

considerably in both the level of viral protection that they provide

to their hosts [11] and the strength of cytoplasmic incompatibility

that they induce [19,20]. These, in turn, affect the ability of the

bacteria to spread through populations and prevent disease

transmission. For these reasons it is prudent to consider a range

of strains before beginning any control programs.

Identifying naturally-occurring Wolbachia strains in mosquitoes

is useful for two reasons. First, it is technically easier to transfer

Wolbachia between closely related species [21], so strains which

naturally occur in mosquitoes are well-suited for transinfection

into related vector species. Second, the dynamics of Wolbachia

strains that are introduced into an insect population may be

altered by Wolbachia strains that already exist in that population

due to cytoplasmic incompatibility among strains [22]. It is

therefore important to critically assess the incidence of Wolbachia in

natural populations of mosquitoes in order to better understand

PLOS ONE | www.plosone.org 1 November 2012 | Volume 7 | Issue 11 | e49922



how introducing novel Wolbachia strains may alter a wild

population that already harbours the bacteria. Naturally-occurring

Wolbachia have been identified in a range of species of mosquitoes

[23–25], many of which are not vectors of human disease. Here,

we continue these efforts and examine Wolbachia infections in nine

different species mosquitoes collected from Kenya and use multi-

locus sequence typing (MLST) [26] to investigate relationships and

patterns of genetic exchange among strains.

Methods

Mosquito Samples and Wolbachia Infection
We used DNA extractions from the guts of adult female

mosquitoes collected from towns and villages along the Kenyan

coast that have been described elsewhere [27]. Anopheles and

Mansonia mosquitoes were collected from rural Mbogolo in the

Malindi district and, Aedes and Culex from towns in the Kilifi

district. The analysis was repeated on the heads and thoraces of

a subset of these samples, but this did not lead to the discovery of

any new infections, so the results are not reported. To detect

Wolbachia, the gene encoding the surface protein of Wolbachia, wsp,

was amplified with the primers wsp81F and wsp 691R [28]. PCR

was performed with BIOTAQ polymerase (Bioline, UK) with each

reaction at a final volume of 20 ml (2 ml of 10X PCR buffer, 1 ml of

50 mM MgCl2, 2 ml of 2 mM dNTP mix (Invitrogen), 0.2 ml each

of 20 mM forward and reverse primers, 1 U Taq polymerase, 1 mL

DNA sample and deionized water to the final voulme). The

thermal cycling protocol was an initial denaturation at 95uC for

5 mins; 30 cycles of denaturation at 95uC for 30 s, annealing at

55uC for 20 s and extension at 72uC for 20 s; final extension at

72uC for 10 mins and held at 4uC. To check the DNA extraction

had been successful, the insect ribosomal internal transcribed

spacer region-1 (ITS1) and mtDNA cytochrome oxidase I (COI)

were amplified for each sample using BD1 and 4S primers [29]

and universal COI primers [30] respectively, in separate reactions.

wsp and ITS1 Sequencing
For each mosquito species that was infected with Wolbachia,

a maximum of 4 positive samples were selected for sequencing

both wsp and ITS1. Unincorporated primers and dNTPs were

digested with exonuclease I (ExoI) (NEB) and shrimp alkaline

phosphatase (USB Corporation). Cleaned products were se-

quenced with the forward and reverse primers for each amplicon

using ABI PRISM BigDye Terminator kit (Perkin-Elmer Corpo-

ration, U.S.A). Sequencing was done at the Source Bioscience

Center, UK. Sequences were trimmed and assembled using

Sequencher v4.5 [31]. Chromatograms were inspected for single

and double peaks.

Multi Locus Sequence Typing (MLST)
For typing the Wolbachia strains detected in our infected

samples, we used the multi-locus typing as described [26]. The

protocol suggests the amplification of 5 single copy genes that are

widely distributed within the wMel genome – gatB, coxA, hcpA, ftsZ

and fbpA. We selected two individuals from each of the mosquito

species that were infected with Wolbachia, except for Ae. metallicus

which had only one infected individual. We used a nested PCR to

amplify hcpA for M. uniformis samples as these failed to amplify with

the hcpA standard primers F1/R1. Firstly, hcpA F3/R3 primer set

was used in a reaction with Promega GoTaq Hot Start Poly-

merase. Then, 1 ml of the F3/R3 reaction was used in the next

round of PCR using the hcpA F1/R1 primers as already described.

The PCR resulted in multiple bands for M. uniformis. The correct

band size was excised and purified with Qiagen Gel extraction kit.

All amplicons were cleaned and prepared for sequencing as

previously described.

Forward and reverse sequences from each PCR product were

aligned and visually inspected in Sequencher v4.5 [31]. Consensus

sequences obtained from each individual for each gene were

aligned and compared and, all sequence differences between

Wolbachia strains were checked to confirm they had unambiguous

peaks. As bacteria from each mosquito species had the same

sequences, a consensus sequence for each gene per mosquito host

species was obtained (except fbpA gene which was sequenced for

one of the two M. uniformis samples). All consensus sequences were

trimmed to the appropriate length for database query. We

performed a BLAST search of each sequence in the Wolbachia

MLST database (http://pubmlst.org/wolbachia) [32]. Where

a sequence had an exact match in the database, it was assigned

the designated allele number. We submitted 6 new alleles to the

database for allele number assignment which includes all the genes

for the Aedes sp. and hcpA for M. africana. The complete MLST

profiles were submitted to the Wolbachia MLST database and have

been assigned ID numbers 496–501 (http://pubmlst.org/

wolbachia).

Phylogeny
To account for the effects of recombination on the phylogeny,

we analysed the dataset with ClonalFrame v1.2 [33]. Unlike other

phylogeny analysis software, ClonalFrame estimates clonal

relationships while taking into account recombination as a mode

of substitution within genes. This approach also estimates the

contribution made by recombination to total substitutions [33].

The complete dataset included Wolbachia MLST sequences from

113 host strains obtained from MLST database (http://pubmlst.

org/wolbachia), and our 5 sample species. We also performed

a whole-genome shotgun (wgs) BLAST search of the wAlbB

genome [34] for the MLST gene sequences of the Wolbachia B

strain of Ae. albopictus. For the data downloaded from http://

pubmlst.org/wolbachia, only host strains with complete informa-

tion – details on the host genus and allele numbers for all 5 MLST

genes – were included. If there were multiple MLST profiles from

a single host that had identical sequences, only one of these was

included.

All 5 gene sequences for the 119 sample set were aligned

independently using Mauve v2.3.1 [35], which produces the

appropriate file format for running ClonalFrame [33]. To check

the analysis was converging, we performed 9 independent runs of

our dataset in ClonalFrame v1.2 [33] with 100,000 MCMC

iterations after 100,000 burn-in iterations. The number of

iterations performed between recording parameters in the

posterior sample was set at 100. Default settings were used for

all other parameters. For the first 8 runs we used a uniformly

chosen coalescent tree as the initial tree. As a UPGMA gives a good

representation of tree topology [33], we performed the ninth run

with parameters as previously mentioned, but starting with

a UPGMA tree.

The output generated with the UPGMA starting tree was

compared with the other 8 ClonalFrame outputs using the tree

comparison tool in ClonalFrame [33]. This tool compares nodes of

an uploaded tree to other tree outputs and plots the nodes

according to similarity in observed nodes. The UPGMA tree

showed good convergence with the other outputs (Figure S1).

Good convergence of the various parameter estimates was

demonstrated by the Gelman and Rubin test [36] implemented

in ClonalFrame [33]. The UPGMA starting tree output was,

therefore, used in further analyses. The posterior sample of trees

was exported into MEGA 5.05 [37] and a consensus tree with
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branch support values was drawn at 50% majority rule. The

resulting tree was visualized and rooted in FigTree v1.3.1 [38].

Where recombination was detected in our sequences by

ClonalFrame, we attempted to identify the source of the

‘imported’ sequence. We used the criteria used by [39] to detect

sources of imports in the mosquito clades. We checked the MLST

database for sequences with two or fewer nucleotide differences

from the gene being investigated (by first finding sequences that

clustered together on a neighbour joining tree and then manually

inspecting these sequences). If this sequence came from a bacte-

rium that did not cluster with our sample on the MLST tree, then

we classed it as a potential source of the sequence ‘imported’ by

recombination [39].

Results

Wolbachia Infections
We investigated the presence of Wolbachia in mosquito guts of

nine mosquito species. Due to variation in Wolbachia tissue

tropism, some strains may go undetected. Nevertheless, it can

provide a minimum estimate of the prevalence of Wolbachia. Five

of the species sampled were infected (Table 1). Consistent with

previous studies, none of the Anopheles species or Aedes aegypti were

infected with Wolbachia [24,25], while Culex quinquefasciatus and

Mansonia uniformis were infected [24]. However, this is the first

report of Wolbachia in Aedes bromeliae, Aedes metallicus and Mansonia

africana. In Ae. bromeliae, 75% of individuals were infected, while in

the closely related Ae. metallicus, one of the two samples was

infected. Differences in the length and sequence of the mosquito

internal transcribed spacer region-1 (ITS1) confirmed that the

infected Ae. metallicus individual was of a distinct species to Ae.

bromeliae. For each mosquito species, there were no nucleotide

polymorphisms in the wsp sequences and the chromatograms

showed clear single peaks, suggesting that a single strain was

infecting these mosquitoes.

Phylogeny
We used the MLST gene sequences to reconstruct the Wolbachia

phylogeny, and controlled for the confounding effects of re-

combination on tree reconstruction using ClonalFrame (Figure 1).

The phylogeny grouped strains into supergroups A, B, F and D

(Figure 1; supergroup D was used as the outgroup to root the tree)

[40–43]. The Wolbachia strains we identified infecting the Culicini

and Mansoniini tribes of mosquitoes belonged to supergroup B

while those in the Aedini tribe were in supergroup A (Figure 1).

Wolbachia strains in Ae. bromeliae and Ae. metallicus formed a mono-

phyletic group, whose relationship with the strain from Ae.

albopictus Wolbachia strain A (Figure 1; Aedes_albopictus_12_A) is

poorly resolved. The three strains that infect Culex quinquefasciatus,

Mansonia uniformis and Mansonia africana clustered together with

three strains found in the Lepitoptera (Figure 1). There are

numerous other strains from this clade in the MLST database,

many of which infect Lepidoptera, and if these are included in the

tree the relationships within the clade are poorly resolved (data not

shown).

Recombination Events
Across the entire tree of 119 strains, we estimated that

recombination involves a mean tract length of 127 bp being

exchanged between strains (95% credibility interval: 98–164 bp).

We estimated that recombination (r) and mutation (m) had a similar

probability of introducing substitutions into the genome of

Wolbachia (mean r/m= 1.36; 95% credibility interval: 1.01–1.79).

Although both events may have equal chances of producing

nucleotide substitutions, the rate at which each occurs could be

different. Defined by r/h (recombinational to mutational rate),

point mutations were estimated to happen roughly four times

more frequently than recombination (r/h= 0.27, 95% credibility

interval: 0.19–0.37).

We were specifically interested in recombination that involved

Wolbachia strains related to those infecting mosquitoes. We

inspected the substitutions that had occurred on individual

branches leading to various nodes in the mosquito clades (shown

by blue circles in Figure 1). There were several lineages where

there was a high probability of recombination (posterior proba-

bility of import .0.95; Figure 2). On the branch that leads to the

mosquito Wolbachia clade in supergroup B (Figure 2; node A),

about a third of the length of the fbpA gene was imported. In the

Aedes albopictus Wolbachia strain B (wAlbB) the full length of the coxA

gene was imported (Figure 2; node B), differentiating this strain

from those of the other mosquito species in this supergroup.

Similarly, the entire coxA gene was imported on the lineage leading

to the strains infecting Mansonia uniformis and Culex quinquefasciatus

(Figure 2; node D). There was also evidence of three smaller

recombination events in the mosquito clades (Figure 2; nodes C, E

and F).

Since the coxA gene has a high probability of the entire gene

having been exchanged by recombination (Figure 2; nodes B and

D), we investigated the possible sources of these imported

sequences. To do this, we reconstructed a neighbour-joining tree

using all published sequences of coxA, and looked for taxa which

had very similar sequences (two or fewer differences) to the

sequences from the Wolbachia strains that showed evidence of

recombination but appeared elsewhere on the MLST tree. The

source of coxA into Ae. albopictus wAlbB was not detected in the

database. The source of the coxA sequence into the lineage on node

D (Figure 2) appears to be host strains 355, 502, 439 and 492 in

the MLST database (data not shown). Unfortunately, the names of

the arthropod species that these strains infect have not been

published.

Discussion

Wolbachia is an important component of the antiviral defences of

insects [8,10,11], which has the potential to prevent mosquitoes

from transmitting viruses like dengue and chikungunya [9,13].

Furthermore, some strains of Wolbachia also affect metazoan

parasites like Plasmodium [9], hence they may also play a role in

Table 1. Prevalence of Wolbachia in mosquitoes from Kenya.

Species
Number
individuals wsp positive Prevalence (%)

Anopheles gambiae 22 0

Anopheles funestus 27 0

Anopheles coustani 4 0

Culex quinquefasciatus 24 10 42 (22–63)

Mansonia uniformis 19 5 26 (9–51)

Mansonia africana 22 6 27 (11–50)

Aedes aegypti 29 0

Aedes bromeliae 16 12 75 (48–96)

Aedes metallicus 2 1 50 (1–99)

The prevalence is shown with the 95% confidence interval in parentheses.
doi:10.1371/journal.pone.0049922.t001
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affecting the transmission of these parasites [17,18]. Here, we

make the first report of Wolbachia infections in Ae. bromeliae, a vector

of yellow fever virus [44], and M. africana, a vector of the filarial

nematode Wuchereria bancrofti [45] – a major cause of lymphatic

filariasis. Furthermore, we extend the known range of Wolbachia in

M. uniformis from Southeast Asia [24] to Africa, where this species

is a competent vector of Wuchereria bancrofti [45].

The Wolbachia strains we have identified may have implications

for both the natural transmission rate of human disease, and the

attempts to manipulate transmission rates through the release of

Figure 1. Phylogeny ofWolbachia strains based onWolbachiaMLST genes. Tip labels include 115 host strains from PubMLST (http://pubmlst/
wolbachia) and 5 mosquito host species from this study. Black arrows indicate positions of mosquito Wolbachia strains. The branch labels are
posterior probabilities (only support values above 90% are shown). Blue circles are the nodes leading to Wolbachia strains in mosquitoes that are
analysed in Figure 2. Branch lengths are proportional to divergence time in coalescent units. The tree was constructed using the Bayesian
ClonalFrame software.
doi:10.1371/journal.pone.0049922.g001

Figure 2. Recombination events on branches leading to nodes in the mosquito Wolbachia clades. The nodes A–F are shown by blue
circles in Figure 1. The red line is åthe posterior probability that the sequence was imported by recombination. Positions marked ‘x’ are nucleotide
substitutions in the genes; intensity of ‘x’ markings are proportional to posterior probability of substitution with darker marks indicating higher
probability.
doi:10.1371/journal.pone.0049922.g002
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Wolbachia-infected mosquitoes. As virus protection appears to be

a common trait among Wolbachia strains in arboviral hosts

[8,10,11], it is possible that these strains we have detected in the

yellow fever vector Ae. bromeliae may reduce arboviral transmission

rates in the wild. This has the potential to be significantly

important since 75% of individuals were infected. These strains

also have the potential to be transinfected into key vector species

such as Ae. aegypti. This is likely to be far easier than transfers of

strains from distantly related species like Drosophila, as transinfec-

tion is known to have higher success rates between more closely

related species of insects [21,46]. Finally, these resident Wolbachia

strains might interfere with attempts to introduce novel strains into

the population as part of control programs.

Wolbachia bacteria were first reported in C. pipiens [47] and since

then many more strains have been reported in other mosquito

genera [24,25,48,49]. Our sample size was not as large and diverse

as previous work have shown [24,49] but, the presence of

Wolbachia in the genera Aedes, Culex and Mansonia is confirmed, and

the prevalence of infections in the three genera of mosquitoes was

comparable to other studies [24]. The failure to detect Wolbachia in

the three species of Anopheles in our study confirms the absence of

Wolbachia in this group of mosquitoes [24,49]. It was speculated

that this may be due to the inability of Anophelines to support

Wolbachia physiologically [24]. Recently, transinfection of Wolba-

chia into Anopheles has shown stable infections in somatic cells with

striking effects on immune gene regulation in response to

Plasmodium falciparum but, no infections in the ovaries was observed

[50,51].

With the confounding effects of recombination accounted for,

we have provided analyses of the Wolbachia phylogeny. The

Wolbachia strains in mosquitoes were clearly categorized into

supergroups A and B, with at least two mosquito-infecting clades.

The tendency of the mosquito-infecting strains to cluster together

could be explained by an ancestral species being infected and then

co-speciating with Wolbachia, or by horizontal transmission

between mosquitoes. Horizontal transfer seems more probable,

as it is known from other taxa that horizontal transmission most

commonly occurs between the closest related host species [52].

Supporting Information

Figure S1 ClonalFrame ‘tree comparison’ tool output of
UPGMA starting tree with the 8 coalescent tree models.
Shaded circles are proportional to the support on the nodes during

the tree comparison. Black circles represent nodes that are present

in the UPGMA starting trees and all the other trees, white nodes

are nodes found on the UPGMA starting tree but not in the

combined comparison with the other tree outputs.

(PDF)
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