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Abstract: The visual appearance of the fish fillet is a significant determinant of consumers’ purchase
decisions. Depending on the rainbow trout diet, a uniform bright white or reddish/pink fillet
color is desirable. Factors affecting fillet color are complex, ranging from the ability of live fish to
accumulate carotenoids in the muscle to preharvest environmental conditions, early postmortem
muscle metabolism, and storage conditions. Identifying genetic markers of fillet color is a desirable
goal but a challenging task for the aquaculture industry. This study used weighted, single-step
GWAS to explore the genetic basis of fillet color variation in rainbow trout. We identified several
SNP windows explaining up to 3.5%, 2.5%, and 1.6% of the additive genetic variance for fillet
redness, yellowness, and whiteness, respectively. SNPs are located within genes implicated in
carotenoid metabolism (β,β-carotene 15,15′-dioxygenase, retinol dehydrogenase) and myoglobin
homeostasis (ATP synthase subunit β, mitochondrial (ATP5F1B)). These genes are involved in
processes that influence muscle pigmentation and postmortem flesh coloration. Other identified
genes are involved in the maintenance of muscle structural integrity (kelch protein 41b (klh41b),
collagen α-1(XXVIII) chain (COL28A1), and cathepsin K (CTSK)) and protection against lipid oxidation
(peroxiredoxin, superoxide dismutase 2 (SOD2), sestrin-1, Ubiquitin carboxyl-terminal hydrolase-10
(USP10)). A-to-G single-nucleotide polymorphism in β,β-carotene 15,15′-dioxygenase, and USP10
result in isoleucine-to-valine and proline-to-leucine non-synonymous amino acid substitutions,
respectively. Our observation confirms that fillet color is a complex trait regulated by many genes
involved in carotenoid metabolism, myoglobin homeostasis, protection against lipid oxidation, and
maintenance of muscle structural integrity. The significant SNPs identified in this study could be
prioritized via genomic selection in breeding programs to improve fillet color in rainbow trout.

Keywords: fillet color; rainbow trout; GWAS; genetic markers; genes

1. Introduction

The aquaculture industry produces food fish to satisfy a growing US and worldwide
demand. Rainbow trout is the most cultivated, cool, freshwater fish in the United States [1].
Aquaculture supplies protein with low saturated fat and cholesterol content and high
omega-3 fatty acids [2,3]. Rainbow trout are reared to produce fillets, and high production
efficiency is needed to meet the ever-increasing demand for quality products. A significant
constraint is the lack of genetically improved fish strains with high fillet yields and good-
quality fillets. The industry has worked to remedy the situation by introducing breeding
programs to select the best animals as parents for the next generations. Many of these
breeding programs are traditional, using phenotypic information from breeding candidates
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and their pedigree to make selection decisions [4]. However, traditional breeding programs
can be time-consuming and inefficient, especially for lethal traits such as fillet yield and
color that cannot be accurately measured on live fish [5].

Use of genomic information in breeding programs offers a faster and more accurate
method of achieving genetic progress. Achieving this goal requires understanding the
genetic architecture underlying the variability in these traits. Genome-wide association
(GWA) studies can identify genome regions associated with desired traits. GWA studies
take advantage of linkage disequilibrium between SNP markers and genetic loci control-
ling a trait of interest. GWA studies have been conducted in the rainbow trout breeding
program at the National Center for Cool- and Cold-Water Aquaculture (NCCCWA) for
growth [6], muscle yield [7], intramuscular fat [8], fillet firmness [9], and disease resis-
tance [10]. Another essential trait that requires attention is the fillet color—targeted in
this study.

Fillet color is an important quality trait, usually influencing consumers’ satisfaction
and point-of-purchase decisions. There are two markets for rainbow trout fillets—one
for a bright reddish/pink fillet and one for bright white fillets. Consumers usually reject
or downgrade pale yellowish fillets. Factors affecting fillet color range from genetics to
environmental factors and to harvest, handling, and storage conditions [11]. Postmortem
fillet color stability also depends on the rate of myoglobin oxidation, which is influenced
by oxidation of intramuscular lipids and mitochondrial activity [12]. Salmonids’ charac-
teristic pink/bright reddish fillet color results from the deposition of naturally occurring
carotenoids or synthetic pigments added to the diets [13]. Carotenoids supplied in the diet
are transported through the intestinal wall, metabolized within the cells of the intestinal
linings or in the liver. The unmetabolized portion is deposited in the muscle by binding to
muscle α-actin [14,15]. Rainbow trout flesh will typically be less reddish or whitish when
the diet is not supplemented with carotenoids, as salmonids cannot synthesize carotenoids
de novo [16]. Atlantic salmon and rainbow trout fish fed an unpigmented diet yield fillets
with higher L* (lightness) and lower a* (redness) and b* (yellowness) values in comparison
to fish on astaxanthin-supplemented diets [17,18]. Brown et al. [19] reported a significant
difference in the color retention indices (ECI, hue, and chroma) of fillets from rainbow trout
fish that never received dietary astaxanthin compared to fillets from fish that received an
astaxanthin-supplemented diet. Even when fed a non-pigmented diet, Crouse et al. [20]
observed significant differences in fillet redness (a*) between different rainbow trout strains
fed the same diet. Red/pink pigmented rainbow trout fillets are deemed more desirable
and marketed at a higher price than white fillets [19,21,22], but some consumers, especially
in the US, may prefer a whiter fish.

Astaxanthin, a carotenoid added to the salmonid feed to improve the reddish color
of the fillet, is an expensive feed ingredient, accounting for up to 30% of the feed cost.
Therefore, development of genetically improved rainbow trout strains that more efficiently
incorporate carotenoids into the muscle will benefit the aquaculture industry by improving
profitability and consumer satisfaction. When fed unpigmented diets, genetically improved
strains will also use naturally occurring carotenoids in the feed ingredients.

Studies in humans [21,22], chicken [23], mice [24], and Atlantic salmon [25] identified
the β-carotene 15,15′-oxygenase (BCO1) enzyme as responsible for variation in the ability
to metabolize carotenoids. Additionally, a recent study on a rainbow trout line used for
commercial production in France identified Bcmo1 (β,β-carotene 15,15-dioxygenase), dkk3a
(dickkopf WNT signaling pathway inhibitor 3a), and bola3 (bolA family member 3) as possi-
ble genes whose functions regulate the color of rainbow trout fillets [26]. Sae-Lim et al. [27]
used the multi-trait GWAS approach to account for the relationship between body weight
and fillet color and identified BCO1 and ppa1b (inorganic pyrophosphatase) within QTL
regions influencing fillet color in Atlantic salmon. Other studies identified ATP-binding
cassette subfamily G member 2 (abcg2-1a) in Atlantic salmon [28], PyBCO-1 in Scallop [29],
and BCO2 in Chinook salmon [30] as candidate genes for fillet color. However, there is still
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much to learn about the genetic architecture of fillet color before it can be incorporated into
breeding programs through genomic selection.

This study aims to use GWA analysis to identify genomic regions associated with fillet
color traits (redness, yellowness, lightness, and whiteness) in a population of rainbow trout
developed at the NCCCWA that had undergone five generations of selection for growth
rate. Fish were fed an unpigmented commercial fishmeal-based diet.

2. Materials and Methods
2.1. Fish Population and Phenotype Used for GWA in This Study

The rainbow trout fish population used in this study was from a growth-selected line
from NCCCWA, as described by Leeds et al. [31]. Fish from the third (hatch-year 2010)
and fourth (hatch-year 2012) generations belonging to 197 families were included in this
study. The breeding, selection, feeding, rearing, and harvesting procedures are as described
by Salem et al. [7]. The fish used in this study were fed an unpigmented commercial
fishmeal-based diet (42% protein, 16% fat; Ziegler Bros Inc., Gardners, PA, USA) using
automatic feeders (Arvotec, Huutokoski, Finland). Initially, young fish were fed at a daily
rate of ∼2.5% of body weight (BW), gradually reduced to approximately 0.75% of BW.

Fillet color parameters, L*, a*, and b*, which represent lightness, redness, and yellow-
ness, respectively, were obtained from the fresh fillet surface using the Minolta Chroma
Meter CR-200 (Minolta, Model CR-300; Minolta Camera Co., Osaka, Japan). The param-
eters were recorded a day after harvest at three locations above the lateral line of the
right-side fillet, as described by Al-Tobasei et al. [32]. In addition to the standard color
parameters, L*, a*, and b*, the fillet whiteness index was calculated using the equation:
Whiteness = 100 − [(100 − L*)2 + a*2 + b*2]1/2 [33]. The data were obtained from 878 fish
from 2 harvest years: 406 from hatch-year 2010 and 472 from hatch-year 2012.

2.2. Genotyping and Quality Control

The 878 fish were genotyped with the 50k transcribed SNP-chip developed and de-
scribed before [7]. PREGSF90 [34] was used to perform quality control using the follow-
ing criteria: call rate for SNP and samples > 0.90, MAF > 0.05, monomorphic = 1, and
HWE < 0.15. In total, 32,868 SNPs passed the QC and were used for subsequent analysis.

2.3. Descriptive Statistics

The mean and standard deviation values of each fillet color phenotype were calcu-
lated. Heritability was estimated as the ratio of additive genetic variance to total phe-
notypic variance. Variance components were estimated using the restricted maximum
likelihood method found in AIREML in BLUPF90 software [34] using the following linear
mixed model:

y = Xb + Z1a + Z2w + e

where y is the vector of phenotypes, b is the vector of fixed effects (age, harvest group, and
hatch-year), a is the vector of additive genetic effect, w is the vector of random family effect,
and e is the residual effect. X, Z1, and Z2 are incidence matrices for the effects contained in
b, a, and w, respectively.

2.4. Genome-Wide Association Analysis

The weighted single-step GBLUP (wssGBLUP) approach proposed by Wang et al. [35]
was used to perform genome-wide association analysis using the BLUPF90 family pro-
grams [34]. This method allows the use of genotyped and ungenotyped animals while
integrating phenotype, genotype, and pedigree information in a mixed model for single-
trait analysis.

The four fillet color parameters (L*, a*, b*, and whiteness) were analyzed using the
single-trait animal model in wssGBLUP according to the model below:

y = Xb + Z1a + Z2w + e
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where y is the vector of phenotypes, b is the vector of fixed effects, a is the vector of additive
genetic effect, w is the vector of random family effect, and e is the residual effect. X, Z1, and
Z2 are incidence matrices for the effects contained in b, a, and w, respectively. The fixed
effects used in this study are fish age, harvest group, and hatch-year. The assumptions are
that a~N(0, Hσ2

a) and e~N(0, Iσ2
e ), where σ2

a and σ2
e are the additive genetic variance and

residual variance, respectively. The H is a blend of pedigree and SNP-derived matrix [36],
while I denotes the Identity matrix. The inverse of H is used in the wssGBLUP mixed
model analysis [37].

H−1 = A−1 +

[
0 0
0 G−1 A−1

22

]
where A−1 is the inverse of the pedigree relationship matrix for all animals, A−1

22 is the
inverse of the pedigree relationship matrix of genotyped animals, and G−1 is the inverse
of the genomic relationship matrix. The random family effect is uncorrelated and only
accounts for the fact that the animals within the same family were raised in a common
environment, and the covariance structure is given by Iσ2

w, where I is an identity matrix
and σ2

w is the family variance.
AIREMLF90 was used to estimate variance components supplied to BLUPF90 to

predict genomic estimated breeding values (GEBV). The inbreeding coefficient was calcu-
lated from the pedigree data of 1420 fish by RENUMF90 using the method of Meuwissen
and Luo [38].

BLUPF90 was used to predict breeding values using a weighted genomic relationship
matrix (G). The SNP marker effect and new weights were then computed with POST-
GSF90 [34] using 50 adjacent SNP sliding windows. All SNPs were initially assumed to be
equally weighted (i.e., given an equal weight of 1.0). The final SNP weights and SNP effects
were estimated using the option “non-linear A”, which allows for stable SNP weights
after some iterations. Non-linear prediction assumes prior non-normal distribution of the
marker effect and that markers do not contribute equally to genetic variance [39]. The
non-linear approach resulted in greater reliability in the genomic prediction breeding value
for bulls [39].

The percentage of additive genetic variance explained by each SNP window was
calculated as:

var(ai)

σ2
a
× 100% =

var
(

Σ50
j=iZjµj

)
σ2

a
× 100%

where ai is the genetic value of the i-th window consisting of 50 adjacent SNPs, σ2 is the
total genetic variance, zj is a vector genotype of the j-th SNP for all animals, and µj is the
SNP effect of the j-th SNP within the i-th window.

The qqman package [40] was used to obtain Manhattan plots for the proportion of
additive genetic variance explained by each SNP window.

2.5. Identification of Candidate Genes

Genomic windows explaining at least 1% of the genetic variance were selected as
possible genetic regions associated with the fillet color traits. The 1% threshold was set
based on the literature obtained [41–43]. The SNPs were annotated using the NCBI rainbow
trout genome assembly (GCF_013265735.2) to identify SNP-harboring genes. We used
a literature search to identify relevant gene pathways and functions to understand the
possible mechanisms by which the candidate genes regulate the traits. Genes previously
identified in the literature or found to be related to color traits were further discussed.

2.6. MicroRNA Target Prediction

SNPs located in the 3’UTR of genes associated with fillet color in this study were
investigated if their 3’UTR served as a target site for rainbow trout microRNAs. MicroRNA
targets were predicted using three algorithms (PITA, miRanda, and TargetSpy) from the sR-
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NAToolbox (http://bioinfo5.ugr.es/srnatoolbox). The rainbow trout microRNA repertoire
was obtained from Juanchich et al. [44].

3. Results
3.1. Descriptive Statistics and Heritability Estimates for the Color Traits

There was more variation in the redness (54%) and yellowness (30%) in comparison
to lightness and whiteness (6%) (Table 1). The heritability estimates of the traits in this
population were moderate (0.16–0.39). The phenotypic correlation between lightness (L*)
and whiteness color indices was 0.99 (R2 = 0.98), whiteness and redness (a*) was 0.28,
whiteness and yellowness (b*) was 0.67, and redness (a*) and yellowness (b*) was 0.45
(Table 1).

Table 1. Descriptive statistics of the observed phenotypes.

Trait N Mean SD Min Max CV (%) σ2
a σ2

w σ2
e h2 (SE)

Redness 878 1.98 1.06 −0.17 5.833 0.54 0.08 0.04 0.38 0.16 ± 0.06

Yellowness 878 4.41 1.31 −0.79 8.123 0.30 0.52 0.16 0.67 0.39 ± 0.07

Lightness 878 44.54 2.74 38.17 54.81 0.06 1.23 0.33 4.13 0.22 ± 0.07

Whiteness 878 44.3 2.64 38.11 54.22 0.06 1.13 0.31 3.92 0.21 ± 0.06

Where σ2
a , σ2

w, and σ2
e are the additive genetic variance, family variance, and residual variance, respectively, and

h2 is the heritability estimate.

3.2. Genome-Wide Association Study and QTL Identification

A weighted single-step GBLUP approach was implemented in the BLUPF90 family
of programs [34] to identify SNPs associated with fillet color traits. The GWAS results for
whiteness and lightness color indices follow the same pattern, as expected, because of the
high phenotypic correlation. Subsequently, only the whiteness trait will be discussed further.
We identified 244, 161, and 115 SNPs in genomic windows, explaining at least 1% of the
genetic variation in fillet redness, yellowness, and whiteness, respectively (Tables 2 and 3,
and Supplementary Table S1). The SNPs were identified within a genomic sliding window of
50 SNPs.

For redness (a*), chromosome 7 harbors the majority (33%) of the SNPs (80), followed
by chromosome 9 (67 SNPs) (Figure 1, Table 2). Forty-five percent of the SNPs are in
untranslated regions of genes, forty-two percent are in the coding regions. The highest peak
corresponds to a SNP window on chromosome 7 that explains ~3.5% of the genetic variance.

For the yellowness trait (b*), most of the SNPs (66) are resident in chromosome 6
(41%), followed by 46 SNPs on chromosome 4 (29%). The peak SNP window, resident on
chromosome 6, explains up to ~2.5% of the genetic variance for this trait (Figure 2, Table 2).
Forty percent of the SNPs are in untranslated regions (UTR), while forty-seven percent are
in coding regions.

Lightness (L*) and whiteness are similar in their genetic architecture, with peak SNP
on chromosome 8 explaining only 1.6% of the genetic variance for this trait (Figure 3,
Table 3). Forty-three percent of the SNPs are found within gene-coding regions, while
forty-five percent are located in untranslated regions.

3.3. MicroRNA Target Prediction

Our results revealed that the 3’UTR region of ANKH (ANKH inorganic pyrophosphate
transport regulator), RETRIG1 (reticulophagy regulator 1), and HSPB1 (heat-shock protein,
α-crystallin-related, 1) genes are target sites for the omy-mir-1388-3p, omy-mir-219-5p, and
omy-miR-724-5p microRNAs, respectively. An A-to-T single-nucleotide substitution at the
target site of omy-mir-1388-3p causes a loss of its miRNA target site. Likewise, a C-to-T
transition at the 3’UTR of HSPB1 resulted in a loss of the target site for the omy-miR-724-5p
miRNA. Single-nucleotide substitution at the target site of omy-mir-219-5p does not lead to
a loss of the target site.

http://bioinfo5.ugr.es/srnatoolbox
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Table 2. Selected SNP markers within 50 SNPs’ genomic sliding windows, explaining at least 1% of
the additive genetic variance for fillet redness and yellowness traits.

Redness

Chr POS %Var Gene ID Gene Annotation Region/Effect
7 10,996,914 2.43 LOC110527401 Radixin CDS/syn
7 11,138,396 2.49 LOC110527405 Calsequestrin-2 CDS/Syn
7 11,312,252 2.73 LOC110527407 Zinc finger protein Dzip1 CDS/syn
7 11,399,310 3.45 LOC110527414 Kelch protein 41b CDS/syn
7 11,402,881 3.47 LOC110527413 Collagen α-1(XXVIII) chain 3’UTR
7 11,438,574 3.29 LOC100136600 ATP synthase subunit β, mitochondrial CDS/syn
7 11,444,638 3.02 LOC110527417 Retinol dehydrogenase 7 CDS/syn
7 11,459,018 2.98 abcb11 Bile salt export pump CDS/syn
7 11,477,215 2.88 LOC100136260 Cathepsin K CDS/syn

9 52,063,734 2.27 LOC110532529 Tyrosine-protein phosphatase non-receptor
type 1 3’UTR

9 52,106,708 2.26 LOC110532530 Ubiquitin-conjugating enzyme E2 variant 1 3’UTR
9 52,291,239 2.28 LOC110532539 Partner of Y14 and mago A CDS/syn
12 53,800,425 1.1 hspb1 Heat-shock protein, α-crystallin-related-1 3’UTR/miRNA target

Yellowness
4 22,957,625 2.09 prdx6 Peroxiredoxin 6 CDS/syn
4 22,973,619 2.11 plpp6 Phospholipid phosphatase 6 5’UTR
4 23,074,540 2 LOC110521622 Protein PRRC2C 3’UTR
4 23,103,208 1.92 vamp4 Vesicle-associated membrane protein 4 3’UTR
4 23,115,313 1.95 LOC110521624 Myocilin CDS/Syn

6 61,578,946 1.9 LOC110526379 F-actin-methionine Sulfoxide oxidase
MICAL2 5’UTR

6 61,592,297 1.99 LOC110526380 Ubiquitin carboxyl-terminal hydrolase 47 CDS/syn
6 61,666,093 2.25 LOC110526946 β,β-carotene 15,15′-dioxygenase-l CDS/Non-syn
6 61,805,211 2.11 LOC110526388 Nuclear factor of activated T-cells 5 CDS/syn
6 61,837,913 2.39 LOC110526389 Lysine-tRNA ligase 3’UTR
6 61,847,413 2.38 LOC110526390 60S ribosomal protein L13 CDS/syn
6 61,998,041 2.36 LOC110526393 Cytochrome b5 3’UTR

6 62,768,347 2.45 LOC110526402 Cysteine-rich Secretory protein LCCL
domain-containing 2 3’UTR

6 62,812,905 2.32 LOC110526403 Ubiquitin carboxyl-terminal hydrolase 10 CDS/Non-syn
6 62,896,859 2.24 LOC110526405 AP-1 complex subunit γ-1 3’UTR
6 62,961,238 2.26 LOC110526408 Myotubularin-related Protein 10 3’UTR
6 63,056,828 2.39 LOC100136691 Cyclin B2 CDS/syn

Chr = chromosome, POS = SNP position %Var = % variance explained, Syn = synonymous amino acid substitution,
Non-Syn = non-synonymous amino acid substitution. Color intensities (green, yellow, and red) reflect changes
in additive genetic variance explained by the SNP genomic sliding window for the fillet trait. A color gradient
indicates differences in additive genetic variance explained by windows containing the representative SNP marker
(green is the highest and red is the lowest).

Table 3. Selected SNP markers within 50 SNPs’ genomic sliding windows, explaining at least 1% of
the additive genetic variance for the fillet whiteness trait.

Whiteness

Chr POS %Var Gene ID Gene Annotation Region/Effect

8 34,097,292 1.17 LOC110529884 Peptidyl-prolyl cis-trans isomerase
FKBP1B CDS/Syn

8 34,136,112 1.29 mut Methylmalonyl-CoA mutase 3’UTR
8 34,495,040 1.49 sod2 Superoxide dismutase 2 3’UTR
8 34,936,875 1.57 LOC110529892 cGMP-dependent protein kinase 1 3’UTR

8 36,538,411 1.42 LOC110529899 SAM and SH3 domain-containing
protein 1 3’UTR

8 37,290,793 1.54 LOC110529911 Sialomucin core protein 24 3’UTR
8 37,412,186 1.38 LOC110529910 Sestrin-1 3’UTR

8 37,829,107 1.38 ostm1 Osteopetrosis-associated
transmembrane protein 1 3’UTR

8 38,254,068 1.3 LOC110529920 Poly(U)-binding-splicing factor
PUF60 CDS/Syn

8 39,295,098 1.37 ankh ANKH inorganic pyrophosphate
transport regulator 3UTR/miRNA target

8 40,954,559 1.3 myo10 Myosin X 3’UTR
8 40,978,990 1.36 znf622 Zinc finger protein 622 3’UTR
8 41,002,542 1.26 retreg1 Reticulophagy regulator 1 3’UTR/miRNA target
19 41,952,271 1.18 LOC110497982 Uncharacterized protein C15orf52 3’UTR
27 1,675,710 1.19 LOC110507317 Protein IWS1 homolog 3’UTR

27 3,976,684 1.18 LOC110507360
Serine/threonine-protein

phosphatase 2A 65 kDa regulatory
subunit A β isoform

CDS/Syn

Chr = chromosome, POS = SNP position, %Var = % variance explained, Syn = synonymous amino acid substitution.
Color intensities (green, yellow, and red) reflect changes in additive genetic variance explained by the SNP genomic
sliding window for the fillet trait. A color gradient indicates differences in additive genetic variance explained by
windows containing the representative SNP marker (green is the highest and red is the lowest).
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4. Discussion

Fillet color is an important quality trait in salmonids influencing consumers’ purchas-
ing decisions. Therefore, the industry is interested in selecting rainbow trout with superior
genetic merit in their ability to produce a bright red or white fillet. Understanding the
trait’s genetic architecture is required to determine the best genetic improvement approach.
In this study, a genome-wide association investigation identifies regions of the genome
influencing variability in fillet color traits in rainbow trout.

4.1. Descriptive Statistics and Heritability Estimates for the Color Traits

There is more variation in redness (a*) and yellowness (b*) compared to whiteness. The
estimated heritability for fish in this population is low to moderate, similar to an estimate of
0.27 obtained for a rainbow trout fillet color score by Gjerde and Schaeffer [45]. A heritability
estimate of 0.30 was recorded for fillet redness by Haffray et al. [46]. Blay et al. [26] reported
higher heritability estimates of 0.46, 0.45, and 0.28 for rainbow trout fillet lightness (L*),
redness (a*), and yellowness (b*), respectively. Overall, these studies demonstrate the
possibility of achieving genetic improvement for fillet color traits through selection.

4.2. Summary of wssGWAS for Fillet Color Traits

The SNP windows explaining the highest genetic variance are found on chromosomes
7, 6, and 8 for fillet redness, yellowness, and whiteness, respectively. The SNP-harboring
genes were classified according to their function and relevance to fillet color into the
following categories.

4.3. Genes Involved in Carotenoid Metabolism

β, betacarotene 15,15-dioxygenase and retinol dehydrogenase are involved in carotenoid
metabolism [47–49]. Fish species such as Atlantic salmon and rainbow trout deposit carotenoids
in their muscle that enhance the reddish coloration of the fillet [15] and variation in carotenoid
metabolism is associated with β-carotene oxygenase-1 function. Similar to the findings of this
study, β, betacarotene 15,15-dioxygenase was implicated in its association with rainbow trout
fillet yellowness [26]. Helgeland et al. [25] identified β-carotene oxygenase-1 (BCO1) and its
paralogueβ-carotene oxygenase-1 (BCO1L) as two probable causal genes influencing flesh color
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in Atlantic salmon. They supported their findings with functional studies of mRNA and protein
expression, which pointed to BCO1L as the most likely of the two genes to influence flesh
color variation. Several studies have identified single-nucleotide polymorphism within BCO1
that was associated with breast meat color in chicken [25,48,49]. In the mollusk, Yesso scallop,
GWAS, and gene expression studies were used to confirm that PyBCO (a homolog of BCO1 in
fish) was responsible for carotenoid metabolism and subsequent muscle coloration [29].

β,β-carotene 15,15′-dioxygenase on chromosome 6 explains 2.2% of the phenotypic
variance for yellowness, while retinol dehydrogenase-7 found on chromosome 7 explains
2.9% of the variation in the redness trait (Table 2). A-G SNP in β,β-carotene 15,15′-
dioxygenase causes isoleucine-to-valine non-synonymous amino acid substitution. Tran-
scriptome analysis identifies retinol dehydrogenase-12 as a candidate gene regulating
body-color formation in ornamental shrimp [50]. Carotenoids can serve as exogenous an-
tioxidants to prevent cell oxidative damage, and these pigments inhibit lipid peroxidation
and hemoglobin oxidation in human erythrocytes [51].

4.4. Genes Involved in Myoglobin Homeostasis and Protection against Lipid Oxidation

ATP5F1B, methylmalonyl-CoA mutase, ABC11, calsequestrin, cytochrome b5 (CYB5),
ubiquitin carboxyl-terminal hydrolase 10 (USP10), peroxiredoxin, superoxide dismutase
2 (SOD2), sestrin-1, myosin X, and protein PRRC2C are genes that were found to affect
fillet color in the study (Tables 2 and 3). They are known to play a role in either myoglobin
homeostasis or regulation of lipid peroxidation.

ATP synthase subunit β, mitochondrial (ATP5F1B) on chromosome 7 is another identi-
fied gene explaining over 3.5% of the genetic variability of fillet redness in rainbow trout
(Table 2). It generates ATP from ADP through the electron transport system of the respira-
tory chain in the mitochondria [52]. Myoglobin is a muscle protein that binds oxygen and
is responsible for muscle coloration [53]. Myoglobin exists in three forms: deoxymyoglobin,
oxymyoglobin, and metmyoglobin. Although with low concentration of heme in the mus-
cle, studies in salmonids have indicated that flesh color is, to some extent, dependent on the
status of myoglobin [54,55]. The oxymyoglobin form promotes bright-reddish coloration
in beef and salmon fillets, while metmyoglobin promotes fillet lightness (L*) [53,54]. The
mitochondria function influences conversion between the three myoglobin forms [56]. Mito-
chondrial function can remain in postmortem muscle, influencing the conversion between
myoglobin forms and the meat’s color [56,57]. Ramanathan et al. [53] suggested that under-
standing factors that influence mitochondrial function is key to unraveling the regulation
of beef color appearance. Similarly, the gene ATP5F1B may influence rainbow trout fillet
color by regulating mitochondrial integrity and function. Methylmalonyl-CoA mutase
regulates mitochondria function by catalyzing the isomerization of methylmalonyl-CoA to
succinyl-CoA [58]. It explains 1.29% of the genetic variability for fillet whiteness (Table 3).

Bile salt export pump (ABCB11) on chromosome 7 explains ~2.9% of the genetic
variation in fillet redness (Table 2). This gene participates in bile acid homeostasis in an
ATP-dependent manner [59,60]. It affects lipid metabolism and oxidation by regulating bil-
iary tract lipid acid secretion through its action on bile salts’ excretion [61–63]. The influence
of lipid oxidation on myoglobin, and thus meat color, is essential in meat color research.
Postmortem meat color stability is affected by the muscle’s lipid oxidation rate [12]. The
lipid auto-oxidation process generates free radicals and secondary products such as alde-
hydes and ketones that accelerate myoglobin oxidation [12] and, consequently, meat color
deterioration [64–66]. Lipid peroxidation in the bile may generate pro-inflammatory agents
by converting free fatty acids into lipid peroxides and aldehydes [67,68]. Chen et al. [66]
discovered that aldehydes, a lipid oxidation product, accelerate the rate of myoglobin
oxidation and promote permeability of the mitochondrial membrane. This process inhibits
electron-transport chain-mediated metmyoglobin reduction and could profoundly affect
fillet color stability, as discussed above with the ATP synthase subunit β, mitochondrial
(ATP5F1B) gene. Blay et al. [26] identified two genes, dkk3 and bola3, known to be involved
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in adipogenesis, as genes harboring regulatory regions associated with fillet color. This
work supports a relationship between fillet color and intramuscular fat content.

Conversion between the three myoglobin forms is influenced by mitochondrial func-
tion [56]. Cytochrome B5, a metmyoglobin reductase, reduces ferric myoglobin (methe-
moglobin) to ferrous myoglobin within muscle mitochondria [69,70]. In this study, cy-
tochrome b5 (CYB5), on chromosome 6, explained up to 2.3% of the genetic variability for
fillet yellowness (Table 2). This gene may play a role in the interconversion of three myo-
globin forms, thereby influencing fillet coloration. The cytochrome c oxidase subunit II gene
was a differentially expressed gene between red and chocolate ornamental shrimp [50].

Various studies have implicated ubiquitination as one of the regulatory mechanisms
that determine meat quality in pork [71], lamb [72,73], and broiler chicken [74]. Ubiquitin
carboxyl-terminal hydrolase-10 (USP10) is a member of the deubiquitinating enzyme
family known as deubiquitinases, which include ubiquitin C-terminal hydroxylase-1 (UCH-
L1) [75]. USP10 and ubiquitin carboxyl-terminal hydrolase 47 (both on chromosome 6),
respectively, explain 2.3% and ~2.0% of genetic variance associated with the yellowness
phenotype in this study (Table 2). UCH-L1 was implicated as influencing meat quality
traits in pigs [76] and sheep [73]. UCH-L1 reportedly regulates oxidative activity in skeletal
muscle [77] and plays a role in myogenesis [78]. Polymorphism (A/G) in USP10 causes a
non-synonymous change in the amino acid from proline to leucine.

The peroxiredoxin family is a group of proteins capable of detoxifying peroxides
and protecting cells against oxidation [79]. Peroxiredoxin-6 (PRDX6), on chromosome 4,
explains 2.1% of genetic variance in fillet yellowness in the present fish population (Table 2).
Proteome analysis of beef longissimus muscle revealed that peroxiredoxin-1 accounted for
up to 70% of variances in color traits (L* a* b*) of muscle [80], and Wu et al. [79] identi-
fied peroxiredoxin as a possible marker for beef color. Peroxiredoxin-6 enzyme protects
oxymyoglobin from peroxide attacks, thereby improving postmortem color stability [81].
Activator protein (AP-1) transcription factor on chromosome 6, which explains 1.7% of the
genetic variance in fillet yellowness (Table 2), has been identified as a regulator of oxidative
stress [82,83]. It protects the cell against reactive oxygen species. Other studies have identi-
fied a relationship between peroxiredoxin and meat quality or color traits in beef [84–87]
and chevon [88]. Activation of the AP-1 transcription factor induces the expression of many
antioxidants, including peroxiredoxin and glutathione reductase [89,90]. It is possible that
these genes (PRDX6 and AP-1) function in the homeostatic regulation of the myoglobin
redox state, protecting oxymyoglobin against oxidation and thereby enhancing the reddish
coloration of the fillet.

Superoxide dismutase 2 (SOD2) encodes for muscle antioxidant enzyme. This enzyme
reduces the damage caused by superoxide anion radicals [91]. Nohl et al. [92] identified
superoxide dismutase as one of the agents protecting the mitochondria against lipid perox-
idation and damage. Lipid oxidation and mitochondrial damage inhibit metmyoglobin
reduction, and this causes muscle color deterioration [66]. SOD2 on chromosome 8 ex-
plained 1.5% of the genetic variance in fillet whiteness (Table 3) in this study. A proteomics
study on color stability in lamb identified SOD2 as one of the proteins protecting the muscle
against postmortem discoloration [93]. Superoxide dismutase was also a possible predictor
of meat color stability in cattle [86] and chicken [94].

Sestrin-1 (SESN-1) on chromosome 8 explains ~1.4% of the genetic variance in fillet
whiteness (Table 3). SESN1 is known to confer resistance to oxidative stress through
regenerating peroxiredoxins [95–97].

Hanan and Shaklai [98] reported a peroxidative interaction between myoglobin and
myosin that regulates myoglobin homeostasis when attacked by a peroxide. In vitro oxida-
tion of oxymyoglobin was significantly greater (p < 0.05) when in the presence of myosin
compared to when myosin is absent in Tuna fish and Sardine [99]. Myosin X (MYO10) on
chromosome 8 explains 1.3% of the genetic variance for fillet whiteness (Table 3). MYO10
encodes for a myosin protein belonging to the myosin superfamily [100]. Myosin X may
play a role in determining fillet color through its effect on oxymyoglobin oxidation.
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Protein PRRC2C explains 2% of the genetic variability for fillet redness in this study
(Table 2). Protein PRRC2C is required to efficiently form stress granules [101]. It is involved
in the aggregation, arrangement, and bonding of proteins and RNA molecules to form a
stress granule [101]. Stress granules are critical for facilitating responses against oxidative
and cellular stress [102–104].

4.5. Genes Involved in Maintenance of Muscle Structural Integrity

The kelch protein 41b (KLH41B), collagen α-1(XXVIII) chain (COL28A1), myocilin
(MYOC), F-actin-methionine sulfoxide oxidase (MICAL2), and cathepsin K (CTSK) are
genes that are found to affect fillet color in the study. They are known to be involved
in the maintenance of muscle structural integrity. KLH4LB on chromosome 7 explains
up to 3.4% of this study’s variance in the redness trait (Table 2). KLH4LB is involved in
skeletal muscle cell differentiation, muscle fiber development, and sarcomere organiza-
tion [105]. Functional studies of the role of the KLH41B gene in zebrafish revealed that
its knockout resulted in myofibrillar disorganization and muscle weakness [106]. The
relationship between structure and fillet color has been reported in the literature. Kiessling
et al. [107] reported that fillets with higher L* (lightness) values were softer than those
with low lightness values. Gagaoua et al. [108] identified protein biomarkers (α-actin and
connectin) for beef color traits that are also structural proteins. The structural attributes
of the muscle could influence the extent of light scattering for meat [109]. In their study
on mice, Ramirez-Martinez et al. [110] showed that KLH41B maintains muscle function by
preferentially helping stabilize nebulin, a protein needed to maintain muscle sarcomere
integrity. They revealed that proteins involved in sarcomere organization and muscle con-
traction regulation were downregulated in KLH41B knockout mice. Loss of nebulin causes
nemaline myopathy in humans, a condition associated with severe muscle weakness [111].

Collagen α-1(XXVIII) chain (COL28A1) harbors the SNP marker for muscle color in
broiler chicken [112]. The same gene explained ~3.5% of the variance in fillet redness in
this study (Table 2). Collagen is a connective tissue protein. The muscle extracellular matrix
is mainly composed of collagen family proteins [113]. The relative amount and distribution
of collagen fibers in the muscle can influence muscle quality [114].

Cathepsin K activity influenced skeletal muscle repair in mice [115]. Cathepsin K
(CTSK) explains up to 2.8% of this study’s genetic variance in fillet redness (Table 2).

Myocilin (MYOC) encodes the protein myocilin, which is involved in regulating the
actin cytoskeleton [116]. It explained 1.95% of the genetic variance in fillet yellowness in
this study (Table 2).

F-actin-methionine sulfoxide oxidase (MICAL2) encodes methionine monooxygenase,
which promotes depolymerization of F-actin by mediating the oxidation of residues on
actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing
repolymerization [117,118]. The gene is also involved in cytoskeleton organization [118]. It
explains 1.9% of the genetic variance in fillet yellowness in this study (Table 2).

The cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2) gene en-
codes a protein binding heparin and glycosaminoglycans and is involved in regulating the
innate immune system [119]. It was downregulated as part of broiler chickens’ regulatory
mechanisms for muscle pigmentation [120]. It explains 2.45% of the genetic variance in
fillet yellowness in this study (Table 2).

4.6. SNP Variants Alter MicroRNA Binding Sites

MicroRNAs (miRNAs) are short non-coding RNAs between 20 and 24 nucleotides in
length and can regulate gene expression post-transcriptionally by binding to the 3’UTR
of its target mRNA [121,122]. This binding process can form the RNA-induced silencing
complex (RISC) and subsequently repression of translation [123]. Mutation/polymorphism
in miRNA and/or the target 3’UTR sequence have been associated with phenotypic varia-
tion in economically important traits. A G-to-A SNP substitution in the myostatin 3’UTR
changes the miRNA target site and affects muscularity in sheep [124]. A C/G polymor-
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phism in the precursor region of microRNA affects body weight, pelvis breadth, and chest
depth in chickens [125,126].

The 3’UTR region of ANKH (ANKH inorganic pyrophosphate transport regulator),
RETRIG1 (reticulophagy regulator 1), and HSPB1 (heat-shock protein, α-crystallin-related,
1) genes are target sites for omy-mir-1388-3p, omy-mir-219-5p, and omy-miR-724-5p mi-
croRNAs, respectively (Tables 2 and 3). An A-to-T single nucleotide substitution at the
target site of omy-mir-1388-3p causes a loss of its miRNA target site. Likewise, a C-to-T
transition at the 3’UTR of HSPB1 resulted in a loss of the target site for the omy-miR-724-5p
miRNA. Single-nucleotide substitution at the target site of omy-mir-219-5p does not lead to
loss of the target site.

Heat-shock proteins are common effectors of the cellular stress response. Thermal,
environmental, or oxidative stress can trigger the transcription of genes encoding heat-
shock proteins [127–129]. Protection of oxymyoglobin against oxidative stress is required
to preserve bright-reddish meat coloration [66]. HSPB1 encodes for a heat-shock protein
that can protect against oxidative stress. Diet supplementation with antioxidant vitamins
resulted in a significant drop in HSPB1 expression in athletes after an exercise period
compared with athletes fed an un-supplemented diet [130]. Over-expression of HSPB1 has
been shown to improve stress resistance (including oxidative stress) [130–134]. MicroRNA
can repress the translation of its target mRNA. It is possible that the loss of the HSPB1 target
site facilitates the translation of the gene and induces resistance against oxidative stress.

Another gene that exhibits a loss of the miRNA target site under single-nucleotide
polymorphism is the ANKH (ANKH inorganic pyrophosphate transport regulator). The
gene encodes a protein that controls the extracellular level of pyrophosphate [135]. In-
organic pyrophosphate also plays an active role in oxidative stress resistance in several
organisms [136–138].

5. Conclusions

We used weighted single-step GWAS to identify genetic variants associated with
variability in fillet color traits in rainbow trout. Our result confirms that fillet color is a
complex trait with no major gene but many SNP variants contributing to its regulation.
We established that regulatory genes are involved in maintaining muscle structural in-
tegrity, carotenoid metabolism, or protection against myoglobin and lipid oxidation. An
isoleucine-to-valine non-synonymous amino acid substitution mutation in β,β-carotene
15,15′-dioxygenase explained 2.2% of the phenotypic variance for yellowness, while SNP
variants in retinol dehydrogenase-7 explained 2.9% of the variance in the muscle redness.
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