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Abstract: Artificial intelligence (AI) has shown immense potential to fight COVID-19 in many ways.
This paper focuses primarily on AI’s role in managing COVID-19 using digital images, clinical and
laboratory data analysis, and a summary of the most recent articles published last year. We surveyed
the use of AI for COVID-19 detection, screening, diagnosis, the progression of severity, mortality,
drug repurposing, and other tasks. We started with the technical overview of all models used to fight
the COVID-19 pandemic and ended with a brief statement of the current state-of-the-art, limitations,
and challenges.

Keywords: machine learning; deep learning; COVID-19; coronavirus; artificial intelligence

1. Introduction

Coronaviruses are positive-sense single-stranded RNA viruses; they belong to the
Coronavirdiae family, and mainly infect birds, mammals, and humans [1]. The Coronavirdiae
family consists of two subfamilies (Letovirinae and Orthocoronavirinae), and five genera,
such as Alphaletovirus, Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoron-
avirus [2]. The coronavirus disease 2019 (COVID-19) is caused by a severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), which was first introduced in Wuhan, China [3].
The severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respira-
tory syndrome coronavirus (MERS-CoV) are a genus of Betacoronavirus and have infected
more than 120 million people worldwide [4].

As of 11 February 2021, 107 million confirmed cases have been reported in 212 coun-
tries and the mortality rate is 2.19% (https://www.worldometers (accessed on 11 Febuary
2020). There are no specific treatments available for COVID-19 so far, and most of the clini-
cal therapies mainly focus on coping with the symptoms. However, several antiviral drugs,
such as remdesivir, were tested and approved for treating severe COVID-19 patients [5,6].
Hhydroxychloroquine, antirheumatic, and angiotensin inhibitors were also used for the
management of patients, especially those at high risk [7,8]. Researchers around the world
are developing potential vaccines to treat patients that will directly target the virus or
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block viral entry. Indeed, this pandemic has created a global challenge in many ways, such
as increasing demand for medical personnel’s (doctor, nurse, and pharmacists), hospital
beds, and medications [9]. The reverse transcriptase–polymerase chain reaction (RT-PCR)
is considered as a gold standard tool to identify COVID-19 patients, but the number of
RT-PCR is not sufficient, and the diagnostic accuracy is less than eighty percent [10,11].
The availability of standard diagnostic tools for COVID-19 is currently in shortage in the
developing countries. This contributes to increased infection rates and delays critical
preventive measures.

Artificial intelligence (AI) algorithms have shown great potential to predict, diagnose,
image classification, and epidemiological trends of diseases. Thus, the application of AI
can immediately be applied to combat COVID-19. However, tackling COVID-19 depends
on many variables, including rapid diagnosis, screening, accurate stratification of severe
patients, and proper treatments. This review shows the contribution of AI models to
combat COVID-19 (Figure 1).
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2. Overview of Artificial Intelligence

The main objective of this section is to provide a formal idea and definition of the
artificial intelligence (AI) concepts, techniques and architectures that we found in the
COVID-19 related papers surveyed in this study.

2.1. Machine Learning
2.1.1. Random Forest (RF)

Random forest (RF) is a simple, diverse, and high performing algorithm introduced
by Tin Kam Ho [12]. It is preferred by machine learning practitioners [13]. This algorithm
generates multiple decision trees and averages them together to make an accurate pre-
diction [14]. The RF algorithm’s working process is almost similar to boosting; it is easy
to train and tune. The main advantage of the RF model is to use both classification and
regression tasks. The RF model always utilizes to make correct decision trees and reduce
the overfitting problem [15]. Although the RF gives higher performance than decision
trees, accuracy cannot outperform gradient boosted trees. In general, bootstrap aggregating
or bagging techniques are applied in the RF algorithm to train the model. For example,
begging repeatedly (N times) and select a random sample with a replacement from the
training dataset, X = x1, x2 . . . , xn with regarding the outcome Y = y1, y2, . . . , yn. For,
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i = 1, . . . , N : (a) Random sample, with replacement, n train data of X, Y; express in Xi, Yi
(b) train a classification and regression tree fi on Xi, Yi. The RF model can be presented in:

ŷ =
1
m

m

∑
j=1

n

∑
i=1

Wj(xi, x́)yi

with W(xi, x́) = 1
ḱ
, if xi is one of the ḱ point in the same leaf as x́, 0 otherwise.

2.1.2. Support Vector Machine (SVM)

A support vector machine (SVM) is a widely used supervised machine-learning
algorithm utilized in classification and regression problems. The SVM algorithm’s main
objective is to make a perfect decision boundary or line that can separate n-dimensional
space into the various correct category [16]. The most appropriate boundary line with fewer
errors is called a hyperplane. The equation for hyperplane can be examined as follows:

w0 + w1 ∗ x1 + w2 ∗ x2 + . . . + wn ∗ xn = 0

Let us assume the outcome y (outcomes) is either 1 (yes) or −1 (no). All of these three
lines bellows are considered as separating hyperplanes. They are used to separate the
outcome y (yes or no) and this property can be presented mathematically as follow:

w0 + w1 ∗ x1 + w2 ∗ x2 > 0 i f y = 1 (yes)

w0 + w1 ∗ x1 + w2 ∗ x2 < 0 i f y = −1 (no)

2.1.3. Logistic Regression (LR)

Logistic regression (LR) is a popular algorithm used to measure the relationship
between the dependent variable, such as mortality of patients with COVID-19, and one or
more independent variables or predictors (e.g., age, gender, lymphocytes, albumin, LDH,
hypersensitive C—reactive protein (hs-CRP)) by calculating probabilities using a logistic
function. LR includes a particular group of models named a generalized linear model. It
can be explained simply by the following equation:

Mortality =

{
1 w0 + w1x + ε > 0
0 else

where ε is an error distributed by the standard logistic distribution. A logistic function
is a sigmoid function, which receives any independent variable/predictor (p) and gives
an outcome value (yes or no); a value between 0 and 1. The standard logistic function
σ : R→ (0, 1) is presented as bellows:

σ (p) =
ep

ep + 1
=

1
1 + ep

Suppose, p is a linear function of one independent variable/predictor x. Then p can
be presented as follows:

p = w0 + w1x

And the general logistic function l : R→ (0, 1) is now expressed as:

l(x) = σ(p) =
1

1 + e−(w0+w1x)



J. Clin. Med. 2021, 10, 1961 4 of 17

If there are multiple predictor variables for mortality predictions, the expression
w0 + w1x can be revised to

w0 + w1x1 + w2x2 + . . . + wmxm = w0 +
m

∑
i=1

wixi

where wm(i ∈ [0, m]) are the mortality risk prediction model parameters, m is the number
of predictor variables, and xi are predictor variables in a given COVID-19 patient.

2.1.4. XGBoost

XGBoost is an ensemble algorithm that has recently been widely applied to machine
learning prediction models because of its speed and performance. This method’s main
principle is to boost weak learners to make them strong learners using gradient descent
architecture. It helps to minimize a regularized objective function and reduce model
complexity. It also trains the dataset iteratively, adding new trees that predict the residuals
or errors of prior trees. Lastly, it combines all predictive values of previous trees to make a
final prediction.

2.2. Deep Learning
2.2.1. Artificial Neural Networks (ANNs)

ANNs are one of the main tools used in AI. ANNs are inspired by the neurons of
a biological brain that is intended to mimic how humans learn. ANN consists of input,
hidden, and output layers. The input layer is the first layer that receives information in
numbers, documents, texts, images, and audio files. The middle layer is called the hidden
layer, and a single layer neural network is called a perceptron. However, it can be multiple
layers and gives single or multiple outcomes.

In Figure 2, x1, x2, x3, and x4 represents four inputs (independent variables) to the
network. Each of the four inputs is multiplied by a random weight. The weights are
represented as w1, w2, w3, w4 Weight represents the strength of each node and b is called
bias. A bias value lets the activation function go up and down. The following output is
generated in the activation function:

x1 × w1 + x2 × w2 + x3 × w3 + x4 × w4
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The activation function determines whether a neuron would be activated or not by
the sum of weight and further adding bias to it. The primary objective is to introduce
non-linearity into the output of each neuron. There are various activation functions used in
the neural network, such as:

2.2.2. Convolutional Neural Network (CNN)

A CNN consists of several network layers such as input, convolutional, max pool-
ing, average pooling, and output layers. The total number of layers can be increased or
decreased based on how many inputs are used to train the model. However, the deeper
network will perform better in a large dataset. The advantage of using CNN is that it does
not need any feature extraction. In the CNN model, the features are automatically extracted
hierarchically from the input, and it is further classified by using a fully connected layer.
Figure 3 shows the architecture of the CNN model.
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Convolutional layer: A convolutional function is applied in the convolutional layer
to use given input variables. A filter moves over the input variables with a stride (describes
how many pixels per filter will be translated horizontally and vertically). The providers
usually determine the size of the stride. It generates feature maps and is used as an input
of the subsequent layer.

Activation function: Different types of activation function are applied in the con-
volutional layers. It helps to create a non-linear relationship between the data and the
output class.

Layer l is a non-linearity layer and it takes the feature volume Y(L−1)
I from a convolu-

tional layer (l − 1) and generates the activation volume Y(l)
i .

Y(l)
i = f

(
Y(l−1)

i

)
There are several types of activation function, such as tanh, sigmoid, and ReLu, used

to classify output variables. However, ReLu is a widely used activation function because of
its capability to reduce the exploding/vanishing gradient problem.

Tanh : f (x) = tan h(x)

Sigmoid : f (x) =
1

1 + e−x
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ReLu : f (x) = max(0, x)

Max pooling: A max pooling layer is used to reduce the size of the feature. The
value of stride is selected according to the maximum value/average value (Figure 4). The
maximum/average value is taken by stride and a matrix is made. However, the output
size of the layer is smaller than the previous layer.
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Fully connected layer: The neuron of the previous layer i.e., max pooling layer will
be connected to each and every neuron in this layer. The output layer of the MLP will
have m(l−i)

1 outputs. In the output neurons, i denotes the number of layers in the MLP
(Figure 5).
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If l − 1 is a fully connected layer;
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)
with z(l)i = ∑m(l−1)

1
j=1 w(l)

i,j y(l−1)
i

2.2.3. Neural Recurrent Network (RNN)

RNN is a generalization of a feedforward neural network that uses information
sequentially. Traditionally, all inputs (and outputs) of the neural network are considered
independent of each other. The RNN performs the same task for every input of data, and
the output always depends on the previous computations. Every time the output is made,
it is then copied and sent back to the recurrent network. To make the final output, it takes
the current input and the output that it has already learned from the previous input of
data. Unlike feedforward neural networks, RNNs have an internal state (memory) that can
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process sequences of inputs and capture input and output information about what has been
calculated. This ability makes RNN applicable to real-time clinical decision-making tasks.

In Figure 6, it shows that RNN takes input x0 from the sequence of data and makes
an output (h0), which then combines with another input x1 for the next step. Therefore,
the next input is a combination of the output of the previous input h0 and second input x1.
Similarly, the next input will be a combination of output h1 and input x2, and so on. In this
process, RNN continues to remember the information while training.
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The mathematical equation for the current state and activation function is given below:

ht = f (ht−1 , xt)

ht = tan h(whhht−1 + wxhxt

where W is weight, h is the single hidden vector and whh is the weight at a previous
hidden state, whx is the weight at the current input state, tan h is the activation function
that converts input to range (–1,1), and output state yt is produced by yt = whyht where
why is the weight at the output state.

2.2.4. Long Short Term Memory (LSTM)

LSTM is a modified version of RNN, which can easily collect data information in the
memory cell. LSTM is applied to overcome the vanishing gradient problems through a
gating mechanism and is more applicable to classify processes and predict real-time clinical
problems given time lags of unknown duration. The primary tool of LSTM’s is the cell state
(memory) and its’ various gates. The cell state of LSTM transfers valuable information to
the whole sequence. Adding useful information from previous time steps can make its
way to later time steps, minimizing the impact of short-term memory. Since the cell state
proceeds forward, potential information is added or deleted to the cell state via gates. The
gate decides what information is allowed on the cell state, and the cell state determines
what information is valuable to retain or delete during the training process. LSTM consists
of input, forget, and output gate (Figure 7).
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(a) Input gate: The input gate used to update the cell state; it helps to pass the previous
hidden state and current input into a sigmoid function. The sigmoid activation function
transforms the values between 0 and 1. The value closer to 0 means unimportant, and
closer to 1 means important. The input gate also passes the same hidden state and current
input into a tanh function to convert values between −1 and 1.

Finally, the output from the sigmoid function would multiply with output from the
tanh function; however, the sigmoid output makes a decision on what information could
be retained from the tanh output.

it = σ (Wi.[ht−1, xt] + bi)

Ct = tan h(WC.[ht−1, xt] + bC)

(b) Forget gate: the forget gate decides which information can be retained or deleted.
Values from the previous hidden state and current input go through the sigmoid function
and convert them between 0 and 1. The value closer to 0 omits, and closer to 1 retains.

ft = σ
(

W f .[ht−1, xt] + b f

)
(c) Output gate: The output gate makes a decision on what the next hidden state

would be and the hidden state stores all valuable information on previous inputs, which
are eventually used to predict. In this process, the previous hidden state and the current
input goes through a sigmoid function (convert value 0 and 1), and the newly modified cell
state goes through the tanh function (convert value−1 and 1). Storing valuable information
in the hidden state is decided by multiplying the tanh output with the sigmoid output. The
new cell state (Ct) and the new hidden state (ht) is then transferred over the next step.

Ot = σ(W0[ht−1, xt] + bo)

ht = Ot × tan h(Ct)
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3. Review of State-of-the-Art

AI has been applied to many areas of COVID-19, including screening, diagnosis,
severity stratification, mortality prediction, and epidemiology controls. A review of the
related recent state-of-the-art is shown below:

3.1. COVID-19 Screening Using Digital Images
3.1.1. Potentiality

The prevalence of COVID-19 has been increasing, and the healthcare industry is facing
a lack of healthcare providers to handle this unprecedented situation. Digital images,
such as X-ray and CT scan, have been used to check abnormalities and stratify COVID-
19 patients. Recently, deep learning shows its’ capabilities to detect disease accurately
using digital images. Therefore, developing AI systems could help physicians to screen
COVID-19 patients efficiently and lessen the burden on hospitals dealing with outbreaks.
Kumar et al. [17] developed a machine learning-based classification model using a deep
feature for COVID-19 patient’s prediction. The XGBoost model showed higher classification
performance (AUROC: 0.99, accuracy: 0.97, sensitivity: 0.97, and specificity (0.98)) than
other models. Minaee et al. [18] trained 2000 X-ray images using convolutional neural
networks, including ResNet18, ResNet50, SqueezeNet, and DenseNet-121 to stratify early
COVID-19 patients and achieved a sensitivity of 98%. Moreover, Karim et al. [19] developed
an explainable deep learning prediction model using 15,959 chest radiography images
from three categories of patients (COVID-19, normal and pneumonia). While evaluating
their model, they achieved precision, recall, and an F1 score of 0.904, 0.905, and 0.905,
respectively. Table 1 shows several deep learning-based prediction models for COVID-19
patients’ classification.

Table 1. The performance of AI model for COVID-19 detection.

Author Model Algorithms Applications Modality F-1 Score AUROC/Accuracy

Hemdan [20] CNN DenseNet Classification of COVID-19
and normal X-ray 0.91 -

Civit-Masot [21] CNN VGG16 Classification of COVID-19,
Pneumonia, and healthy X-ray 0.91 >90

Elaziz [22] CNN FrMEMs Classification of COVID-19
and healthy X-ray - –/96 and 98

Wang [23] CNN Xception + SVM Classification of COVID-19
and normal X-ray - 99.33/99.32

Das [24] CNN VGG-16 Classification of COVID-19,
Pneumonia and normal X-ray 0.96 –/97.67

Kassani [25] CNN DesnseNet121
+Bagging

Classification of COVID-19
and normal

X-ray and
CT scan 0.96 –/99

Ardakani [26] CNN ResNet-101 Classification of COVID-19
and normal CT scan 1.0 99.4/99.5

Jain [27] CNN ResNet101 Classification of COVID-19
and viral pneumonia X-ray 0.98 –/98.15

Singh [28] CNN MODE-based
CNN

Classification of COVID-19
and normal CT scan – –/93.3

Ahuja [29] CNN ResNet 18 Classification of COVID-19
and normal CT scan 0.99 99.65/99.4

Note: CNN: Convolutional Neural Network.

3.1.2. Limitations

The primary objective of the AI model is to stratify COVID-19 patients from healthy
patients. CNN model showed an efficient performance to be considered in the real-world
clinical setting. However, there are several potential limitations. First, all of the studies
were poorly reported and had a high risk of bias, therefore, considering their findings in
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the real-world clinical setting would be optimistic. Second, all of the studies had a lack of
external evaluation and most of the studies used similar datasets, which raised potential
bias. Third, no study mentioned where to deploy and how to interpret their findings;
therefore, there is a lack of applicability information. Fourth, only a few studies reported a
positive and negative predictive value, but these metrics are important to make a clinical
decision using the findings in the hospital settings.

3.2. Artificial Intelligence for COVID-19 Severity
3.2.1. Potentiality

A large number of patients being hospitalized due to COVID-19, and mortality risk
is also high. Previous studies reported that approximately 30 percent of patients go to
the ICU among hospitalized patients, and 12–33 percent of patients need mechanical
ventilation supports [30–32]. Identifying predictors for disease severity would help the
physician make a crucial decision on which patients’ group needs to be prioritised or
treated sooner (Table 2). Cai et al. [32] used CT images of COVID-19 patients to develop a
prediction model that stratifies disease severity into groups (moderate, severe and critical).
Lassau et al. [33] developed an AI-based scoring system to predict disease severity using
just five clinical and biological variables. The performance of their model slightly increased
while adding radiology variables. Moreover, Yip et al. [34] used 107 radiomic features
of 1110 COVID-19 patients for developing a prediction model. Their model successfully
stratified severe patients from mild patients with an AUROC of 0.85. Some symptoms
(e.g., dyspnea, respiratory rate, heart rate and comorbidities (e.g., cardiovascular disease,
hypertension, and diabetes)) significantly differed between mild and severe patient. A
combination of clinical variables and radiological variables provided better performance.
For example, a radiological feature such as ground-glass opacity significantly impacted
severity prediction [35]. Quiroz et al. [36] aimed to develop an AI-based prediction model
using clinical and imaging data from 346 patients. Different modern machine learning
techniques, including, XGBoost, were used and several essential features also identified.
The logistic regression model outperforms other models and accurately differentiates mild
and severe patients (AUC 0.950; sensitivity 0.764; specificity 0.919).

Table 2. The performance of AI model to predict disease severity of patients with COVID-19.

Author Methods Application Variable Types Precision/Recall AUROC/Accuracy

Akbar [37] GBM Severity of COVID-19 Blood 0.91/0.88 89/89

Feng [38] RNN Severity CT scan –/0.81 90/94

Xiao [39] CNN Severity CT scan –/– 89/81.9

Wu [40] LR Severity CT and laboratory 0.66~0.95/0.75~0.96 84~93/74.4~87.5

Li [41] CNN Severity CT and laboratory 0.82/0.79 93/88

Kang [42] ANN Severity CT, clinical and laboratory –/– 95/–

Ho [43] CNN Severity CT 0.78/0.80 91/93

Note: CNN: Convolutional Neural Network; RNN: Recurrent Neural Network; ANN: Artificial Neural Network; GBM: Gradient Boosting
Method; CT: Computed Tomography.

3.2.2. Limitations

AI models showed potentially significant performance in accurately predict the prog-
nosis of the COVID-19 disease after hospitalization. However, these studies had several
limitations. First, they had a small sample size, therefore the interpretation of results
could be varied. Second, all of the studies collected data retrospectively and their results
could be different while using their findings prospectively in the real-world clinical set-
ting. Third, the range of missing data varied among studies; therefore, some potential
information might be missed during the severity prediction. Finally, it is unclear what the
optimal number of variables to be used is, and what kinds of variables (only laboratory
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and CT or a combination of both etc.) should be used to predict the disease progression
during admission.

3.3. Artificial Intelligence for COVID-19 Mortality
3.3.1. Potentiality

COVID-19 has already shown its’ fatality, and the number has been increasing each
day. Healthcare providers are struggling to make effective decisions for severe patients.
This is because the pattern of the disease is complex. However, AI is an effective tool to
predict the mortality of COVID-19 using a large number of clinical, laboratory, and image
data. Timely grouping of the high-risk patients can help the physician make valuable
medical decisions on who needs to receive more attention [44]. Several studies attempted
to make an effective personalized mortality risk scoring system and evaluated their model
with a new dataset [45,46] (Table 3). Booth et al. [47] demonstrated that serum biomarkers
such as C—reactive protein (CRP), blood urea nitrogen (BUN), serum calcium, serum
albumin, and lactic acid are significantly associated with an increased risk of mortality.
Similarly, Zhou et al. [48] identified several risk factors (serum ferritin, procalcitonin, and
CRP) that are directly associated with increased risk of severity and mortality. Moreover,
epidemiological and clinical variables were significantly different between the survival
and mortality group [49]. For example, the mortality rate was higher in patients with older
age, obesity, and cardiac diseases [50,51].

Table 3. The performance of AI model to predict mortality of COVID-19.

Author Methods Application Variable Sensitivity/Specificity AUROC/Accuracy

Abdulaal [52] ANN Mortality risk Demographic, comorbidities,
smoking history, and symptom 0.87/0.85 -/86.25

An [53] SVM Mortality risk Demographics, symptom,
comorbidities, and medications 0.92/0.91 96.3/-

Gao [54] Ensemble model Mortality risk Demographics, comorbidity and
vital sign

0.32~0.45/
0.97~0.99

92~97/
93.0~95.6

Hu [55] LR Mortality risk Demographic and laboratory 0.83/0.79 88/-

Li [56] ANN Mortality risk Demographics, symptoms and
laboratory 0.75/0.87 84/85

Yan [57] XGBoost Mortality risk Demographic, symptom,
and laboratory 1/- 92.2~95.05/

Rechtman [58] XGBoost Mortality risk Demographics, symptoms,
comorbidities - 86/-

Ryan [59] XGBoost Mortality risk Demographic, comorbidity, vital
sign, and laboratory 0.82/0.84 91.0/80

Vaid [60] XGBoost Mortality risk Demographic, comorbidity, vital
sign, and laboratory - 68~98/

Yadaw [61] XGBoost Mortality risk Demographics, comorbidity,
smoking - -/91

Note: LR: Logistic Regression; SVM: Support Vector Machine; ANN: Artificial Neural Network.

3.3.2. Limitations

Although, the overall performance of the AI model to predict COVID-19 mortality was
satisfactory in terms of sensitivity and specificity. However, there were several potential
limitations, namely generalizability (it had limited external validation), single-site study,
and a small minority of cohort. The majority of the studies did not include important
variables such as hematological, biochemical, radiological, and microbiological variables.
Moreover, different studies used different feature selection models; therefore, the number
of variables to predict COVID-19 mortality is fixed, such as conventional scoring systems.
Finally, most of the study failed to show the effect of drugs on mortality risk prediction.
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Some studies used drug history as input variables, but they did not mention how long the
patients had taken the medications, and there was no information about the dose.

3.4. Artificial Intelligence for COVID-19 Drug Repurposing
3.4.1. Potentiality

There is no specific treatment available to fight COVID-19, and the development of new
drugs needs 10–15 years [62]. A previous study demonstrated that approximately 30–40%
of total drugs were used for a new purpose; although, drug repurposing is sometimes
performed accidentally or in a limited way [63]. A recent technological advancement
has opened opportunities for the systemic evaluation of any drug indication against new
diseases. Drug repurposing not only saves time and costs, but it ensures patient safety
because potential adverse effects have already tested. Text mining and bioinformatics tools
are used to screen biological and chemical data to find known drugs against an array of
COVID-19 target. The drug-repurposing strategy was used previously to combat several
life-threatening diseases; therefore, finding its role to tackle the COVID-19 pandemic
could be a great option. Cantürk et al. [64] utilized a neural network model to discover
the underlying associations between viral proteins and antiviral therapeutics, which can
be used to treat COVID-19 patients. AI researchers are very enthusiastic about drug
repurposing to fight COVID-19 and have already proposed AI methods for searching
existing drugs that have antiviral activity against COVID-19 (Table 4).

Table 4. Application of AI for COVID-19 drug repurposing.

Author Application Model Data Results

Beck-2020 [4]

Identifying available drugs that
could act on viral proteins of
SARS-CoV-2 using Molecule

Transformer-Drug Target
Interaction (MT-DTI)

Transfer learning and
molecular docking

Drug Target Common (DTC)
database and BindingDB

antiviral drugs such as
lopinavir/ritonavir had been

identified by the MT-DTI model
should be considered

Choi-2020 [65]

Finding approved drugs that can
inhibit COVID-19 by using g a

deep learning-based drug-target
interaction model called Molecule

Transformer-Drug Target
Interaction (MT-DTI)

Transfer learning and
molecular docking DrugBank and ZINC

Identified 30 drugs that have
strong inhibitory potencies to

the angiotensin converting
Enzyme 2 (ACE2) receptor and

the transmembrane protease
serine 2 (TMPRSS2).

Esmail-2020 [66]

Identifying antiviral therapeutic
targets for drug repurposing by

using the DeepNEU stem
cell-based platform and validated
computer simulations of artificial

lung cells.

Hybrid deep-machine
learning system with

elements of fully connected
RNNs, CMs, and

evolutionary systems (GA)

DeepNEU database plus
important information

upgrades in the form of a new
gene, protein, and phenotypic

relationship data.

To improve preparedness for
and response to future

viral outbreaks.

Gusarov-2020 [67]
Identifying potential drugs for

SARS-CoV-2 using machine
learning algorithms

Machine learning algorithms N/A

Short for conductor-like
screening model for real
solvents might assist to

accelerate drug discovery for
the treatment of COVID-19

Hooshmand-2020 [68]

Finding potential drugs that can
inhibit COVID-19 using the

Multimodal Restricted Boltzmann
Machine approach (MM-RBM)

Multimodal Restricted
Boltzmann Machine

approach (MM-RBM)

Harmonizome and Literacy
Information and
Communication
System (LINCS)

MM-RBM has immense
potential to identify the highly

promising medications for
COVID-19 with minimum

side effects.

N. Ioannidis-2020 [69]
Identifying COVID-19 drugs for

repurposing using deep
graph learning

RGCN and state-of-the-art
KGE

IMDB, DBLP and
drug-repurposing

knowledge-graph (DRKG)

Their model showed promise to
identify possible
drug candidates.

Ke-2020 [70]

Identifying the marketed drugs
with potential for treating
COVID-19 using artificial

intelligence method

Deep Neural Network (DNN) DrugBank,
Identified 80 potential drugs

that have the ability to
fight coronavirus.

Kowalewski-2020 [71]
Searching several drug candidates

for COVID-19 using machine
learning algorithms.

Support vector machine

ZINC, ChEMBL 25,
DrugBank, EPI Suite,

Therapeutic targets databases,
Hazardous substances

data Bank

Suggested several drugs for
repurposed that suited for
short-term approval, and
long-term approval need

follow-up
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Table 4. Cont.

Author Application Model Data Results

Loucera-2020 [72]

Aimed at using machine learning
models to identify appropriate

drugs fight against
SARS-CoV-2 infection

Machine learning DrugBank

It shows promising results and
found several drugs that can be
considered only a subset of the

potential drug candidates
for repurposing.

Mohapatra-2020 [73]

Developed a machine-learning
model to find drugs already

available in the market; can be
used for inhibiting

SARS-CoV-2 infection.

Classification models such as
Naïve Bayes,

molecular docking

PubChem Bioassay,
DrugBank

The findings suggested that
machine-learning algorithms

can be identified and tested the
therapeutic agents for
COVID-19 treatment.

Pham-2020 [74]

Identifying strong associations
among biological features, and

outputs to predict gene expression
profiles given a new
chemical compound.

DeepCE based on linear
models, vanilla neural

network, k-nearest neighbor,
and tensor-train weight

optimization models.

L1000 gene expression gene,
STRING, DrugBank, Gene

Expression Omnibus

DeepCE helps to accelerate
compound screening against a

single target.

Verma-2020 [75]

To evaluate potential response of
existing antiviral drug candidates

against SARS-CoV-2 target
proteins that help viral entry and

replication into the host body.

Bayesian machine learning PubChem, ZINC, DrugBank,

Their model identified 45 drugs
that can inhibit SARS-CoV-2.

Those drugs work on the major
target proteins such as spike

protein (S) and main proteases.

Zeng-2020 [76]

To develop a network-based
deep-learning method of

identifying drugs to work as
repurpose drugs for COVID-19

DGL-KE developed by
AWS AI PubMed, DrugBank

Their model identified 41
repurpose drugs that may

accelerate therapeutic response
against COVID-19

3.4.2. Limitation

All of the studies showed a promising performance to find several drug candidates
that might help to fight agonist COVID-19. However, their findings were not tested
experimentally and clinically, which is the most potential limitation. Moreover, their
studies are based on the previous knowledge that all of the potential candidates had
a strong inhibitory effect on MERS and SARS-CoV; it was not guaranteed that these
candidates could strongly fight against SARS-CoV-2. We know that there are lots of
variants of SARS-CoV-2; therefore, it is uncertain whether they will be effective against all
variants of SARS-CoV-2.

3.5. Artificial Intelligence for Epidemic Trends

Since the COVID-19 infection rate was increasing rapidly, it was critically important
to predict the development and spread of the epidemic. Wang et al. [77] developed a
forecasting model using LSTM, a deep learning algorithm, which was able to predict the
rising trend of infection rate in the next 30 days. Their model successfully shows the
epidemic trend of COVID-19 infection for Russia, Peru and Iran.

4. Overall Challenges to Deploy AI Model in the Clinical Settings

Over the last decade, AI techniques have been showing their ability to predict various
diseases. However, the applications of AI in the healthcare industry is now contributing
in multiple ways, including decision supports. Although the performance of AI to fight
against COVID-19 is promising, there are still many challenges ahead while considering
how to deploy these AI models in real-world clinical settings. Several challenges of AI
have given bellows:

1. The number of participants used to train the AI models to predict disease progression,
mortality risk was not sufficient to deploy in real-world clinical settings. It is a great
challenge to train the model using a large number of patients from multiple sites or
countries and make the AI model more generable and trustworthy;

2. As all of the studies used different types (laboratory, symptoms, biochemical, CT/X-
ray) and a various number of variables to predict the risk of severity and mortality;
therefore, it is challenging to establish what kinds of variables should be used, and
what the optimal number to be utilized is while admitting COVID-19 patient to the
hospital. The traditional scoring systems for stratifying patients have a fixed number
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of variables, but deciding the fixed number of variables from those studies may
be difficult;

3. Making strong evidence and the simplicity of prediction models is also challenging
to fight against COVID-19. All of the included studies used different data sets, and
the ethnicity was also different. Moreover, they reported a different time frame while
predicting disease progression and mortality risk. All of the studies should provide a
standard time frame, such as 24 h, 3 days, and 7 days to predict patient’s situation;

4. Generalizability is another potential challenge to deploy the AI model in the real-
world clinical setting to tackle COVID-19. The findings of one study might be different
while testing it using other datasets from different countries;

5. Reducing bias, such as patient selection, reference standard, and methodology, would
be challenging. However, all of the upcoming studies should follow standard guide-
lines (e.g., TRIPOD) while reporting their findings;

6. Resolving the “black-box” issue would be more challenging; however, all of the
studies should provide a clear explanation of predictors and how these predictors
influence the performance. They should report univariate and multivariate analysis
while showing the performance metrics. Moreover, they should categorize the vari-
ables (e.g., symptoms, laboratory, and radiology) and present the model performance
for each category;

7. Others (Recommendation from organizations, establishing trust among healthcare
providers, decreasing false positive and negative results, and ethical issues).

5. Conclusions

The application of AI in pandemic control has shown great potential in various ways,
including predicting epidemic trend, patient tracking, stratifying asymptomatic patients,
and finding potential repurpose drugs. All of the studies had a lack of sample size, and
external validation and inappropriate model evaluation; therefore, using these findings
would be an optimistic decision. The finding of our study does not suggest using these
prediction models for diagnosis, disease progression, and mortality risk. However, future
research with a large sample size and proper interpretation could be evaluated using
multiple datasets before considering these in the real-world clinical setting. Moreover,
repurposed drug candidates can also be assessed by clinical experiments. Additionally,
studies are needed to assess the actual effectiveness of AI models and calculate the cost-
effectiveness in clinical practice. To get the real taste of AI to fight COVID-19, it is essential
to reduce the false positive and negative rate as well as to disclose the ‘black-box’ nature
of AI.

Author Contributions: M.M.I. and T.N.P.: conceptualization. T.N.P., M.C.L. and M.M.I.: method-
ology. M.M.I.: Software, resources, data curation and writing—original draft preparation. B.A.
and Y.-C.L.: validation. T.N.P.: formal analysis and visualization. M.-H.H.: investigation. Y.-C.L.:
writing—review and editing and supervision. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded in part by the Ministry of Education (MOE) under grants MOE
109-6604-001-400 and DP2-109-21121-01-A-01 and the Ministry of Science and Technology (MOST)
under grant MOST 109-2823-8-038-004.

Institutional Review Board Statement: N/A.

Informed Consent Statement: N/A.

Data Availability Statement: N/A.

Conflicts of Interest: The authors declare no conflict of interest.



J. Clin. Med. 2021, 10, 1961 15 of 17

References
1. He, F.; Deng, Y.; Li, W. Coronavirus disease 2019: What we know? J. Med. Virol. 2020, 92, 719–725. [CrossRef]
2. Woo, P.C.; Huang, Y.; Lau, S.K.; Yuen, K.-Y. Coronavirus genomics and bioinformatics analysis. Viruses 2010, 2, 1804–1820.

[CrossRef]
3. Zu, Z.Y.; Jiang, M.D.; Xu, P.P.; Chen, W.; Ni, Q.Q.; Lu, G.M.; Zhang, L.J. Coronavirus disease 2019 (COVID-19): A perspective

from China. Radiology 2020, 296, E15–E25. [CrossRef] [PubMed]
4. Beck, B.R.; Shin, B.; Choi, Y.; Park, S.; Kang, K. Predicting commercially available antiviral drugs that may act on the novel

coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput. Struct. Biotechnol. J. 2020, 18, 784–790.
[CrossRef]

5. Norrie, J.D. Remdesivir for COVID-19: Challenges of underpowered studies. Lancet 2020, 395, 1525–1527. [CrossRef]
6. Mitjà, O.; Clotet, B. Use of antiviral drugs to reduce COVID-19 transmission. Lancet Glob. Health 2020, 8, e639–e640. [CrossRef]
7. Tufan, A.; Güler, A.A.; Matucci-Cerinic, M. COVID-19, immune system response, hyperinflammation and repurposing an-

tirheumatic drugs. Turk. J. Med. Sci. 2020, 50, 620–632. [CrossRef] [PubMed]
8. Kai, H.; Kai, M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors—lessons from available evidence

and insights into COVID-19. Hypertens. Res. 2020, 43, 648–654. [CrossRef]
9. Willner, P.; Rose, J.; Stenfert Kroese, B.; Murphy, G.H.; Langdon, P.E.; Clifford, C.; Hutchings, H.; Watkins, A.; Hiles, S.; Cooper, V.

Effect of the COVID-19 pandemic on the mental health of carers of people with intellectual disabilities. J. Appl. Res. Intellect.
Disabil. 2020, 33, 1523–1533. [CrossRef]

10. Walsh, E.E.; Falsey, A.R.; Swinburne, I.A.; Formica, M.A. Reverse transcription polymerase chain reaction (RT-PCR) for diagnosis
of respiratory syncytial virus infection in adults: Use of a single-tube “hanging droplet” nested PCR. J. Med. Virol. 2001, 63,
259–263. [CrossRef]

11. Kim, H.; Hong, H.; Yoon, S.H. Diagnostic performance of CT and reverse transcriptase polymerase chain reaction for coronavirus
disease 2019: A meta-analysis. Radiology 2020, 296, E145–E155. [CrossRef] [PubMed]

12. Ho, T.K. Bootstrapping text recognition from stop words. In Proceedings of the Fourteenth International Conference on Pattern
Recognition (Cat No 98EX170), Brisbane, QLD, Australia, 20 August 1998; pp. 605–609.

13. Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [CrossRef]
14. Oshiro, T.M.; Perez, P.S.; Baranauskas, J.A. How many trees in a random forest? In Proceedings of the International Workshop

on Machine Learning and Data Mining in Pattern Recognition, Berlin, Germany, 13–20 July 2012; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 154–168.

15. Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics: New York, NY, USA, 2001;
Volume 1.

16. Suthaharan, S. Machine learning models and algorithms for big data classification. Integr. Ser. Inf. Syst. 2016, 36, 1–12.
17. Kumar, R.; Arora, R.; Bansal, V.; Sahayasheela, V.J.; Buckchash, H.; Imran, J.; Narayanan, N.; Pandian, G.N.; Raman, B. Accurate

prediction of COVID-19 using chest X-ray images through deep feature learning model with smote and machine learning
classifiers. MedRxiv 2020. [CrossRef]

18. Minaee, S.; Kafieh, R.; Sonka, M.; Yazdani, S.; Soufi, G.J. Deep-covid: Predicting covid-19 from chest x-ray images using deep
transfer learning. Med. Image Anal. 2020, 65, 101794. [CrossRef] [PubMed]

19. Karim, M.; Döhmen, T.; Rebholz-Schuhmann, D.; Decker, S.; Cochez, M.; Beyan, O. Deepcovidexplainer: Explainable covid-19
predictions based on chest X-ray images. arXiv 2020, arXiv:200404582.

20. Hemdan, E.E.-D.; Shouman, M.A.; Karar, M.E. Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in
X-ray images. arXiv 2020, arXiv:200311055.

21. Civit-Masot, J.; Luna-Perejón, F.; Domínguez Morales, M.; Civit, A. Deep learning system for COVID-19 diagnosis aid using
X-ray pulmonary images. Appl. Sci. 2020, 10, 4640. [CrossRef]

22. Elaziz, M.A.; Hosny, K.M.; Salah, A.; Darwish, M.M.; Lu, S.; Sahlol, A.T. New machine learning method for image-based diagnosis
of COVID-19. PLoS ONE 2020, 15, e0235187. [CrossRef]

23. Wang, D.; Mo, J.; Zhou, G.; Xu, L.; Liu, Y. An efficient mixture of deep and machine learning models for COVID-19 diagnosis in
chest X-ray images. PLoS ONE 2020, 15, e0242535. [CrossRef]

24. Das, A.K.; Kalam, S.; Kumar, C.; Sinha, D. TLCoV-An automated Covid-19 screening model using Transfer Learning from chest
X-ray images. Chaos Solitons Fractals 2021, 144, 110713. [CrossRef] [PubMed]

25. Kassani, S.H.; Kassasni, P.H.; Wesolowski, M.J.; Schneider, K.A.; Deters, R. Automatic detection of coronavirus disease (covid-19)
in X-ray and ct images: A machine learning-based approach. arXiv 2020, arXiv:200410641.

26. Ardakani, A.A.; Kanafi, A.R.; Acharya, U.R.; Khadem, N.; Mohammadi, A. Application of deep learning technique to manage
COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. Comput. Biol. Med. 2020, 121,
103795. [CrossRef] [PubMed]

27. Jain, G.; Mittal, D.; Thakur, D.; Mittal, M.K. A deep learning approach to detect Covid-19 coronavirus with X-ray images.
Biocybern. Biomed. Eng. 2020, 40, 1391–1405. [CrossRef] [PubMed]

28. Singh, D.; Kumar, V.; Kaur, M. Classification of COVID-19 patients from chest CT images using multi-objective differential
evolution–based convolutional neural networks. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1379–1389. [CrossRef] [PubMed]

http://doi.org/10.1002/jmv.25766
http://doi.org/10.3390/v2081803
http://doi.org/10.1148/radiol.2020200490
http://www.ncbi.nlm.nih.gov/pubmed/32083985
http://doi.org/10.1016/j.csbj.2020.03.025
http://doi.org/10.1016/S0140-6736(20)31023-0
http://doi.org/10.1016/S2214-109X(20)30114-5
http://doi.org/10.3906/sag-2004-168
http://www.ncbi.nlm.nih.gov/pubmed/32299202
http://doi.org/10.1038/s41440-020-0455-8
http://doi.org/10.1111/jar.12811
http://doi.org/10.1002/1096-9071(200103)63:3&lt;259::AID-JMV1010&gt;3.0.CO;2-X
http://doi.org/10.1148/radiol.2020201343
http://www.ncbi.nlm.nih.gov/pubmed/32301646
http://doi.org/10.1080/01431160412331269698
http://doi.org/10.1101/2020.04.13.20063461
http://doi.org/10.1016/j.media.2020.101794
http://www.ncbi.nlm.nih.gov/pubmed/32781377
http://doi.org/10.3390/app10134640
http://doi.org/10.1371/journal.pone.0235187
http://doi.org/10.1371/journal.pone.0242535
http://doi.org/10.1016/j.chaos.2021.110713
http://www.ncbi.nlm.nih.gov/pubmed/33526961
http://doi.org/10.1016/j.compbiomed.2020.103795
http://www.ncbi.nlm.nih.gov/pubmed/32568676
http://doi.org/10.1016/j.bbe.2020.08.008
http://www.ncbi.nlm.nih.gov/pubmed/32921862
http://doi.org/10.1007/s10096-020-03901-z
http://www.ncbi.nlm.nih.gov/pubmed/32337662


J. Clin. Med. 2021, 10, 1961 16 of 17

29. Ahuja, S.; Panigrahi, B.K.; Dey, N.; Rajinikanth, V.; Gandhi, T.K. Deep transfer learning-based automated detection of COVID-19
from lung CT scan slices. Appl. Intell. 2021, 51, 571–585. [CrossRef]

30. Docherty, A.B.; Harrison, E.M.; Green, C.A.; Hardwick, H.E.; Pius, R.; Norman, L.; Holden, K.A.; Read, J.M.; Dondelinger, F.;
Carson, G. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol:
Prospective observational cohort study. BMJ 2020, 369. [CrossRef]

31. Wu, C.; Chen, X.; Cai, Y.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; Zhang, Y. Risk factors associated with acute
respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern.
Med. 2020, 180, 934–943. [CrossRef]

32. Cai, W.; Liu, T.; Xue, X.; Luo, G.; Wang, X.; Shen, Y.; Fang, Q.; Sheng, J.; Chen, F.; Liang, T. CT Quantification and Machine-learning
Models for Assessment of Disease Severity and Prognosis of COVID-19 Patients. Acad. Radiol. 2020, 27, 1665–1678. [CrossRef]

33. Lassau, N.; Ammari, S.; Chouzenoux, E.; Gortais, H.; Herent, P.; Devilder, M.; Soliman, S.; Meyrignac, O.; Talabard, M.-P.;
Lamarque, J.-P. Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19
patients. Nat. Commun. 2021, 12, 1–11. [CrossRef]

34. Yip, S.S.; Klanecek, Z.; Naganawa, S.; Kim, J.; Studen, A.; Rivetti, L.; Jeraj, R. Performance and Robustness of Machine Learning-
based Radiomic COVID-19 Severity Prediction. medRxiv 2020. [CrossRef]

35. Song, Y.; Zheng, S.; Li, L.; Zhang, X.; Zhang, X.; Huang, Z.; Chen, J.; Wang, R.; Zhao, H.; Zha, Y. Deep learning enables accurate
diagnosis of novel coronavirus (COVID-19) with CT images. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021. [CrossRef] [PubMed]

36. Quiroz, J.C.; Feng, Y.-Z.; Cheng, Z.-Y.; Rezazadegan, D.; Chen, P.-K.; Lin, Q.-T.; Qian, L.; Liu, X.-F.; Berkovsky, S.; Coiera, E.
Development and validation of a machine learning approach for automated severity assessment of COVID-19 based on clinical
and imaging data: Retrospective study. JMIR Med. Inform. 2021, 9, e24572. [CrossRef] [PubMed]

37. Aktar, S.; Ahamad, M.; Rashed-Al-Mahfuz, M.; Azad, A.; Uddin, S.; Kamal, A.; Alyami, S.A.; Lin, P.-I.; Islam, S.M.S.; Quinn, J.M.
Predicting Patient COVID-19 Disease Severity by means of Statistical and Machine Learning Analysis of Blood Cell Transcriptome
Data. arXiv 2020, arXiv:201110657.

38. Feng, Y.; Liu, S.; Cheng, Z.; Quiroz, J.; Chen, P.; Lin, Q.; Qian, L.; Liu, X.; Berkovsky, S.; Coiera, E. Severity Assessment and
Progression Prediction of COVID-19 Patients based on the LesionEncoder Framework and Chest CT. medRxiv 2020. [CrossRef]

39. Xiao, L.-S.; Li, P.; Sun, F.; Zhang, Y.; Xu, C.; Zhu, H.; Cai, F.-Q.; He, Y.-L.; Zhang, W.-F.; Ma, S.-C. Development and validation of a
deep learning-based model using computed tomography imaging for predicting disease severity of Coronavirus disease 2019.
Front. Bioeng. Biotechnol. 2020, 8, 898. [CrossRef] [PubMed]

40. Wu, G.; Yang, P.; Xie, Y.; Woodruff, H.C.; Rao, X.; Guiot, J.; Frix, A.-N.; Louis, R.; Moutschen, M.; Li, J. Development of a clinical
decision support system for severity risk prediction and triage of COVID-19 patients at hospital admission: An international
multicentre study. Eur. Respir. J. 2020, 56. [CrossRef]

41. Li, D.; Zhang, Q.; Tan, Y.; Feng, X.; Yue, Y.; Bai, Y.; Li, J.; Li, J.; Xu, Y.; Chen, S. Prediction of COVID-19 Severity Using Chest
Computed Tomography and Laboratory Measurements: Evaluation Using a Machine Learning Approach. JMIR Med. Inform.
2020, 8, e21604. [CrossRef]

42. Kang, J.; Chen, T.; Luo, H.; Luo, Y.; Du, G.; Jiming-Yang, M. Machine learning predictive model for severe COVID-19. Infect.
Genet. Evol. 2021, 90, 104737. [CrossRef] [PubMed]

43. Ho, T.T.; Park, J.; Kim, T.; Park, B.; Lee, J.; Kim, J.Y.; Kim, K.B.; Choi, S.; Kim, Y.H.; Lim, J.-K. Deep Learning Models for Predicting
Severe Progression in COVID-19-Infected Patients: Retrospective Study. JMIR Med. Inform. 2021, 9, e24973. [CrossRef] [PubMed]

44. Pourhomayoun, M.; Shakibi, M. Predicting mortality risk in patients with COVID-19 using artificial intelligence to help medical
decision-making. medRxiv 2020. [CrossRef]

45. Bertsimas, D.; Lukin, G.; Mingardi, L.; Nohadani, O.; Orfanoudaki, A.; Stellato, B.; Wiberg, H.; Gonzalez-Garcia, S.; Parra-
Calderon, C.L.; Robinson, K. COVID-19 mortality risk assessment: An international multi-center study. PLoS ONE 2020,
15, e0243262. [CrossRef]

46. Malki, Z.; Atlam, E.-S.; Hassanien, A.E.; Dagnew, G.; Elhosseini, M.A.; Gad, I. Association between weather data and COVID-19
pandemic predicting mortality rate: Machine learning approaches. Chaos Solitons Fractals 2020, 138, 110137. [CrossRef] [PubMed]

47. Booth, A.L.; Abels, E.; McCaffrey, P. Development of a prognostic model for mortality in COVID-19 infection using machine
learning. Mod. Pathol. 2021, 34, 522–531. [CrossRef]

48. Zhou, B.; She, J.; Wang, Y.; Ma, X. Utility of ferritin, procalcitonin, and C-reactive protein in severe patients with 2019 novel
coronavirus disease. Res. Sq. 2020. [CrossRef]

49. Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T. Clinical course and outcomes of critically ill
patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med.
2020, 8, 475–481. [CrossRef]

50. Poly, T.N.; Islam, M.M.; Yang, H.C.; Lin, M.C.; Jian, W.-S.; Hsu, M.-H.; Li, Y.-C.J. Obesity and Mortality Among Patients Diagnosed
With COVID-19: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8. [CrossRef]

51. Mehra, M.R.; Desai, S.S.; Kuy, S.; Henry, T.D.; Patel, A.N. Cardiovascular disease, drug therapy, and mortality in Covid-19. N.
Engl. J. Med. 2020, 382, e102. [CrossRef] [PubMed]

52. Abdulaal, A.; Patel, A.; Charani, E.; Denny, S.; Mughal, N.; Moore, L. Prognostic modeling of COVID-19 using artificial intelligence
in the United Kingdom: Model development and validation. J. Med. Internet Res. 2020, 22, e20259. [CrossRef] [PubMed]

http://doi.org/10.1007/s10489-020-01826-w
http://doi.org/10.1136/bmj.m1985
http://doi.org/10.1001/jamainternmed.2020.0994
http://doi.org/10.1016/j.acra.2020.09.004
http://doi.org/10.1038/s41467-020-20657-4
http://doi.org/10.1101/2020.09.07.20189977
http://doi.org/10.1109/TCBB.2021.3065361
http://www.ncbi.nlm.nih.gov/pubmed/33705321
http://doi.org/10.2196/24572
http://www.ncbi.nlm.nih.gov/pubmed/33534723
http://doi.org/10.1101/2020.08.03.20167007
http://doi.org/10.3389/fbioe.2020.00898
http://www.ncbi.nlm.nih.gov/pubmed/32850746
http://doi.org/10.1183/13993003.01104-2020
http://doi.org/10.2196/21604
http://doi.org/10.1016/j.meegid.2021.104737
http://www.ncbi.nlm.nih.gov/pubmed/33515712
http://doi.org/10.2196/24973
http://www.ncbi.nlm.nih.gov/pubmed/33455900
http://doi.org/10.1101/2020.03.30.20047308
http://doi.org/10.1371/journal.pone.0243262
http://doi.org/10.1016/j.chaos.2020.110137
http://www.ncbi.nlm.nih.gov/pubmed/32834583
http://doi.org/10.1038/s41379-020-00700-x
http://doi.org/10.21203/rs.3.rs-23645/v1
http://doi.org/10.1016/S2213-2600(20)30079-5
http://doi.org/10.3389/fmed.2021.620044
http://doi.org/10.1056/NEJMoa2007621
http://www.ncbi.nlm.nih.gov/pubmed/32356626
http://doi.org/10.2196/20259
http://www.ncbi.nlm.nih.gov/pubmed/32735549


J. Clin. Med. 2021, 10, 1961 17 of 17

53. An, C.; Lim, H.; Kim, D.-W.; Chang, J.H.; Choi, Y.J.; Kim, S.W. Machine learning prediction for mortality of patients diagnosed
with COVID-19: A nationwide Korean cohort study. Sci. Rep. 2020, 10, 1–11. [CrossRef] [PubMed]

54. Gao, Y.; Cai, G.-Y.; Fang, W.; Li, H.-Y.; Wang, S.-Y.; Chen, L.; Yu, Y.; Liu, D.; Xu, S.; Cui, P.-F. Machine learning based early warning
system enables accurate mortality risk prediction for COVID-19. Nat. Commun. 2020, 11, 1–10. [CrossRef] [PubMed]

55. Hu, C.; Liu, Z.; Jiang, Y.; Shi, O.; Zhang, X.; Xu, K.; Suo, C.; Wang, Q.; Song, Y.; Yu, K. Early prediction of mortality risk among
patients with severe COVID-19, using machine learning. Int. J. Epidemiol. 2020, 49. [CrossRef] [PubMed]

56. Li, X.; Ge, P.; Zhu, J.; Li, H.; Graham, J.; Singer, A.; Richman, P.S.; Duong, T.Q. Deep learning prediction of likelihood of ICU
admission and mortality in COVID-19 patients using clinical variables. PeerJ 2020, 8, e10337. [CrossRef] [PubMed]

57. Yan, L.; Zhang, H.-T.; Goncalves, J.; Xiao, Y.; Wang, M.; Guo, Y.; Sun, C.; Tang, X.; Jing, L.; Zhang, M. An interpretable mortality
prediction model for COVID-19 patients. Nat. Mach. Intell. 2020, 2, 283–288. [CrossRef]

58. Rechtman, E.; Curtin, P.; Navarro, E.; Nirenberg, S.; Horton, M.K. Vital signs assessed in initial clinical encounters predict
COVID-19 mortality in an NYC hospital system. Sci. Rep. 2020, 10, 1–6. [CrossRef]

59. Ryan, L.; Lam, C.; Mataraso, S.; Allen, A.; Green-Saxena, A.; Pellegrini, E.; Hoffman, J.; Barton, C.; McCoy, A.; Das, R. Mortality
prediction model for the triage of COVID-19, pneumonia, and mechanically ventilated ICU patients: A retrospective study. Ann.
Med. Surg. 2020, 59, 207–216. [CrossRef]

60. Vaid, A.; Somani, S.; Russak, A.J.; De Freitas, J.K.; Chaudhry, F.F.; Paranjpe, I.; Johnson, K.W.; Lee, S.J.; Miotto, R.; Richter, F.
Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model
Development and Validation. J. Med. Internet Res. 2020, 22, e24018. [CrossRef]

61. Yadaw, A.S.; Li, Y.-C.; Bose, S.; Iyengar, R.; Bunyavanich, S.; Pandey, G. Clinical features of COVID-19 mortality: Development
and validation of a clinical prediction model. Lancet Digit. Health 2020, 2, e516–e525. [CrossRef]

62. Adams, C.P.; Brantner, V.V. Estimating the cost of new drug development: Is it really $802 million? Health Aff. 2006, 25, 420–428.
[CrossRef] [PubMed]

63. Persidis, A. The benefits of drug repositioning. Drug Discov. World 2011, 12, 9–12.
64. Cantürk, S.; Singh, A.; St-Amant, P.; Behrmann, J. Machine-learning driven drug repurposing for covid-19. arXiv 2020,

arXiv:200614707.
65. Choi, Y.; Shin, B.; Kang, K.; Park, S.; Beck, B.R. Target-Centered Drug Repurposing Predictions of Human Angiotensin-Converting

Enzyme 2 (ACE2) and Transmembrane Protease Serine Subtype 2 (TMPRSS2) Interacting Approved Drugs for Coronavirus
Disease 2019 (COVID-19) Treatment through a Drug-Target Interaction Deep Learning Model. Viruses 2020, 12, 1325.

66. Esmail, S.; Danter, W. Viral pandemic preparedness: A pluripotent stem cell-based machine-learning platform for simulating
SARS-CoV-2 infection to enable drug discovery and repurposing. Stem Cells Transl. Med. 2021, 10, 239–250. [CrossRef] [PubMed]

67. Gusarov, S.; Stoyanov, S.R. COSMO-RS-Based Descriptors for the Machine Learning-Enabled Screening of Nucleotide Analogue
Drugs against SARS-CoV-2. J. Phys. Chem. Lett. 2020, 11, 9408–9414. [CrossRef] [PubMed]

68. Hooshmand, S.A.; Ghobadi, M.Z.; Hooshmand, S.E.; Jamalkandi, S.A.; Alavi, S.M.; Masoudi-Nejad, A. A multimodal deep
learning-based drug repurposing approach for treatment of COVID-19. Mol. Divers. 2020, 1–14. [CrossRef]

69. Ioannidis, V.N.; Zheng, D.; Karypis, G. Few-shot link prediction via graph neural networks for covid-19 drug-repurposing. arXiv
2020, arXiv:200710261.

70. Ke, Y.-Y.; Peng, T.-T.; Yeh, T.-K.; Huang, W.-Z.; Chang, S.-E.; Wu, S.-H.; Hung, H.-C.; Hsu, T.-A.; Lee, S.-J.; Song, J.-S. Artificial
intelligence approach fighting COVID-19 with repurposing drugs. Biomed. J. 2020, 43, 355–362. [CrossRef] [PubMed]

71. Kowalewski, J.; Ray, A. Predicting novel drugs for SARS-CoV-2 using machine learning from a >10 million chemical space.
Heliyon 2020, 6, e04639. [CrossRef] [PubMed]

72. Loucera, C.; Esteban-Medina, M.; Rian, K.; Falco, M.M.; Dopazo, J.; Peña-Chilet, M. Drug repurposing for COVID-19 using
machine learning and mechanistic models of signal transduction circuits related to SARS-CoV-2 infection. Signal. Transduct.
Target. Ther. 2020, 5, 1–3. [CrossRef] [PubMed]

73. Mohapatra, S.; Nath, P.; Chatterjee, M.; Das, N.; Kalita, D.; Roy, P.; Satapathi, S. Repurposing therapeutics for COVID-19: Rapid
prediction of commercially available drugs through machine learning and docking. PLoS ONE 2020, 15, e0241543. [CrossRef]
[PubMed]

74. Pham, T.-H.; Qiu, Y.; Zeng, J.; Xie, L.; Zhang, P. A deep learning framework for high-throughput mechanism-driven phenotype
compound screening and its application to COVID-19 drug repurposing. Nat. Mach. Intell. 2021, 3, 247–257. [CrossRef] [PubMed]

75. Verma, A.K.; Aggarwal, R. Repurposing potential of FDA approved and investigational drugs for COVID-19 targeting SARS-
CoV-2 spike and main protease and validation by machine learning algorithm. Chem. Biol. Drug Des. 2020, 97. [CrossRef]

76. Zeng, X.; Song, X.; Ma, T.; Pan, X.; Zhou, Y.; Hou, Y.; Zhang, Z.; Li, K.; Karypis, G.; Cheng, F. Repurpose open data to discover
therapeutics for COVID-19 using deep learning. J. Proteome Res. 2020, 19, 4624–4636. [CrossRef] [PubMed]

77. Wang, P.; Zheng, X.; Ai, G.; Liu, D.; Zhu, B. Time series prediction for the epidemic trends of COVID-19 using the improved
LSTM deep learning method: Case studies in Russia, Peru and Iran. Chaos Solitons Fractals 2020, 140, 110214. [CrossRef]

http://doi.org/10.1038/s41598-020-75767-2
http://www.ncbi.nlm.nih.gov/pubmed/33127965
http://doi.org/10.1038/s41467-020-18684-2
http://www.ncbi.nlm.nih.gov/pubmed/33024092
http://doi.org/10.1093/ije/dyaa171
http://www.ncbi.nlm.nih.gov/pubmed/32997743
http://doi.org/10.7717/peerj.10337
http://www.ncbi.nlm.nih.gov/pubmed/33194455
http://doi.org/10.1038/s42256-020-0180-7
http://doi.org/10.1038/s41598-020-78392-1
http://doi.org/10.1016/j.amsu.2020.09.044
http://doi.org/10.2196/24018
http://doi.org/10.1016/S2589-7500(20)30217-X
http://doi.org/10.1377/hlthaff.25.2.420
http://www.ncbi.nlm.nih.gov/pubmed/16522582
http://doi.org/10.1002/sctm.20-0181
http://www.ncbi.nlm.nih.gov/pubmed/32961040
http://doi.org/10.1021/acs.jpclett.0c02836
http://www.ncbi.nlm.nih.gov/pubmed/33104327
http://doi.org/10.1007/s11030-020-10144-9
http://doi.org/10.1016/j.bj.2020.05.001
http://www.ncbi.nlm.nih.gov/pubmed/32426387
http://doi.org/10.1016/j.heliyon.2020.e04639
http://www.ncbi.nlm.nih.gov/pubmed/32802980
http://doi.org/10.1038/s41392-020-00417-y
http://www.ncbi.nlm.nih.gov/pubmed/33311438
http://doi.org/10.1371/journal.pone.0241543
http://www.ncbi.nlm.nih.gov/pubmed/33180803
http://doi.org/10.1038/s42256-020-00285-9
http://www.ncbi.nlm.nih.gov/pubmed/33796820
http://doi.org/10.1111/cbdd.13812
http://doi.org/10.1021/acs.jproteome.0c00316
http://www.ncbi.nlm.nih.gov/pubmed/32654489
http://doi.org/10.1016/j.chaos.2020.110214

	Introduction 
	Overview of Artificial Intelligence 
	Machine Learning 
	Random Forest (RF) 
	Support Vector Machine (SVM) 
	Logistic Regression (LR) 
	XGBoost 

	Deep Learning 
	Artificial Neural Networks (ANNs) 
	Convolutional Neural Network (CNN) 
	Neural Recurrent Network (RNN) 
	Long Short Term Memory (LSTM) 


	Review of State-of-the-Art 
	COVID-19 Screening Using Digital Images 
	Potentiality 
	Limitations 

	Artificial Intelligence for COVID-19 Severity 
	Potentiality 
	Limitations 

	Artificial Intelligence for COVID-19 Mortality 
	Potentiality 
	Limitations 

	Artificial Intelligence for COVID-19 Drug Repurposing 
	Potentiality 
	Limitation 

	Artificial Intelligence for Epidemic Trends 

	Overall Challenges to Deploy AI Model in the Clinical Settings 
	Conclusions 
	References

