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High blood pressure (BP) is associated with an increased risk of cardiovascular diseases. Therefore, optimal precision in
measurement of BP is appropriate in clinical and research studies. In this work, anthropometric characteristics including age, height,
weight, body mass index (BMI), and arm circumference (AC) were used as independent predictor variables for the prediction of
BP reactivity to talking. Principal component analysis (PCA) was fused with artificial neural network (ANN), adaptive neurofuzzy
inference system (ANFIS), and least square-support vector machine (LS-SVM)model to remove the multicollinearity effect among
anthropometric predictor variables. The statistical tests in terms of coefficient of determination (𝑅2), root mean square error
(RMSE), and mean absolute percentage error (MAPE) revealed that PCA based LS-SVM (PCA-LS-SVM) model produced a more
efficient prediction of BP reactivity as compared to other models. This assessment presents the importance and advantages posed
by PCA fused prediction models for prediction of biological variables.

1. Introduction

Accurate measurement of BP is essential in epidemiological
studies, in screening programmes, in research studies, and in
clinical practice to classify individuals, to ascertain hyperten-
sion related risks (coronary heart disease, stroke, and kidney
failure), and to guide management. Recommendations of
several international organisations including the American
Heart Association (AHA) [1], British Hypertension Society
(BHS) [2], and European Society of Hypertension (ESH)
[3] revealed that accuracy of BP measurements is highly
associated with the conditions in which the measurements
are taken. The observer should be aware of the considerable
variability that may occur in BP due to various factors.
However, it is not always feasible to control all the factors, but
we can minimize their effect by taking them into account in
reaching a decision [3].

In clinical practice, talking is one of the most com-
mon measurement disturbances influencing BP measure-
ment accuracy [4]. It can contribute to elevated BP reading,
termed BP reactivity to talking, that may result in the
misdiagnosis of hypertension or in overestimation of the

severity of hypertension and may lead to overly aggressive
therapy. Antihypertensive treatment may be unnecessary in
the absence of concurrent cardiovascular risk factors [5].

In the past few years, several studies have quantified the
effect of talking onBP. Zheng et al. [6]measuredBP in healthy
subjects under five different conditions including resting,
deeper breathing, talking, and head and arm movement
and proved that SBP and DBP changed significantly in
comparison to the resting condition. Le Pailleur et al. [7]
explored a sharp and significant increase in SBP and DBP
of hypertensive subjects while talking. Le Pailleur et al. [8]
showed an instantaneous rise in SBP and DBP of treated
and untreated hypertensive patients under a period of stress
talking and a period of counting aloud (active periods).

Zheng et al. [9] demonstrated significantly highermanual
and automated MAPs with talking in healthy subjects. Lynch
et al. [4] reported that verbal activity is consistently associated
with marked elevations in both normotensive and hyperten-
sive subjects. Tardy et al. [10] demonstrated that talking state
increased the BP as compared to resting state of the subjects.
Lynch et al. [11] described sudden extreme drop in blood
pressure in both experimental and clinical situations when

Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2014, Article ID 762501, 13 pages
http://dx.doi.org/10.1155/2014/762501

http://dx.doi.org/10.1155/2014/762501


2 Computational and Mathematical Methods in Medicine

a person is talking about or describing situations of hope-
lessness and helplessness. Long et al. [12] showed statistically
significant increase in BP when speaking compared to when
quiet. Hellmann and Grimm [13] investigated the effect of
talking on subjects with one previous diastolic blood pressure
reading of 90mmHg or more and not taking antihyperten-
sive medicines. Blood pressure increased significantly under
both talking conditions (reading neutral material for part of
the procedure and reading neutral material continuously).

Epidemiological studies from different populations have
explored a significant correlation between BP and anthro-
pometric characteristics [14–16]. Therefore, anthropometric
variables should be considered to attain an accurate mea-
surement of BP. However, multicollinearity between anthro-
pometric predictor variables has also been reported, which
may result in “overfitting” of the prediction model [17–19].
One approach to dealing withmulticollinearity is to use PCA,
a statistical approach. By using PCA the original data set
can be transformed into principal components (PCs) that are
orthogonal and are able to explain the maximal variance of
the data without losing any information [20, 21].

Soft computing covers computational techniques that
offer somewhat “inexact” solutions of very complex prob-
lems through modeling and analysis with a tolerance of
imprecision, uncertainty, partial truth, and approximation.
The successful applications of soft computing approaches in
biomedical studies suggest that the impact of soft computing
will be felt increasingly in the coming years.

The fusion of a statistical and soft computing approach
usually improves the training speed, enhances the robust-
ness of the model, and reduces the calibration error. These
models may aid the clinicians in the decision-making process
regarding clinical admission, early prevention, early clinical
diagnosis, and application of clinical therapies. In this sense,
this paper focuses on the development of PCA based soft
computing approaches for prediction of BP reactivity to
talking, which include conventional statistical method of
PCA for data preprocessing. We developed PCA based ANN
(PCA-ANN), PCA based ANFIS (PCA-ANFIS), and PCA-
LS-SVM models for prediction of BP reactivity to talking
in normotensive and hypertensive subjects. The prediction
accuracy of developed models was assessed and compared
using statistical indices including coefficient of determination
(𝑅2), root mean square error (RMSE), and mean absolute
percentage error (MAPE) to select the model that most
accurately predicts the BP reactivity.

The rest of the paper is structured as follows. In Section 2,
we present the details of data collection. Section 3 deals with
the experimental approaches used for data analysis. Section 4
deals with the summary of results obtained. Section 5
describes the discussion and Section 6 concludes with future
directions of work.

2. Data Collection

A total of 40 normotensive and 30 hypertensive female
subjects among the students, staff, and faculty of Sant Lon-
gowal Institute of Engineering and Technology (Deemed

University), Longowal, District Sangrur, Punjab, India, vol-
unteered for this study. Eligible participants had to be over 18
years of age.We excluded the subjects whowere pregnant and
who had arrhythmias. The institutional research committee
approved the research protocol and all participants gave
written informed consent before participation.

A standard questionnaire was administrated to collect
information on anthropometric characteristics of the partic-
ipants. A specially separated room was used to conduct the
study. This ensured minimal interference within the room
while the tests were being carried out.The observers involved
in the study were trained using the BHS’s BP measurement
training materials [22].

To eliminate observer bias, BP was measured using a
clinically validated (under standardized measurement con-
ditions), newly purchased, and fully automated sphygmo-
manometer OMRONHEM-7203 (OMRONHEALTHCARE
Co., Ltd., Kyoto, JAPAN) that uses the oscillometric method
of measurement. The BP monitor is available with a small
cuff (17–22 cm), medium cuff (22–32 cm), and large cuff (32–
42 cm).The appropriate size of cuff was determined from the
mid-arm circumference of the subject.

Subjects were advised to avoid alcohol, cigarette smoking,
coffee/tea intake, and exercise for at least 30 minutes prior
to their BP measurement. They were instructed to empty
their bladder and sit upright with elbows on table, supported
back, and feet flat on the ground, as they are the potential
confounding factors. Moreover, they were asked not to talk
and move during measurement [1].

After a rest period of 5 minutes [1], the measurements
were performed four times repeatedly at an interval of one
minute. First measurement was discarded and the average
of last three measurements was taken into account. Subse-
quently, the same measurement protocol was repeated under
talking phase duringwhich the observer asked each subject to
“tell me about your work in detail” [4]. During talking phase,
the observer only talked to the subject to maintain the flow of
conversation, making every possible effort to talk minimally.
To improve the reliability of measurements, the subjects were
examined for a week [3].

3. Experimental Methods

Data were expressed as mean ± SD. A paired 𝑡-test was used
to assess the difference between measurements of resting and
talking conditions.

3.1. PCA. Firstly, Bartlett’s test of sphericity [23] and Kaiser
Meyer Olkin (KMO) measure of sampling adequacy [24]
were applied to check the suitability of data for application
of PCA.

Bartlett’s test of sphericity tests the null hypothesis that
the correlation matrix is an identity matrix or there is no
relationship between predictor variables. Consider
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]} log
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where 𝜒
2 is chi-square, 𝑁 is sample size, 𝐾 is number of

predictor variables, log
𝑒
is natural log, and |𝑅| is determinant

of the correlation matrix.
KMO compares the magnitude of calculated correlation

coefficients and partial correlation coefficients. The formula
for KMO is given as follows:
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where ∑
𝑖 ̸=𝑗

is sum over all variables in the matrix when
variable 𝑖 ̸= 𝑗, 𝑟

𝑖𝑗
is Pearson correlation coefficient between

variables 𝑖 and 𝑗, and 𝑎
𝑖𝑗
is partial correlation coefficient

between variables 𝑖 and 𝑗.
KMO index ranges, from 0 to 1, should be greater than 0.6

for the PCA to be considered appropriate.
PCA is a multivariable statistical analysis technique. The

objective of PCA is to remove the multicollinearity problem
and reduce the number of predictor variables and transform
them into PCs which are independent linear combinations of
the original data set and account for the maximum possible
variance of the original data set so that adequate information
from the original data set can be extracted [20, 21].

The eigenvalues of the standardized matrix are calculated
from

|𝐶 − 𝜆𝐼| = 0, (3)

where 𝐶 is correlation matrix of the standardized data, 𝜆
is eigenvalues, and 𝐼 is identity matrix. The weights of the
variables in the PCs are then obtained by

|𝐶 − 𝜆𝐼|𝑊 = 0, (4)

where𝑊 is matrix of weights.
To evaluate the influence of each predictor variable in the

PCs, varimax rotation was used to obtain values of rotated
factor loadings. These loadings represent the contribution of
each predictor variable in a specific PC. The PCs used for
the prediction of BP reactivity to unsupported back were
obtained through multiplication of the standardized data
matrix by weights (𝑊) [25].

3.2. ANN. ANN’s customary architecture was composed of
an input layer, an output layer, and one or more intervening
layers, also referred to as hidden layers to capture the
nonlinearity in data.

Figure 1 shows an ANN model consisting of 𝑁 nodes in
input layer, one hidden layer with ℎ hidden nodes, and an
output layer with one node.

Network is trained by presenting one pair of input-output
vector at a time.The weighted sum of inputs calculated at 𝑡th
hidden node is

NET
𝑡
=

𝑁
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where 𝑤
𝑡𝑖
is weight on connection from the 𝑖th to the 𝑡th

node, 𝑥
𝑖
is input data from input node, 𝑁 is total number of

input nodes, and 𝑏
𝑡
is bias on the 𝑡th hidden node.
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Figure 1: Architecture of ANN.

Each hidden node uses a tangent sigmoid transfer func-
tion to generate an output, say 𝑍

𝑡
, between 0 and 1. The

outputs from each hidden nodes, along with the bias 𝑏
0
on

the output node, send to the output node and weighted sum
becomes

NET =

ℎ

∑
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V
𝑡
𝑍
𝑡
+ 𝑏
0
, (6)

where ℎ is total number of hidden nodes and V
𝑡
is weight from

the 𝑡th hidden node to the output node.
The weighted sum NET becomes the input to the linear

transfer function of the output node and the predicted output
is

𝑌̂ = 𝑓 (NET) . (7)

And then the second phase of the BP algorithm, adjust-
ment of the connection weights, begins. The parameters of
the ANN can be determined by minimizing the following
objective function in the training process:
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where 𝑌̂
𝑗
is output of the network from 𝑗th observation.

The sensitivity 𝑆
𝑖
of the outputs to each of the 𝑖th

inputs, as partial derivatives of the output with respect to the
input, under the assumption that relationship of 𝑌 and 𝑋 is
monotone [26], is given as
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Figure 2: Architecture of ANFIS.

with the assumption that 𝑓󸀠(NET) and 𝑓
󸀠
(NET)

𝑡
are con-

stants. The independent variable with higher relative positive
or negative sensitivity has the higher positive or negative
impact on dependent variable.

3.3. ANFIS. ANFIS, a multilayer feed forward network, uses
neural network learning algorithms and fuzzy reasoning to
map an input space to an output space, as shown in Figure 2.
It has the ability to combine the verbal power of a fuzzy system
with the numeric power of a neural network.

It can construct an input-output mapping based on
human knowledge (if-then fuzzy rules) and stipulated input-
output data pairs. The parameters of membership function,
if-then rule exertion, and output parameters are calculated
by training data set. The training algorithm is usually hybrid
or back propagation. The ANFIS implements the rules of the
form

𝑅
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where 𝑥
1
is independent variable, 𝐴(1)

𝑗1
is a fuzzy linguistic

concept, and 𝑦 is dependent variable.
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The units 𝐿
4
are connected to all units of input layer and

to exactly one unit in 𝐿
3
.

Output Layer (𝐿
5
). It computes the final output 𝑦 by adding

all the outputs from 𝐿
4
[27].

3.4. LS-SVM. LS-SVM is an extension of standard support
vectormachine. It converts the inequality constraints of SVM
into equality ones which leads to solving a linear system
instead of a quadratic problem, whose convergence speed
is faster [28]. It has been widely used in estimation and
approximation of function [29]. The architecture of LS-SVM
is shown in Figure 3.

Given a set of training data set
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𝑖
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with the input vector 𝑥
𝑖
and the output vector 𝑦

𝑖
, the

regression function of least square-support vector machine,
in feature space 𝐹, can be stated as

𝑦 (𝑥) = 𝑤
𝑇
0 (𝑥) + 𝑏, (15)

where 𝑤 is weight vector and 𝑏 is bias. 0(𝑥)maps the input 𝑥
into a vector in 𝐹.

The model is inferred from the training data set by
minimizing the cost function given below
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subject to equality constraint
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where 𝑒
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is error, 𝑖 = 1, 2, 3, . . . , 𝑙, and 𝛾 is regularization

parameter.
Solving this optimization problem in dual space leads to

finding the coefficients 𝛼
𝑖
and 𝑏 in the following solution:
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where𝐾(𝑥
𝑖
, 𝑥) is kernel function.
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3.5. Performance Indices Used for Model Comparison. For the
comparison of developedmodels and selection of the optimal
among them, performance of models was evaluated using 𝑅

2

and RMSE and MAPE.
𝑅
2 is the square of the correlation coefficient between two

variables 𝑥 and 𝑦 whose 𝑛 pairs are available as follows:
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)
2

∑
𝑛

𝑖=1
(𝑦
𝑑𝑖
− 𝑦
𝑚
)
2
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RMSE is the square root of mean square error, given by
following equation:
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MAPE is defined as average of percentage errors, given by
following equation:

MAPE =
100
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where 𝑛 is the number of samples, 𝑦
𝑖
is the predicted value

obtained from the model, 𝑦
𝑑𝑖
is the actual value, and 𝑦

𝑚
is

the average of the actual values.
The lower the RMSE and MAPE, the better the accuracy

of themodel in predicting the parameter. Also, the highest𝑅2
values indicated that the model performed the best [30].

4. Results

Descriptive statistics for each anthropometric characteristic
is given as mean and SD in Table 1.

The results of paired 𝑡-test demonstrated statistically sig-
nificant higher SBP, DBP, and mean arterial pressure (MAP),
(𝑃 < 0.001) in talking condition. The mean rise was found
to be higher in hypertensive individuals than normotensives,
as shown in Table 2. These results are consistent with the
recommendations of AHA for BP measurement in humans
and experimental animals [1].

Table 3 presents the Pearson’s correlation coefficients
calculated for all anthropometric variables. High values of
correlation coefficient (greater than 0.6) between pairs of
anthropometric characteristics [31] revealed the existence of
multicollinearity.

Before applying PCA, Bartlett’s test of sphericity and
Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy
were applied to determine whether PCAwas suitable for data
studied. The results are shown in Table 4. High value of chi-
square (𝜒 2 ) for Bartlett’s test suggests that use of PCA is
appropriate (𝑃 < 0.001) in normotensive and hypertensive
subjects. The value of KMO is also greater than 0.6 which
indicates that our sample size is enough to apply PCA [32].

Thefirst four PCs (PC1–PC4), explainingmore than 5%of
total variation, as shown in Table 5, were retained for further
analysis.

Rotated component loadings after varimax rotation rep-
resent the extent to which the original anthropometric

Table 1: Descriptive characteristics of anthropometric characteris-
tics of study sample.

Anthropometric characteristic Normotensive Hypertensive
Mean SD Mean SD

Age (year) 23.1 1.24 42.83 6.665
Height (m) 1.61 0.03 1.583 0.035
Weight (kg) 55.96 7.29 62.48 10.89
BMI (kg/m2) 21.55 2.504 23.57 3.497
AC (cm) 26.56 2.45 26.72 2.4

characteristics are influential in forming PCs, as shown in
Table 6.

The bold marked loads show the highest correlation
between anthropometric characteristic and corresponding
component. For both normotensive and hypertensive sub-
jects, weight and BMI were positively highly correlated with
PC1 and a negative high correlation between height and PC2
was observed.

Principal score values for assigned PCs were determined
by using principal score coefficients.

Moreover, the value of Pearson’s correlation (correlation
coefficient < 0.6) between PCs, as shown in Table 7, indi-
cates the elimination of multicollinearity effect presented in
Table 3.

To develop PCA based soft computing prediction models
80% of data were used for training while entire data set
was used for testing. Moreover, data must be normalized to
achieve more accurate predictions [38]. The predicted BP
reactivity values were denormalized for comparison with the
actual values. MATLAB 7.5 version was used to develop the
prediction models.

4.1. PCA-ANN. To achieve the best ANN structure for BP
reactivity prediction, various structures of feed-forward neu-
ral network with different number of neurons in hidden layer
were investigated. Finally, with consideration of statistical
indices, a structure with two hidden layers, having six nodes
in each hidden layer, was developed. There were four input
nodes representing the four PCs and one output node
representing theBP reactivity to talking. Tangent sigmoid and
linear transfer functions were used as activation functions
in the hidden and output layers. Back propagation learning
algorithm based on Levenberg-Marquardt technique was
used [39].

Figures 4 and 5 show the scatter plot between observed
and predicted values of SBP, DBP, and MAP reactivity
from PCA-ANN model in normotensive and hypertensive
subjects, respectively.

4.2. PCA-ANFIS. PCA-ANFIS model was developed using
genfis1 with grid partition on data. Different ANFIS param-
eters were tested in order to achieve the perfect training and
maximum prediction accuracy.

Input membership functions “trapmf” and “gauss2mf”
were used to predict SBP and DBP reactivities, respectively,
in normotensive individuals, whereas membership function
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Table 2: Results of paired 𝑡-test.

Subjects BP, mmHg Mean difference ± SD 𝑡 𝑃 95% CI of mean difference

Normotensives
SBP 6.31 ± 2.409 16.567 <0.001 5.540 to 7.081
DBP 5.857 ± 1.584 23.388 <0.001 5.350 to 6.363
MAP 6.008 ± 1.231 30.854 <0.001 5.164 to 6.402

Hypertensives
SBP 9.634 ± 1.283 41.117 <0.001 9.154 to 10.113
DBP 7.816 ± 1.44 29.722 <0.001 7.278 to 8.354
MAP 8.422 ± 1.105 41.757 <0.001 8.009 to 8.834
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Figure 4: Scatter plot between observed and predicted values of SBP, DBP, and MAP reactivity of normotensive subjects using PCA-ANN
model.

“psigmf” was used to predict SBP and DBP reactivity in
hypertensive individuals. Output membership function “lin-
ear” was used.

Other parameters of trained PCA-ANFIS model were
number of membership functions = 16, number of nodes =
55, number of linear parameters = 80, number of nonlinear
parameters = 32, total number of parameters = 112, and
number of fuzzy rules = 16.

The observed and predicted values of SBP, DBP, andMAP
reactivity from PCA-ANFIS model for normotensive and
hypertensive subjects were plotted in Figures 6 and 7.

4.3. PCA-LS-SVM. APCA-LS-SVMmodel using RBF kernel
and grid search optimization algorithm with 2-fold cross-
validation was developed to obtain the optimal parameter



Computational and Mathematical Methods in Medicine 7

5 6 7 8 9 10 11 12 13 14
5

6

7

8

9

10

11

12

13

Observed BP reactivity to talking (mmHg)

Pr
ed

ic
te

d 
BP

 re
ac

tiv
ity

 to
 ta

lk
in

g 
(m

m
H

g) PCA-ANN

(a) SBP

5 6 7 8 9 10 11 12
3

4

5

6

7

8

9

10

11

Observed BP reactivity to talking (mmHg)

Pr
ed

ic
te

d 
BP

 re
ac

tiv
ity

 to
 ta

lk
in

g 
(m

m
H

g) PCA-ANN

(b) DBP

6 7 8 9 10 11 12
4

5

6

7

8

9

10

11

Observed MAP reactivity to talking (mmHg)

Pr
ed

ic
te

d 
M

A
P 

re
ac

tiv
ity

 to
 ta

lk
in

g 
(m

m
H

g)

PCA-ANN

(c) MAP

Figure 5: Scatter plot between observed and predicted values of SBP, DBP, and MAP reactivity of hypertensive subjects using PCA-ANN
model.

Table 3: Pearson’s correlation coefficients between pairs of anthro-
pometric characteristics in normotensive and hypertensive subjects.

Variable Height Weight BMI AC

Age (years) 0.535
0.113

0.784∗
0.598

0.701∗
0.509

0.668∗
0.585

Height (cms) 0.543
0.165

0.237
0.305

0.619∗
0.021

Weight (Kg) 0.934∗
0.885∗

0.743∗
0.767∗

BMI (Kg/m2) 0.617∗
0.691∗

∗It indicates 𝑃 < 0.001; bold values indicate correlations in anthropometric
characteristics of hypertensive subjects.

combination [40]. The optimal values of 𝛾 (regularization
parameter) and 𝜎

2 (squared bandwidth) for normotensive
and hypertensive subjects were shown in Table 8.

Figures 8 and 9 show the scatter plot between observed
and predicted values of SBP, DBP, and MAP reactivity
fromPCA-LS-SVMmodel in normotensive and hypertensive
subjects, respectively.

Comparison of statistical indices for themodels, as shown
in Table 9, revealed that PCA-LS-SVMmodel has the highest
value of 𝑅 2 and lowest value of RMSE for the prediction of
BP reactivity to talking in normotensive and hypertensive
subjects.

5. Discussion

For proper diagnosis and treatment of hypertension, accurate
and reproducible BP measurements are essential.

This study confirms and extends previous studies [4, 6–
13] by documenting a significant increase in BP with talking.
This finding tends to support Weiner et al. [41] suggestion
that there may be an association between verbal activity and



8 Computational and Mathematical Methods in Medicine

Table 4: Results of Bartlett’s test of sphericity and KMO.

Test Normotensive subjects Hypertensive subjects

Bartlett’s test of sphericity
Approx. 𝜒2 231.012 119.48

DF 10 10
𝑃 <0.0001 <0.0001

KMOmeasure of sampling adequacy 0.63 0.75
DF: degree of freedom.

Table 5: Eigenvalues and % of variation explained by each PC in normotensive and hypertensive subjects.

PCs Normotensive subjects Hypertensive subjects
Eigenvalue Individual% Cumulative% Eigenvalue Individual% Cumulative%

1 3.59 71.84 71.84 3.0550 61.10 61.10
2 0.83 16.58 88.42 1.1249 22.5 83.60
3 0.32 6.34 94.76 0.4393 8.78 92.38
4 0.25 5.04 99.8 0.2830 5.66 98.04
5 0.01 0.2 100.00 0.0978 1.96 100
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Figure 6: Scatter plot between observed and predicted values of SBP, DBP, and MAP reactivity of normotensive subjects using PCA-ANFIS
model.
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Table 6: Loadings of anthropometric characteristics in normotensive and hypertensive subjects.

Anthropometric characteristics
Loadings after varimax rotation

Normotensive subjects Hypertensive subjects
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

Age 0.0004 −0.0006 −0.0000 −1.0000 −0.0036 0.0020 0.9988 −0.0026
Height −0.0139 −0.9676 0.0002 −0.0008 0.0058 0.9968 0.0020 0.0043
Weight −0.6569 −0.1812 −0.0008 0.0039 0.6576 0.0561 −0.0349 −0.0754
BMI −0.7538 0.1757 0.0008 −0.0039 0.7533 −0.0566 0.0352 0.0760
AC −0.0001 0.0001 −1.0000 −0.0000 0.0078 −0.0043 0.0027 −0.9942
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Figure 7: Scatter plot between observed and predicted values of SBP, DBP, and MAP reactivity of hypertensive subjects using PCA-ANFIS
model.

BP elevations. And withdrawal from such verbal activity has
important clinical implications for the cardiovascular system.

Furthermore, we illustrated an application of PCA based
soft computingmodels in predicting the BP reactivity to talk-
ing. PCA corrects for confounding caused by anthropometric
characteristics including age, height, weight, BMI, and AC

and, therefore, normotensive subjects were used to provide
a basis for comparison.

As far as we know, this paper is the first study related to
prediction of BP reactivity to talking using PCA based soft
computing approaches.Therefore, the results were compared
with indirectly related studies [33–37], as shown in Table 10.
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Figure 8: Scatter plot between observed and predicted values of SBP, DBP, andMAP reactivity of normotensive subjects using PCA-LS-SVM
model.

Table 7: Pearson’s correlation coefficient among all pairs of PCs in
normotensive and hypertensive subjects.

PC PC2 PC3 PC4

PC1 −0.00000225
0.00000878

0.0000000798
0.00000423

−0.0000167
0.00000659

PC2 −7.237e − 016
0.00000919

5.808e − 016
0.0000142

PC3 −7.557e − 017
0.0000175

Bold values indicate correlations in anthropometric characteristics of hyper-
tensive subjects.

Promising results of soft computing techniques in all studies
are due to their high degree of robustness and fault tolerance.
In this work, specifically, the best performance of LS-SVM is
sourced from its several advantages including global optimal
solution ability, fast convergence rate, and good generaliza-
tion with small size sample.

This study has a number of advantages. We used small,
medium, and large size cuffs, whichmay have producedmore
accurate readings. Andwe took themean ofmultiple readings
to strengthen the accuracy of BP measurements.

However, any single comparison between the models
might not reliably represent the true results. Validation of the
computing models using larger database is essential to get an
accurate measure of performance outside the development
population.

6. Conclusion

The successful development of any predictionmodel depends
largely on the quality and nature of data used for model
development. To address the issue of multicollinearity within
the anthropometric variables, PCA is incorporated. Further-
more, performance comparison of PCA-ANN, PCA-ANFIS,
and PCA-LS-SVM models revealed the potential capability
of PCA-LS-SVM model in predicting BP reactivity. This
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Table 8: Optimal values of 𝛾 and 𝜎
2.

Parameters Normotensive subjects Hypertensive subjects
SBP DBP SBP DBP

𝛾 369.9717 1.7430e + 004 1.7498e + 008 3.0844e + 006
𝜎
2 0.5882 7.0498e − 006 4.7587e − 004 2.3885e − 006

Table 9: Statistical indices for different models.

Model
Normotensive subjects Hypertensive subjects

SBP DBP SBP DBP
𝑅
2 (%) RMSE MAPE 𝑅

2 (%) RMSE MAPE 𝑅
2 (%) RMSE MAPE 𝑅

2 (%) RMSE MAPE
PCA-ANN 67.44 0.58 37.09 62.39 0.62 40.77 59.50 0.68 9.2 53.19 0.86 11.02
PCA-ANFIS 80.04 0.56 9.82 79.37 0.52 12.27 87.02 0.41 2.97 86.11 0.4 2.71
PCA-LS-SVM 95.42 0.21 5.88 94.22 0.24 4.05 98.76 0.11 0.88 98.78 0.11 0.84
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Figure 9: Scatter plot between observed and predicted values of SBP, DBP, and MAP reactivity of hypertensive subjects using PCA-LS-SVM
model.
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Table 10: Comparison of results with other studies.

Ref. Model developed Predicted parameter Remarks

[33] FIR and ANFIS Mean BP and AEP during
anaesthesia

No significant difference between
the results of two models

[34] ANN and multiple linear
regression (MLR) SBP ANN outperformed MLR

[35] RS-SVM BP
Training rapidity and accuracy of
the RS-SVMmodel are both
evidently improved

[36]
PCA-ANFIS, conventional
maximum amplitude
algorithm

SBP and DBP PCA-ANFIS outperformed

[37] FIS Effect of aerobic exercise on
BP

Preliminary validation results of
the performance of the FIS are
promising

Our study PCA-LS-SVM, PCA-ANN,
and PCA-ANFIS SBP, DBP, and MAP PCA-LS-SVM outperformed

PCA-ANN and PCA-ANFIS

work may provide a valuable reference for researchers and
engineers who apply soft computing models for modeling
biological variables.The results are helpful in physician’s diag-
nosis for the prevention of hypertension in clinical medicine.
Our future research is targeted to study an ensemble approach
by combining the outputs of different hybrid techniques with
more predictor variables and larger data sets to achieve wide
clinical application of the soft computing.
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