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ABSTRACT Melatonin, a circadian hormone, has been reported to improve host
lipid metabolism by reprogramming the gut microbiota, which also exhibits rhyth-
micity in a light/dark cycle. However, the effect of the administration of exogenous
melatonin on the diurnal variation in the gut microbiota in mice fed a high-fat diet
(HFD) is unclear. Here, we further confirmed the antiobesogenic effect of melatonin
on mice fed an HFD for 2 weeks. Samples were collected every 4 h within a 24-h
period, and diurnal rhythms of clock gene expression (Clock, Cry1, Cry2, Per1, and
Per2) and serum lipid indexes varied with diurnal time. Notably, Clock and triglycer-
ides (TG) showed a marked rhythm in the control in melatonin-treated mice but not
in the HFD-fed mice. The rhythmicity of these parameters was similar between the
control and melatonin-treated HFD-fed mice compared with that in the HFD group,
indicating an improvement caused by melatonin in the diurnal clock of host metab-
olism in HFD-fed mice. Moreover, 16S rRNA gene sequencing showed that most mi-
crobes exhibited daily rhythmicity, and the trends were different for different groups
and at different time points. We also identified several specific microbes that corre-
lated with the circadian clock genes and serum lipid indexes, which might indicate
the potential mechanism of action of melatonin in HFD-fed mice. In addition, effects
of melatonin exposure during daytime or nighttime were compared, but a nonsignif-
icant difference was noticed in response to HFD-induced lipid dysmetabolism. Inter-
estingly, the responses of microbiota-transplanted mice to HFD feeding also varied
at different transplantation times (8:00 and 16:00) and with different microbiota do-
nors. In summary, the daily oscillations in the expression of circadian clock genes,
serum lipid indexes, and the gut microbiota appeared to be driven by short-term
feeding of an HFD, while administration of exogenous melatonin improved the com-
position and diurnal rhythmicity of some specific gut microbiota in HFD-fed mice.

IMPORTANCE The gut microbiota is strongly shaped by a high-fat diet, and obese hu-
mans and animals are characterized by low gut microbial diversity and impaired gut mi-
crobiota compositions. Comprehensive data on mammalian gut metagenomes shows
gut microbiota exhibit circadian rhythms, which is disturbed by a high-fat diet. On the
other hand, melatonin is a natural and ubiquitous molecule showing multiple mecha-
nisms of regulating the circadian clock and lipid metabolism, while the role of melatonin
in the regulation of the diurnal patterns of gut microbial structure and function in obese
animals is not yet known. This study delineates an intricate picture of melatonin-gut mi-
crobiota circadian rhythms and may provide insight for obesity intervention.
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Melatonin is a natural hormone that is mainly secreted by the pineal gland, where
its synthesis is driven by the master circadian clock located in the suprachiasmatic

nucleus of the hypothalamus (1, 2). Melatonin synthesis is activated by darkness and
inhibited by light; thus, this hormone is a key regulator of the circadian network (3–7).
In addition, melatonin is also involved in various physiological processes (i.e., antioxi-
dant activity, bone formation, reproduction, cardiovascular function, and immune
regulation) and has been confirmed to have therapeutic effects on gastrointestinal
diseases, psychiatric disorders, cardiovascular diseases, and cancers (8–10). More re-
cently, a few studies have reported that melatonin receptor 1 knockout mice show
insulin and leptin resistance (11, 12), indicating a role of melatonin and its downstream
signals in energy metabolism. Additionally, melatonin injection in lipopolysaccharide-
induced endotoxemia markedly improves energy metabolism by enhancing ATP pro-
duction (13). A similar effect of melatonin is also observed in diabetes, where lower
melatonin secretion is independently associated with a higher risk of developing type
2 diabetes (14, 15). These findings indicate an interaction between melatonin signaling
and metabolic diseases. Indeed, Xu et al. also identified the antiobesity effect of
melatonin on high-fat diet (HFD)-induced obesity in a murine model, reporting im-
provement in liver steatosis, low-grade inflammation, insulin resistance, and gut mi-
crobiota diversity and composition (16). We further confirmed the underlying mecha-
nism of action of melatonin in HFD-induced lipid dysmetabolism, which may be
associated with reprogramming of gut microbial functions, especially Bacteroides- and
Alistipes-mediated acetic acid production (17).

The gut microbiota is strongly shaped by HFDs, and obese humans and animals are
characterized by low gut microbial diversity and impaired gut microbiota compositions,
especially in terms of Firmicutes and Bacteroidetes abundances (18–25). Interestingly,
several reports have revealed that the gut microbiota and its metabolites exhibit
circadian rhythms, which are driven by HFDs (26–30). Additionally, some microbes have
been reported to be sensitive to melatonin (31), but the role of melatonin in the
regulation of the diurnal patterns of gut microbial structure and function and whether
gut microbiota oscillations are associated with the antiobesity effect of melatonin are
not yet known.

In this study, we further analyzed the short-term effect of HFD feeding on diurnal
variations in the gut microbiota and the relationship between gut microbiota oscilla-
tions and the expression of circadian clock genes and serum lipids.

RESULTS
Melatonin alleviates adipose accumulation in HFD-fed mice. Body weights were

recorded in the present study, and the results showed an increase in final body weight
after 2 weeks of HFD feeding (P � 0.001) (Fig. 1A and B). Our previous study confirmed
that administration of exogenous melatonin improved subcutaneous adipose accumu-
lation in HFD-fed mice (17), and the relative weight of subcutaneous adipose (P � 0.05)
tended to be low in the HFD plus melatonin (MelHF) group. The amount of visceral
adipose tissue (P � 0.05) was markedly reduced in the MelHF group in this study
(Fig. 1C and D).

Melatonin affects clock gene expression in HFD-fed mice. The circadian clock
and metabolism are generally impaired in HFD-fed mice (27, 32). Thus, we further
analyzed the diurnal variation in circadian clock genes (Clock, Cry1, Cry2, Per1, and Per2)
in response to HFD and administration of exogenous melatonin (Fig. 2A; Table 1).
Interestingly, Clock mRNA showed significant rhythmicity in the livers of control (P �

0.01) and MelHF (P � 0.05) mice, but not in the HFD group (P � 0.05), whereas the
expression of Cry1, Cry2, Per1, and Per2 in the liver showed a significant daily rhythm in
all groups (P � 0.05).

Diurnal rhythms of serum lipids in response to HFD and exogenous melatonin.
Next, we determined the diurnal patterns of serum lipids and glucose in the three
experimental groups (Fig. 2B; Table 2). Serum triglycerides (TG) exhibited significant
rhythmicity in control and MelHF mice (P � 0.01) but not in HFD mice (P � 0.05). A

Yin et al.

May/June 2020 Volume 5 Issue 3 e00002-20 msystems.asm.org 2

https://msystems.asm.org


significant diurnal rhythm of low-density lipoprotein (LDL) was observed in only control
mice (P � 0.01). Serum glucose exhibited rhythmicity in all three groups (P � 0.01). No
daily rhythms were observed in the levels of serum cholesterol (CHOL) and high-density
lipoprotein (HDL) (P � 0.05). Despite the rhythmicity, overall lipid indexes were very
high in HFD-fed mice, while the trends in the MelHF group were similar to those of
control subjects, and the values were much lower than those for the HFD-fed mice at
specific time points, as previously shown (17).

To determine whether serum lipid rhythmicity was associated with the liver expres-
sion of clock genes, we performed Pearson correlation analysis among serum lipid
indexes and circadian clock genes (Clock, Cry1, Cry2, Per1, and Per2) (Fig. 2C). Surpris-
ingly, serum TG concentration was positively correlated with Clock expression but
exhibited a negative correlation with the mRNA levels of Cry2 and Per1 (P � 0.001).
Together, the rhythmicity of lipid indexes, especially TG concentration, was widely
observed in the blood and was markedly associated with clock gene expression. The
daily rhythm of TG was impaired in the HFD-fed mice, which was markedly improved
by administration of exogenous melatonin.

Effect of melatonin on the diurnal rhythms of the gut microbiota in HFD-fed
mice. The gut microbiota has been identified as a key element involved in host
circadian rhythms and itself also undergoes circadian oscillation, which is disturbed in
HFD-fed mice or obesity models (27, 28, 33). Our previous study demonstrated that
melatonin treatment improved lipid metabolism by reprogramming the gut microbiota
in HFD-fed mice (17); thus, we hypothesized that administration of exogenous mela-
tonin would improve the daily rhythm of the gut microbiota.

Mice were sacrificed every 4 h within a 24-h period, and metagenomic DNA was
extracted from the cecal contents. The gut microbiota was tested by 16S rRNA gene
sequencing, and the compositions were similar to those observed in our previous study
(17), that is, the most abundant phylum, Bacteroidetes, was decreased in HFD-fed mice,
and the abundance of Firmicutes increased; melatonin reversed these alterations (see
Fig. S1 in the supplemental material). Firmicutes exhibited significant rhythmicity in
control and MelHF mice (P � 0.05) but not in HFD mice (P � 0.05), while Bacteroidetes
exhibited rhythmicity in only the control and HFD groups (P � 0.05) (Table 3). The
relative abundance of Firmicutes peaked at 4:00 in the HFD group but at 8:00 in the
control and MelHF groups (Fig. S1). However, Proteobacteria and Actinobacteria failed to
show a diurnal variation at the phylum level (Table 3).

At the genus level, 8 genera were significantly altered, and most of them
exhibited a marked daily rhythmicity, except for Bacteroides, Desulfovibrio, and
Clostridiales (P � 0.05) (Fig. 3; Table 3; see also Fig. S2). Parasutterella (P � 0.05),
Alloprevotella (P � 0.01), Parabacteroides (P � 0.01), and Alistipes (P � 0.01) were

FIG 1 Effect of melatonin treatment on body weight and lipid accumulation in HFD-fed mice. Body weights (A), final body weights (B), relative weights of
subcutaneous adipose tissues compared to body weights (C), and relative weights of visceral adipose tissues compared to body weights (D) (n � 42). Values
are presented as the means � SEMs. Differences were assessed by Bonferroni’s test and denoted as follows: *, P � 0.05; ***, P � 0.001; ns, P � 0.05.
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only rhythmic in the control group. Intestinimonas exhibited a significant rhythm in
only HFD-fed mice (P � 0.01). Ruminococcaceae (P � 0.05), Helicobacter (P � 0.05),
and Roseburia (P � 0.01) showed a daily rhythm in only the melatonin-treated mice.
Oscillibacter, Rikenella, and Lachnoclostridium exhibited marked cycles in the control
and HFD groups (P � 0.05) but not in the MelHF group (P � 0.05). Anaerotruncus
showed a diurnal pattern in the control and MelHF groups (P � 0.01) but not in
HFD-fed mice (P � 0.05). We also noticed that Lachnospiraceae was rhythmic in the
HFD and MelHF groups (P � 0.05) but not in the control group (P � 0.05). In
addition, Lactobacillus and Ruminiclostridium exhibited rhythmicity regardless of
HFD and melatonin challenges (P � 0.05).

Collectively, our data showed that most of the microbiota exhibited daily variation
and that the diurnal network of some gut microbiota was affected by HFD and
reversed, at least in part, by administration of exogenous melatonin (Fig. S2).

Genome prediction of microbial communities. The gut microbiota has a wide-
spread and modifiable effect on host gene regulation (34); thus, metabolism, genetic

FIG 2 Effects of administration of exogenous melatonin on the diurnal rhythmicity of liver clock gene mRNA (Clock, Cry1, Cry2, Per1, and Per2) and serum lipid
levels (TG, CHOL, HDL, LDL, and glucose) in HFD-fed mice. Liver gene expression (A), serum lipid levels (B), and correlation analysis between circadian clock
genes and serum lipid indexes (C). Gene expression was determined by real-time PCR analysis, and relative gene expression levels were normalized to those
of �-actin. Values are presented as the means � SEMs. Differences between groups were assessed by Bonferroni’s test and denoted as follows: */#, P � 0.05;
***/###, P � 0.001. * indicates the difference between the control and HFD groups, whereas # indicates the difference between the HFD and MelHF groups.
Spearman’s correlation analysis was conducted, and the correlation coefficient was used for the heat map: ***, P � 0.001. Multivariate analysis of variance for
the time series was conducted by Duncan’s test, and values with different lowercase letters (a, b, c, and d) are significantly different (P � 0.05).
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information, environmental information, cellular processes, human diseases, and or-
ganismal system pathways were further annotated according to the microbiota com-
positions by Tax4Fun analysis (see Fig. S4A). Our data show that short-term HFD
feeding markedly affected cell growth and death, endocrine and metabolic diseases,
the endocrine system, the nervous system, the immune system, and environmental adap-
tation (P � 0.05), while administration of exogenous melatonin influenced lipid metabo-
lism, terpenoids, and polyketides (P � 0.05). We then further analyzed lipid metabolism
(Fig. S4B) and identified eight pathways that mainly contributed lipid metabolism-
annotated genes, namely, lipid biosynthesis, fatty acid biosynthesis, glycerophospho-

TABLE 1 Mesor, amplitude, and acrophase of mRNA levels of clock genes in the livers of
control, HFD, and MelHF micea

Gene Group Acrophase (h) Mesor Amplitude P value

Clock Cont 0.59 0.61 0.21 �0.01
HFD ns
MelHF 6.57 0.41 0.16 �0.05

Cry1 Cont 1.90 0.85 0.37 �0.01
HFD 1.12 0.82 0.27 �0.01
MelHF 0.54 0.71 0.27 �0.01

Cry2 Cont 20.42 0.97 0.56 �0.01
HFD 20.63 0.83 0.40 �0.01
MelHF 17.84 0.64 0.30 �0.01

Per1 Cont 19.60 2.88 4.20 �0.01
HFD 19.30 2.44 3.30 �0.01
MelHF 18.38 1.90 2.37 �0.01

Per2 Cont 22.27 0.60 0.5 �0.01
HFD 21.91 0.44 0.38 �0.01
MelHF 20.89 0.30 0.25 �0.01

aThe rhythmicity was assessed by cosinor analysis, and P � 0.05 indicated a significant rhythm; ns means the
difference was nonsignificant (P � 0.05). The model can be written according to the equation f(x) � A � B
cos [2 �(x � C)/24], with f(x) indicating relative expression levels of target genes, x indicating the time of
sampling (h), A indicating the mean value of the cosine curve (midline estimating statistic of rhythm
[mesor]), B indicating the amplitude of the curve (half of the sinusoid), and C indicating the acrophase (h).

TABLE 2 Mesor, amplitude, and acrophase of serum lipid indexesa

Item Group Acrophase (h) Mesor Amplitude P value

TG Cont 0.79 2.96 0.75 �0.01
HFD ns
MelHF 0.62 3.13 0.45 �0.01

CHOL Cont ns
HFD ns
MelHF ns

HDL Cont ns
HFD ns
MelHF ns

LDL Cont 23.2 0.39 0.06 �0.01
HFD ns
MelHF ns

Glucose Cont 11.56 3.56 2.87 �0.01
HFD 10.47 3.72 2.93 �0.01
MelHF 11.5 3.98 2.89 �0.01

aThe rhythmicity was assessed by cosinor analysis, and P � 0.05 indicated a significant rhythm; ns means the
difference was nonsignificant (P � 0.05). The model can be written according to the equation f(x) � A � B
cos [2 �(x � C)/24], with f(x) indicating relative expression levels of target genes, x indicating the time of
sampling (h), A indicating the mean value of the cosine curve (mesor; midline estimating statistic of rhythm
[mesor]), B indicating the amplitude of the curve (half of the sinusoid), and C indicating the acrophase (h).
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TABLE 3 Mesor, amplitude, and acrophase of gut microbiota compositionsa

Group(s) Acrophase (h) Mesor Amplitude P value

Microbiota at the phylum level
Firmicutes

Cont 5.37 0.37 0.13 �0.05
HFD ns
MelHF 6.05 0.34 0.14 �0.05

Bacteroidetes
Cont 22.40 0.59 0.12 �0.05
HFD 22.01 0.55 0.11 �0.05
MelHF ns

Proteobacteria and Actinobacteria
Cont, HFD, and MelHF ns

Microbiota at the genus level
Bacteroides and Desulfovibrio

Cont, HFD, and MelHF ns
Parasutterella

Contr 19.28 0.01 0.01 �0.05
HFD and MelHF ns

Ruminococcacea ns
Cont and HFD ns
MelHF 1.13 0.009 0.003 �0.05

Oscillibacter
Cont 2.92 0.002 0.002 �0.01
HFD 2.48 0.0004 0.003 �0.01
MelHF ns

Rikenella
Cont 0.35 0.006 0.003 �0.05
HFD 2.19 0.005 0.003 �0.05
MelHF ns

Lachnoclostridium
Cont 4.73 0.005 0.003 �0.05
HFD 3.17 0.005 0.003 �0.05
MelHF ns

Anaerotruncus
Cont 5.70 0.002 0.00004 �0.01
HFD ns
MelHF 3.35 0.003 0.002 �0.01

Lactobacillus
Cont 12.77 0.22 0.11 �0.05
HFD 13.98 0.16 0.12 �0.01
MelHF 12.85 0.17 0.17 �0.01

Alloprevotella
Cont 23.59 0.05 0.03 �0.01
HFD and MelHF ns

Helicobacter
Cont and HFD ns
MelHF 3.33 0.02 0.03 �0.05

Lachnospiraceae
Cont ns
HFD 2.43 0.04 0.02 �0.05
MelHF 2.74 0.03 0.03 �0.05

Intestinimonas
Cont and MelHF ns
HFD 3.18 0.01 0.01 �0.01

Parabacteroides ns
Cont 0.18 0.02 0.008 �0.01
HFD and MelHF ns

Ruminiclostridium
Cont 2.83 0.007 0.007 �0.05
HFD 1.59 0.01 0.008 �0.05
MelHF 1.17 0.007 0.005 �0.01

Roseburia
Cont and HFD ns
MelHF 3.68 0.002 0.002 �0.01

(Continued on next page)
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lipid metabolism, glycerolipid metabolism, sphingolipid metabolism, fatty acid degra-
dation, biosynthesis of unsaturated fatty acids, and synthesis and degradation of
ketone bodies (Fig. S4C).

Gut microbes correlated with clock genes and serum lipid levels. We then
investigated whether the gut microbiota (top 50) also showed an association with clock
gene expression and serum lipid levels by Spearman’s test (Fig. 4A). The relative
abundances of Rikenella, Alistipes, and Enterorhabdus were positively correlated with
Clock mRNA (P � 0.05) (Fig. 4). Ten genera (i.e., Helicobacter, unidentified Lachno-
spiraceae, Intestinimonas, Ruminiclostridium, Oscillibacter, Rikenella, Blautia, Negativiba-
cillus, Harryflintia, and Caproiciproducens) showed a positive association with Cry1
mRNA (P � 0.05), while the correlation was negative between Cry2 mRNA and most
genera, such as Helicobacter, unidentified Lachnospiraceae, Intestinimonas, Roseburia,
Oscillibacter, Anaerotruncus, Mucispirillum, Butyricicoccus, Angelakisella, Tyzzerella, Strep-
tococcus, Caproiciproducens, and Peptococcus. The expressions of Per1 and Per2 shared
the markedly correlation to the relative abundances of Roseburia, Phyllobacterium,
Anaerotruncus, Butyricicoccus, and Butyricimonas. Together, 29 genera were found to be
correlated with clock gene expression; these correlations were mostly positive with
Clock, Cry1, and Per2 mRNA and negative with Cry2 and Per1 mRNA.

A correlation analysis between serum lipid indexes and the gut microbiota was
further conducted, and 17 genera (34% of top 50) were observed to be markedly
correlated with TG concentrations (Fig. 4), including Lactobacillus, Bacteroides, Helico-
bacter, Parabacteroides, Ruminiclostridium, Oscillibacter, Rikenella, Alistipes, Anaerotrun-
cus, Mucispirillum, Butyricicoccus, Enterorhabdus, Negativibacillus, Acinetobacter, Strepto-
coccus, Caproiciproducens, and Peptococcus. The relative abundances of Dechloromonas,
“Candidatus Arthromitus,” and Streptococcus showed significant correlations with both
TG and HDL levels, while negative correlations were noticed between LDL and uniden-
tified Clostridiales, Alistipes, and Butyricimonas.

Effects of exogenous melatonin during daytime or nighttime on lipid accumu-
lation in HFD-fed mice. We further determined the effect of melatonin treatment
during daytime or nighttime on lipid metabolism and the gut microbiota. HFD-fed mice
showed high relative weights of subcutaneous inguinal fat, periuterine fat, perirenal fat,
and total fat (P � 0.001) (Fig. 5A to E). Administration of exogenous melatonin during
daytime markedly reduced perirenal fat (P � 0.05) and total fat (P � 0.01) weights
(Fig. 5D and E), but the trend was nonsignificant for the nighttime treatment compared
with the control group (P � 0.05) (Fig. 5B to E). We also tested serum lipid indexes
(Fig. 5F to J), and the results showed that serum TG and bile acid concentrations were
markedly reduced in the daytime melatonin (MelD) group (P � 0.05) but not in the
nighttime melatonin (MelN) group (P � 0.05). Taken together, we failed to notice any
significant difference in host lipid metabolism between daytime and nighttime mela-
tonin exposure.

We then investigated the gut microbiota compositions of the HFD, MelD, and MelN
groups using 16S rRNA gene sequencing. At the phylum level, melatonin treatment
during daytime or nighttime failed to alter the gut microbiota composition (Fig. 6A).
Interestingly, administration of exogenous melatonin during nighttime significantly

TABLE 3 (Continued)

Group(s) Acrophase (h) Mesor Amplitude P value

Clostridiales
Cont, HFD, and MelHF ns

Alistipes
Cont 23.14 0.004 0.002 �0.01
HFD and MelHF ns

aThe rhythmicity was assessed by cosinor analysis, and P � 0.05 indicated a significant rhythm; ns means the
difference was nonsignificant (P � 0.05). The model can be written according to the equation f(x) � A � B
cos [2 �(x � C)/24], with f(x) indicating relative expression levels of target genes, x indicating the time of
sampling (h), A indicating the mean value of the cosine curve (midline estimating statistic of rhythm
[mesor]), B indicating the amplitude of the curve (half of the sinusoid), and C indicating the acrophase (h).
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FIG 3 Administration of exogenous melatonin improved the composition and diurnal rhythmicity of the gut microbiota in HFD-fed mice.
Microbiota compositions at the genus level (A) and microbiota compositions and oscillating genera (B). Values are presented as the

(Continued on next page)
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reduced the relative abundance of Firmicutes compared with that for the daytime
treatment (P � 0.05). At the genus level, Lactobacillus, Intestinimonas, and Oscillibacter
were significantly affected by melatonin treatment during the day or the night (P �

0.05) (Fig. 6B).
Microbiota transplantation at different times of the day affected lipid metab-

olism in HFD-fed mice. As gut microbiota correlated with serum lipids and both gut
microbiota and serum lipid indexes exhibited a daily rhythmicity, which is highly driven
by HFD feeding and melatonin drinking, we next performed fecal microbiota trans-
plantation at two different time points (8:00 and 16:00) from the control, HFD, and
MelHF groups into antibiotic-treated mice to investigate the response to HFD feeding.
Body weights were recorded, and no significant difference was observed between the
two time points (Fig. 7A to D). Interestingly, the relative weight of subcutaneous
inguinal fat in the group receiving transplants from controls (MT-Cont group) was
affected by the time at which the microbiota was transplanted (P � 0.05).

Similar to the results of our previous study (17), microbiota transplantation at 8:00
from the HFD group tended to enhance serum TG, CHOL, and HDL concentrations,
which were slightly reversed in the group receiving transplants from MelHF mice
(MT-MelHF group) (Fig. 7E to G). Conversely, serum TG concentration was reduced in
the MT-HF group (P � 0.05) when microbiota transplantation was performed at 16:00
(Fig. 7E), and LDL was increased in the MT-MelHF group (P � 0.05) (Fig. 7H). Notably,
microbiota transplantation from control subjects at 8:00 tended to enhance serum
CHOL and HDL (P � 0.05) (Fig. 7F and G) and significantly increased TG concentrations
(P � 0.05) (Fig. 7E) compared with those after microbiota transplantation at 16:00
(Fig. 7B). However, serum CHOL and HDL levels were lower at 16:00 than at 8:00 for
HFD-derived microbiota transplantation (P � 0.05) (Fig. 7E to G). No difference was
observed between the two time points in the MT-MelHF group.

FIG 3 Legend (Continued)
means � SEMs. Differences between groups were assessed by Bonferroni’s test and denoted as follows: */#, P � 0.05. * indicates the
difference between the control and HFD groups; # indicates the difference between the HFD and MelHF groups. Multivariate analysis of
variance for the time series was conducted by Duncan’s test, and values with different lowercase letters (a, b, and c) are significantly
different (P � 0.05).

FIG 4 Correlation analysis of gut microbiota between clock gene expression and serum lipid levels.
Spearman’s correlation analysis was conducted, and the correlation coefficient was used for the heat
map: *, P � 0.05; **, P � 0.01.
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DISCUSSION

We previously showed that administration of exogenous melatonin improves HFD-
induced lipid metabolic disorder by reversing the gut microbiota composition, espe-
cially in terms of the relative abundances of Firmicutes and Bacteroidetes (17). Here, we
further confirmed that melatonin may reverse the gut microbiota composition in
HFD-fed mice and that the gut microbiota is closely associated with circadian clock
genes and serum lipid indexes.

Diurnal rhythms and metabolism are tightly linked, and obesity leads to profound
reorganization of the circadian system, leading to remodeling of the coordinated
oscillations between associated transcripts and metabolites (35). For example, 38
metabolites and 654 transcripts were identified to be oscillating in only HFD-fed
animals, and a majority of oscillations were clock dependent (35, 36). In this study,
circadian clock genes (Clock, Cry1, Cry2, Per1, and Per2) and serum TG, LDL, and glucose
concentrations exhibited daily rhythmicity, which is similar to the results of previous
studies showing that most circadian genes are rhythmic in the liver (37). Interestingly,
Clock and TG only cycled in the control and MelHF groups but not in the HFD-fed mice,
indicating that daily rhythmicity was impaired by short-term HFD feeding, and admin-
istration of exogenous melatonin partially rescued the daily rhythmicity in HFD-fed
mice. Strikingly, the serum TG concentration was positively correlated with Clock mRNA
and negatively correlated with Cry2 and Per1 mRNA.

Compelling experimental evidence has shown a marked difference in the gut
microbiota between obese and lean subjects (38–40). Here, we further investigated the
correlation between the microbiota (at the genus level) and the circadian clock genes
and serum lipid levels. Fourteen genera showed a significant correlation with clock
gene expression. Positive correlations were observed with Clock and Cry1 mRNA levels,
and negative correlations were observed with Cry2 and Per1. Notably, Alloprevotella and
Rikenella were found to be associated with Clock, Cry1, and Per2, whereas Helicobacter
and Anaerotruncus were correlated with Cry2, Per1, and Per2. Previous studies have

FIG 5 Effects of melatonin treatment during daytime and nighttime on lipid accumulation in HFD-fed mice. Final body weights (A), relative weights of
subcutaneous inguinal fat (B), relative weights of periuterine fat (C), relative weights of perirenal fat (D), relative weights of total fat (E), serum TG concentrations
(F), serum CHOL concentrations (G), serum HDL concentrations (H), serum LDL concentrations (I), and serum bile acid concentrations (J). Values are presented
as the means � SEMs. Differences between groups were assessed by Bonferroni’s test and denoted as follows: *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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reported that germfree mice show reduced amplitudes of clock gene expression in
both central and peripheral tissues even in the presence of light-dark signals (27). Taken
together, our data may further indicate that the diurnal variations in clock genes may
be governed, at least in part, by the gut microbiota. In addition, Lactobacillus, Bacte-
roides, Helicobacter, Parabacteroides, Ruminiclostridium, Rikenella, and Alistipes were
correlated with serum TG, and Rikenella, Alistipes, and Clostridiales were closely associ-
ated with LDL concentration. Among these genera, Lactobacillus has been extensively
studied and has been shown to be involved in lipid accumulation (41–43), which is
markedly enhanced in HFD-fed mice and reversed by administration of melatonin (17).
Our previous study indicated that Bacteroides- and Alistipes-derived acetic acids target
host lipid metabolism (17), which is further corroborated by the present data showing
that both Bacteroides and Alistipes were markedly associated with serum TG or LDL.

Microbiota analysis within a 24-h period further confirmed that administration of
melatonin reverses the gut microbiota composition, especially in terms of the relative
abundances of Firmicutes and Bacteroidetes (16, 17). In addition, we have also shown
that most gut microbes exhibit daily cyclical variation under a variety of dietary and
melatonin treatments (26–28, 33). However, the diurnal variations in the gut microbiota
are highly variable. For example, Firmicutes cycled in control and MelHF mice (P � 0.05)
but not in HFD mice (P � 0.05). Additionally, the Firmicutes abundance in HFD-fed mice
peaked at 4:00 and was markedly different from the abundances in the control and
MelHF groups, in which the Firmicutes abundance peaked at 8:00. Conversely, HFD mice

FIG 6 Melatonin treatment during daytime and nighttime had different effects on gut microbiota compositions in HFD-fed mice. The microbiota at the phylum
(A) and genus (B) levels. Values are presented as the means � SEMs. Differences between groups were assessed by Bonferroni’s test and denoted as follows:
*/&, P � 0.05; * indicates the difference was significant compared with the HFD group; & indicates the difference was significant between the MelD and MelN
groups.
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exhibited the lowest abundance of Bacteroidetes at 4:00 compared with that at 8:00 in
the control and MelHF groups. At the genus level, we also show that most genera
oscillate within a 24-h period and that the cosine curves of the microbiota are similar
between the control and MelHF groups, suggesting that the daily rhythm of the gut
microbiota is driven by HFD and reversed by melatonin administration. Microbiota
rhythms have been indicated to represent a potential mechanism by which the gut
microbiota affects host metabolism (26). Using a germfree animal model, Thaiss et al.
found that microbiota deficiency leads to a temporal reorganization of metabolic
pathways, as evidenced by the reduction in chromatin and transcript oscillations and
the substantial increase in de novo oscillations (44). Taken together, our new data
support the hypothesis that the diurnal rhythmicity of the gut microbiota in HFD-fed
mice is improved by administration of exogenous melatonin, while the role by directly
targeting gut microbiota or indirectly modulation of body weight and lipid metabolism
should be further studied.

Another important finding from the present study is that melatonin treatment
during daytime, but not nighttime, markedly improved HFD-induced lipid dysmetabo-
lism. The underlying reason may be associated with the secretory mechanism, that is,
melatonin is mainly secreted at night, and melatonin treatment during daytime leads
to the maintenance of a high level of melatonin, providing sustained exposure of host
metabolism to melatonin (45). Our previous study showed that Lactobacillus is enriched
in HFD-fed mice, which is reversed by administration of melatonin (17). Similarly, the
relative abundance of Oscillibacter is greatly increased in HFD-fed mice (46, 47),
indicating a potential role of Lactobacillus and Oscillibacter in the melatonin-mediated
lipid metabolic response. Microbiota transplantation from different groups at different
times led to different susceptibilities to HFD-induced lipid dysmetabolism, which
further demonstrates the diurnal rhythmicity of the gut microbiota. Notably, serum
lipid indexes show a marked difference between the two time points of microbiota
transplantation from control and HFD mice but not from melatonin-treated animals,
indicating that the diurnal alteration of gut microbiota is affected by melatonin
treatment.

Conclusion. In conclusion, our results show that most gut microbes exhibit a daily
rhythm and are closely associated with clock gene expression and serum lipid levels.

FIG 7 Microbiota transplantation at different times of the day affected lipid metabolism in HFD-fed mice. Final body weights (A), relative weights of
subcutaneous inguinal fat (B), relative weights of perirenal fat (C), relative weights of periuterine fat (D), serum TG concentrations (E), serum CHOL
concentrations (F), serum HDL concentrations (G), and serum LDL concentrations (H). The black bars indicate the fecal microbiota transplanted at 8:00, while
the gray bars indicate transplantation at 16:00. Values are presented as the means � SEMs. Differences between 8:00 and 16:00 in one group were assessed
by Student’s t test, and multiple comparisons between groups (MT-Cont, MT-HF, and MT-MelHF) were analyzed by Bonferroni’s test and denoted as follows:
*, P � 0.05; ns, P � 0.05.

Yin et al.

May/June 2020 Volume 5 Issue 3 e00002-20 msystems.asm.org 12

https://msystems.asm.org


Melatonin improves the diurnal patterns of the gut microbiota in HFD-fed mice, which
is further confirmed by microbiota transplantation. Microbiota transplantation early in
the morning or in the late afternoon also lead to diverse responses to HFD. Taken
together, we conclude that most gut microbiota cycles occur within a 24-h period, and
the rhythm is disturbed by HFD feeding, while administration of exogenous melatonin
improves diurnal patterns of some specific microbiota in HFD-fed mice. However, the
detailed mechanisms behind melatonin mediated-gut microbiota and metabolic rhyth-
micity (directly targeted or indirect modulation of body weight) have not be fully
resolved; thus, melatonin treatment in a healthy model and a 48-h rhythmic analysis are
suggested to confirm the merit of melatonin in obesity.

MATERIALS AND METHODS
Animals and diet. ICR mice, a melatonin-deficient strain, were used in this study to eliminate the

effect of endogenous melatonin production (SLAC Laboratory Animal Central, Changsha, China). As sex
affects the melatonin profile (48), only female mice were used in this study to rule out this effect. All
animals had free access to food and drinking water (temperature, 25 � 2°C; relative humidity, 45% to
60%; lighting cycle, 12 h/day) during the experiment. The diets used in this study were as described in
our previous study (17).

Melatonin treatment. A total of 126 female mice (22.77 � 0.10 g, approximately 4 weeks old) were
randomly grouped into the control (Cont), HFD, and HFD plus melatonin (MelHF) groups (n � 42). Mice
in the MelHF group received the HFD and melatonin-containing water (0.4 mg/ml melatonin [Meilun,
Dalian, China], directly diluted in drinking water) (17). The melatonin solution was prepared daily and
kept in a normal bottle with an aluminum foil cover to prevent light-induced degradation of melatonin.
After 2 weeks of melatonin administration, 6 mice in each group were randomly killed at 0:00 (Zeitgeber
time 16 [ZT16]), 4:00 (ZT20), 8:00 (ZT0, lights on), 12:00 (ZT4), 16:00 (ZT8), 20:00 (ZT12, lights off), and
24:00 (ZT16) (n � 6). Blood samples were collected by orbital bleeding. Liver, adipose tissue, and colonic
digesta samples were weighed and collected.

Melatonin treatment during daytime and nighttime. Mice (26.89 � 0.15 g) were randomly
grouped into a control and three HFD groups (n � 12). One group of HFD mice received melatonin
during daytime (8:00 to 16:00) and control water at night (16:00 to 8:00) (MelD), and another received
melatonin during nighttime (16:00 to 8:00) and control water during daytime (8:00 to 16:00) (MelN). All
mice were sacrificed at 8:00 a.m. after 2 weeks of feeding, and samples were collected for further
analyses.

Fecal microbiota transplantation. Mice were treated with antibiotics (1 g/liter streptomycin, 0.5
g/liter ampicillin, 1 g/liter gentamicin, and 0.5 g/liter vancomycin) to clear the gut microbiota (17). After
1 week of antibiotic treatment, the antibiotic-containing water was replaced with regular water, and the
microbiota-depleted mice received transplants of the donor microbiota. Fecal supernatants from the
control (MT-Cont), HFD (MT-HF), and MelHF (MT-MelHF) (treated for 14 days) mice were transplanted into
the microbiota-depleted mice at 8:00 and 16:00 (for 5 days). Following transplantation, all mice further
received HFD and regular water for an additional 14 days.

Serum lipid indexes. Serum samples were separated after centrifugation at 3,000 rpm for 10 min at
4°C. A Cobas c-311 Coulter chemistry analyzer was used to test serum biochemical parameters (17, 49),
including triglycerides (TG), cholesterol (CHOL), high-density lipoprotein (HDL), low-density lipoprotein
(LDL), glucose, and bile acid, as these indexes are commonly dysregulated in HFD-fed or obese subjects
(50–53).

Reverse transcription-PCR. Liver samples were frozen in liquid nitrogen and ground, and total RNA
was isolated by using TRIzol reagent (Invitrogen, USA) and then treated with DNase I (Invitrogen, USA).
Reverse transcription was conducted at 37°C for 15 min at 95°C for 5 s. The primers used in this study
were designed according to the mouse sequence (see Table S1 in the supplemental material). �-Actin
was chosen as the housekeeping gene to normalize target gene levels. PCR cycling and relative
expression determination were performed according to previous studies (54–61).

Microbiota profiling. Total genome DNA from colonic samples was extracted for amplification using
a specific primer with a barcode (16S V3�V4). Sequencing libraries were generated and analyzed
according to our previous study (54, 62, 63). Operational taxonomic units (OTUs) were further used for
genomic prediction of microbial communities by Tax4Fun analysis (64).

Statistical analysis. All statistical analyses were performed using one-way analysis of variance, and
multiple comparisons were further conducted using Bonferroni analysis (SPSS 21 software). Spearman’s
correlation analysis was conducted. The rhythmicity of clock genes, serum lipid indexes, and the gut
microbiota was assessed by cosinor analysis using the nonlinear regression model within Sigmaplot V
10.0 (Systat Software, San Jose, CA, USA) (65). Multivariate analysis of variance for the time series was
conducted by Duncan’s test, and values with different lowercase letters in the figure panels are
significantly different. The data are expressed as the means � standard errors of the means (SEMs). A P
value of �0.05 was considered significant. All figures in this study were drawn by using GraphPad Prism
7.04.

Data availability. Raw sequences are available in the NCBI Sequence Read Archive with accession
numbers SAMN11246274, PRJNA528844, SAMN11245315, and PRJNA528812.
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