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It is known that chromatin features such as histone modifications and the binding of transcription factors exert a significant impact
on the “openness” of chromatin. In this study, we present a quantitative analysis of the genome-wide relationship between chromatin
features and chromatin accessibility inDNase I hypersensitive sites.We found that these features show distinct preference to localize
in open chromatin. In order to elucidate the exact impact, we derived quantitative models to directly predict the “openness” of
chromatin using histone modification features and transcription factor binding features, respectively. We show that these two
types of features are highly predictive for chromatin accessibility in a statistical viewpoint. Moreover, our results indicate that these
features are highly redundant and only a small number of features are needed to achieve a very high predictive power. Our study
provides new insights into the true biological phenomena and the combinatorial effects of chromatin features to differential DNase
I hypersensitivity.

1. Introduction

In eukaryotes, DNA is organized into chains of nucleo-
somes, each of which consists of about 146 bp of DNA
wrapped around an octamer of four types of histones [1].
The packaging of chromatin into nucleosomes provides a
repressive environment for many DNA-binding proteins and
plays an important role in the regulation of transcription [2].
However, some domains in chromatin are depleted of nucle-
osomes and exhibit highly accessible structure.These nucleo-
some-free regions are supersensitive to the cleavage of DNase
I [3] and are known as DNase I hypersensitive sites (DHSs).
They are predominantly found in many active genes and cis-
regulatory elements [4]. The dynamic alterations of “open-
ness” in chromatin play important roles in many biological
processes, including transcription [5], replication [2], and
differentiation [6].

Traditionally, the experimental technique of choice to dis-
cover theDNase I hypersensitive sites is Southern blotting [7].

However, this low-throughput method is not able to study
large chromosomal regions at a time and cannot represent
the “openness” of chromatin in a quantitative manner. The
significance of differential accessibility in DNase I hypersen-
sitive sites is unknown, but it may reflect some important
biological phenomena like histone modifications and protein
occupation [8]. Even until now genome-wide quantitative
analyses of the relationship between chromatin accessibility
and chromatin features in DNase I hypersensitive sites are
rare. By taking advantage of the abundant datasets of the
ENCODE project [9], we analyzed genome-wide localization
data ofDNase I hypersensitive sites and 33 chromatin features
in human embryonic stem cell (H1hesc) cell line. All datasets
were generated by recently developed genome-wide high
throughput experimental techniques, such as Chip-seq [10,
11] and DNase-seq [12].

It is generally accepted that histonemodifications and the
binding of transcription factors are two main effectors for
the “openness” of chromatin. Previous studies have shown
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that histone modifications and transcription factors tend to
occur near or just in the DNase I hypersensitive sites [8, 13].
Recently, two studies, one in K562 cell line and the other
in Drosophila embryonic cells, have demonstrated that tran-
scription factor binding sites and the chromatin accessibility
are highly correlated with each other [6, 13]. Although these
studies provided important information, so far, quantitative
analysis of the combinatorial effects of different chromatin
features and the biological significance of differential hyper-
sensitivity is still unclear. In this work, we built support vector
regression (SVR) models to directly predict the “openness”
of chromatin in DNase I hypersensitive sites using combined
chromatin features. Our results indicate that both histone
modification features and transcription factor binding fea-
tures are predictive for chromatin accessibility with high
accuracy and these chromatin features are highly redund-
ant.

2. Materials and Methods

2.1. Datasets. All datasets are from ENCODE project, which
aims to build a comprehensive list of functional elements
in the human genome [9]. The 10 histone modifications
(HMs) and binding sites of 23 transcription factors (TFs)
were quantified using Chip-seq and downloaded from the
tracks of UCSC Genome Browser at ENCODE/Broad Insti-
tute and ENCODE/Stanford/Yale/USC/Harvard. The chro-
matin accessibility dataset was measured using DNase-seq
and downloaded from ENCODE/OpenChrom (Duke/UNC/
UTA). Each dataset includes the genome-wide sequencing
signals and regions of statistically enriched signal (peaks).
Peaks can be viewed as locations of chromatin features and
DNase I hypersensitive sites, respectively, and the values
of DNase-seq signals represent chromatin accessibility. We
must note that DNase I hypersensitivity could not be simply
viewed as binary property (peaks versus nonpeaks) but rather
continuous values (sequencing signals) representing differ-
ential chromatin accessibility. These datasets come from the
common H1hesc cell line.

2.2. Mapping HM and TF Binding Peaks to the DNase I
Hypersensitive Sites. We obtained genomic locations of 33
chromatin feature profiles, all together including 582489 his-
tone modification peaks (10HMs) and 443217 transcription
factor binding peaks (23 TFs). For each profile, we mapped
the peaks of feature onto the genome and examined whether
it localized in open chromatin or not. The presence or
absence of chromatin featurewithin accessible chromatinwas
decided by overlap or nonoverlap with DNase-seq peaks. If
there was any amount of overlap within accessible chromatin
(DNase-seq peaks), we counted as a presence [13]. Then, we
calculated the percentage of the peaks occurring in theDNase
I hypersensitive sites for each feature.

2.3. Supervised Learning Methods for Chromatin Accessibil-
ity Prediction. To investigate the quantitative relationship
between chromatin accessibility and these chromatin features
in DNase I hypersensitive sites, we constructed support

vector regression (SVR) models for HM and TF binding
features, respectively. Concretely, in every DNase I hypersen-
sitive site, we calculated the maximum signal of DNase-Seq
and the correspondingmaximum signal of Chip-Seq for each
chromatin feature. For the sake of figuring out whether the
maximum signal exhibits largest prediction power or not, as
a comparison, we also calculated the average signal of Chip-
seq andDNase-seq for each hypersensitive region.Then, SVR
model was built to predict the chromatin accessibility using
signals of these chromatin features. SVR is amachine learning
algorithm based on statistical theory for regression problems
[14, 15]. We implemented this algorithm using the “e1071” 𝑅
package [16].

In order to reduce the computation cost, we randomly
selected 5000 DHSs for our samples. The sample size anal-
ysis indicated that the prediction power increased only
moderately after the size reached 2000. So, the sample
size of 5000 is big enough to represent the entire dataset
(Supporting Information S1 which is available online at
http://dx.doi.org/10.1155/2013/914971). We used the 10-fold
cross-validation method to evaluate the prediction power.
Specifically, we randomly split our sample dataset into 10
equal size subsets. Among them, 9 subsets were used as
training data and the remaining subset was treated as the
validation data for testing the model. This process was
repeated 10 times and each subset could only be used once as
the validation data. After that, we combined the results and
plotted the regression relationship between predicted signals
and the actual DNase-seq signals. Then, the coefficient of
determination (𝑅2) [17] was computed indicating how well
these data points fit the line. 𝑅2 is also a frequently used
measure of the proportion of total variation of outcomes
explained by the model. We chose the square root of the
coefficient of determination (𝑅) as our prediction power.

2.4. Analysis of the Importance for Each Chromatin Feature
and the Combinatorial Effects of Different Features. To esti-
mate which feature exhibits the maximal prediction power,
we predicted the chromatin accessibility using only one fea-
ture. And to investigate whether HM features and TF binding
features are redundant, we next predicted the “openness”
of chromatin using all features. We also explored the com-
binatorial effects of these features. All possible one-feature
(C1
33
), two-feature (C2

33
), and three-feature (C3

33
)models were

evaluated by their performance.

2.5. Model Comparison Analysis. Instead of SVR algorithm,
we also explored the quantitative relationship between chro-
matin features and chromatin accessibility with linear regres-
sion model. Similarly, HM features, TF binding features, and
HM+TF feature combinations were applied to linear regres-
sion model, respectively. The coefficient of determination of
the predicted signals and the actual DNase-seq signals were
calculated and compared with the SVR models. In order to
identify whether the maximum signals or the average signals
exhibit largest prediction power, we also applied thesemodels
with the average signals of chromatin features to predict the
average signals of DNase-seq.
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Figure 1: The percentages of histone modification (HM) features
and transcription factor (TF) binding features within accessible
chromatin regions. The black circle and green triangle represent
HM features and TF binding features, respectively.The two red lines
represent the mean percentages for HMs and TFs, respectively.

3. Results

3.1. The Localization Preference of Chromatin Features. We
analyzed genome-wide localizations of 33 Chip-seq profiles
in the human embryonic stem cell line (H1hesc) from
ENCODE project [9], including 10 histone modifications,
and the binding sites of 23 transcription factors. For each
profile, we mapped the peaks of Chip-seq dataset to the
DNase I hypersensitive sites (see Section 2). Figure 1 shows
the percentage of the peaks within the accessible chromatin
for each feature.We observed that different chromatin feature
exhibits different preference to chromatin accessibility. For
histonemodifications, H3k4me3 exerts the largest preference
of accessible chromatin. 82.2% H3k4me3 peaks located in
DHS. On the contrary, most H3k9me3 occurred out of DHS
(93.7%), which indicated that H3k9me3 was associated with
heterochromatin [18]. Compared to histone modifications, a
majority of transcription factors tend to bind onto accessible
chromatin, which suggests that the process of transcription
requires an open chromatin structure [19].Themean percent-
age of transcription factors locating in DHS is 60.5%, higher
than that of histone modifications (45.1%).

3.2. Predicting Chromatin Accessibility Using Histone Modi-
fication Features. In order to examine the quantitative rela-
tionship between chromatin accessibility and HM features
in a combinatorial manner, we constructed SVR model to
predict the “openness” of chromatin in DNase I hyper-
sensitive sites using all histone modification features. We
can see from Figure 2(a) that there is a linear relationship
between predicted signals and the actual DNase-Seq signals.
The coefficient of determination (𝑅2) is 0.58 indicating that
histone modification features explain about 58% variance of
chromatin accessibility.

We next examined the prediction power for every his-
tone modification feature. Figure 2(b) shows that H3k4me2,
H3k4me3, and H3k9ac exhibit the most important effects to

chromatin accessibility (𝑅 = 0.67, 0.66, 0.63, resp.). These
histone modifications are generally enriched in the promo-
ters of expressed genes [20] and the open chromatin struc-
ture plays an important role in regulating the complex
transcription process. On the other hand, H3k9me3 and
H3k36me3 exhibit the least prediction powers (𝑅 = 0.30,
0.23, resp.), which suggests that these modifications are asso-
ciated with heterochromatin [21, 22]. Interestingly, H3k27ac
and H4k20me1, which are the most predictive histone mod-
ifications for gene expression levels [23], are not the most
important features associated with chromatin accessibility.

3.3. Predicting Chromatin Accessibility Using Transcription
Factor Binding Features. Previous studies have shown that
transcription factors tend to bind onto open chromatin
and they are highly correlated with each other [6, 13]. To
investigate the quantitative relationship of the binding of
transcription factors and the chromatin accessibility in a
combinatorial manner, we next applied our SVR model to all
TF binding features. As shown in Figure 3(a), the TF model
achieves a coefficient of determination (𝑅2) of 0.58 which
is equal to that achieved by HM model. These TF binding
features can also explain about 58% variance of chromatin
accessibility.

For the prediction power of particular TF binding feature,
there is a difference with that of histone modifications; that
is, most transcription factors exhibit important effects to
chromatin accessibility (Figure 3(b)). This is consistent with
their functions because transcription factors directly control
the complex transcription process [24] which requires an
open chromatin environment. However, a small group of
features exhibit lower prediction powers, such as SUZ12,
CTCF, and ZNF274 (𝑅 = 0.37, 0.36, 0.33, resp.). ZNF274 and
SUZ12 are known to be transcriptional repressors [25, 26].
CTCF has many roles, such as transcriptional repression,
insulator function, and imprinting genetic information [27].
These factors are not so important to contribute to the
“openness” of chromatin.

3.4. Chromatin Features Are Highly Redundant to Chromatin
Accessibility. The previous analyses suggest that both his-
tone modification features and transcription factor binding
features are predictive for chromatin accessibility with high
accuracy in DNase I hypersensitive sites. So, there is a
question that whether the prediction power will increase if
we use all these features. To address this question, we directly
predicted the “openness” of chromatin using all features. As
shown in Figure 4(a), the coefficient of determination (𝑅2 =
0.66) is a little higher (8%) than using only HMor TF binding
features, which indicates that these two types of features
are highly redundant. To check the importance of different
features and their combinatorial effects, we tried to build
models with all possible combinations of one to three features
(Figure 4(b)). Focusing on the three-feature combinations
(5456 models), we found that the least prediction power
combinations (H3k36me3,H3k9me3, and ZNF274,𝑅 = 0.45)
could achieve about 56% prediction power of the full model
(𝑅 = 0.81). And there are 110 combinations achieving more
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Figure 2: Prediction accuracy of chromatin accessibility using HM features. (a) Scatter plot of predicted versus experimentally measured
DNase-seq signals using all HM features. The black line represents the linear fit between predicted and measured signals (𝑅2, coefficient of
determination). (b) Prediction powers (𝑅, the square root of coefficient of determination) of the SVR models using only one particular HM
feature.
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Figure 3: Prediction accuracy of chromatin accessibility using TF binding features. (a) Scatter plot of predicted versus experimentally
measured DNase-seq signals using all TF binding features. The black line represents the linear fit between predicted and measured signals
(𝑅2, coefficient of determination). (b) Prediction powers (𝑅, the square root of coefficient of determination) of the SVR models using only
one particular TF binding feature.

than 90% prediction power of the full one. These analyses
indicate that most of these features are highly redundant for
chromatin accessibility.

By examining the 110 high prediction power combina-
tions, we found that seven chromatin features, H3k4me2,
H3k4me3, H3k9ac, H4k20me1, SIN3A, ZNF143, SUZ12, were
significantly enriched (𝑃 < 0.01, hypergeometric test)
in the set of 110 models. Interestingly, all these features
showed high prediction powers in the one-feature models
except H4k20me1 and SUZ12. H4k20me1 is a particular one,
which has been reported for the most predictive histone
modification for gene expression [23]. SUZ12 is a part of
PolycombRepressiveComplex 2 (PRC2) andmay be involved
in chromatin silencing with noncoding RNA [25].Themech-
anisms of how SUZ12 influences chromatin structure are

unknown; however, itmay exert distinct impact on chromatin
accessibility compared with other features.

3.5. Comparison with Other Models. In this study, we chose
the SVR algorithm and the maximum signal in every hyper-
sensitive region tomodel the relationship between chromatin
features and chromatin accessibility. Generally, the SVR
algorithm is a nonlinear regression method. We also have
explored modeling using linear regression model and the
average signal in every region. As shown inTable 1, prediction
powers of models using average signal are significantly lower
than the corresponding maximum signal models. And in
either situation, the SVR models exhibit higher prediction
power than linear models. Our results indicate that the
“openness” of chromatin is determined by the maximum
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Figure 4: Redundancy of HM features and TF binding features. (a) Scatter plot of predicted versus experimentally measured DNase-seq
signals using all HM and TF binding features. The black line represents the linear fit between predicted and measured signals (𝑅2, coefficient
of determination). (b) Comparison of prediction powers (𝑅, the square root of coefficient of determination) between all possible one-feature,
two-feature, three-feature models, and the full model in H1hesc.

Table 1: Comparison of prediction powers with different models.
The prediction power is represented as the square root of the coeffi-
cient of determination (𝑅) for predicted and the actual DNase-seq
signals. LM: linear regression model.

Model SVR LM SVR LM
(max signal) (max signal) (avg signal) (avg signal)

HM 0.76 0.69 0.70 0.56
TF 0.76 0.63 0.69 0.53
HM + TF 0.81 0.73 0.75 0.61

signal of features and their relationships are assumed as a
nonlinear relevance.

4. Discussion

In this work, we presented quantitative analyses of the
relationship of histonemodifications and the binding of tran-
scription factors to chromatin accessibility separately and
combinedly in DNase I hypersensitive sites. We first exam-
ined the percentage of feature peaks within DNase hypersen-
sitive sites (DHSs) in human embryonic stem cell (H1hesc)
line. We found that different chromatin features showed
different location preference in DHS. This may be due to the
particular function of different chromatin features. Thurman
et al. have done similar analysis in K562 cell line [13] for TF
binding features. In our analysis, we find that the percentage
of transcription factors within DHS is significantly lower in
theH1hesc cell line than that inK562 cell line.The reasonmay
be as follows: in order to maintain the “stemness” state, most
genes are repressed in the stem cell compared to the cancer
cell line K562. This phenomenon means that the degree to
which chromatin features occur in accessible chromatin may
differ according to different cellular circumstances.

Our results demonstrate that both histone modification
(HM) features and transcription factor (TF) binding features

account for nearly 58% variance of chromatin accessibility
in H1hesc cell line. For histone hallmarks, many activators of
gene expression exhibited important impact on the “open-
ness” of chromatin, such as H3k4me [21] and histone acety-
lations [28]. The hallmarks of repressors for gene expression
such as H3k9me3 [21] show lower prediction powers. Unex-
pectedly, the transcription elongation hallmark H3k36me3
[29] shows the least prediction power. This is consistent with
the viewpoint of a recently published paper. Chantalat et al.
[22] argued that H3k36me3 is associated with constitutive
and facultative heterochromatin. For TF binding features, the
majority of TFs showed an important impact on chromatin
accessibility except some transcriptional repressors, such
as ZNF274 and SUZ12. This may indicate that the complex
transcription process requires open chromatin environment
[19].

It is generally accepted that cellular factors regulate
the complex dynamic change of chromatin structure in a
collectivemanner.Wehave shown that these features is highly
redundant to predict chromatin accessibility and a small
subgroup of features are able to achieve a very high predi-
ction power. However, the mechanism of how these features
cooperatively impact the openness of chromatin is still
unclear, and we must note that our analysis could not reveal
the “cause” or “consequence” relationship of HM and TF
binding features to chromatin accessibility. Histone modifi-
cations play an important role in creating and maintaining
the accessible chromatin environment [30] and may act as
docking sites for transcription factors [31]. Some pioneer
TFs tend to bind onto the genome and create an accessible
site, such as FoxA1 [32] which is the best known pioneer
transcription factor. Then, more transcription factors tend to
bind onto the opening site and the DNase I hypersensitive
site is created. As an extension, future work could explore
the mechanisms of how these features cooperatively regulate
open chromatin structure and their causal relationships,
based on increased datasets.
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5. Conclusion

We present genome-wide quantitative analysis of the impact
of chromatin features to chromatin accessibility in DNase I
hypersensitive sites. Our findings indicate that both histone
modifications and the binding of transcription factors could
explain nearly 58% variation of the “openness” of chromatin
structure. The combinatorial effect analyses reveal that these
chromatin features are highly redundant for prediction and
H3k4me2, H3k4me3, H3k9ac, SIN3A, and ZNF143 show
closest association with chromatin accessibility. Our results
provide insights into the systematic effects of chromatin fea-
tures to differential chromatin accessibility.

Abbreviations

DHS: DNase I hypersensitive site
HM: Histone modification
SVR: Support vector regression.
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