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Purpose: Sclerosing adenosis (SA) is a benign lesion that could mimic breast carcinoma
and be evaluated as malignancy by Breast Imaging-Reporting and Data System (BI-
RADS) analysis. We aimed to construct and validate the performance of radiomic model
based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)
compared to BI-RADS analysis to identify SA.

Methods: Sixty-seven patients with invasive ductal carcinoma (IDC) and 58 patients with
SA were included in this retrospective study from two institutions. The 125 patients were
divided into a training cohort (n= 88) from institution I and a validation cohort from
institution II (n=37). Dynamic contrast-enhanced sequences including one pre-contrast
and five dynamic post-contrast series were obtained for all cases with different 3T
scanners. Single-phase enhancement, multi-phase enhancement, and dynamic
radiomic features were extracted from DCE-MRI. The least absolute shrinkage and
selection operator (LASSO) logistic regression and cross-validation was performed to
build the radscore of each single-phase enhancement and the final model combined
multi-phase and dynamic radiomic features. The diagnostic performance of radiomics
was evaluated by receiver operating characteristic (ROC) analysis and compared to the
performance of BI-RADS analysis. The classification performance was tested using
external validation.

Results: In the training cohort, the AUCs of BI-RADS analysis were 0.71 (95%CI [0.60,
0.80]), 0.78 (95%CI [0.67, 0.86]), and 0.80 (95%CI [0.70, 0.88]), respectively. In single-
phase analysis, the second enhanced phase radiomic signature achieved the highest
AUC of 0.88 (95%CI [0.79, 0.94]) in distinguishing SA from IDC. Nine multi-phase radiomic
features and two dynamic radiomic features showed the best predictive ability for final
model building. The final model improved the AUC to 0.92 (95%CI [0.84, 0.97]), and
showed statistically significant differences with BI-RADS analysis (p<0.05 for all). In the
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validation cohort, the AUC of the final model was 0.90 (95%CI [0.75, 0.97]), which was
higher than all BI-RADS analyses and showed statistically significant differences with one
of the BI-RADS analysis observers (p = 0.03).

Conclusions: Radiomics based on DCE-MRI could show better diagnostic performance
compared to BI-RADS analysis in differentiating SA from IDC, which may contribute to
clinical diagnosis and treatment.
Keywords: sclerosing adenosis, breast carcinoma, magnetic resonance imaging, radiomics, differential diagnosis
1 INTRODUCTION

Sclerosing adenosis (SA) is a common but poorly understood
benign proliferative breast disease, which can mimic invasive
carcinoma in both clinical palpation and imaging findings (1–4).
It’s difficult to guide the formulation of clinical treatment
strategies because SA and invasive carcinoma undergo different
clinical treatments (1). The histopathologic examination may be
necessary for a definite diagnosis of this condition. However,
both biopsy and surgery are invasive and may lead to a series of
complications, such as pain, infection, bleeding, local necrosis,
psychological stress, etc. (5–8). Meanwhile, misdiagnosis may
occur due to sampling errors in some biopsy cases. Accordingly,
a preoperative, noninvasive, and clear approach to differentiate
SA from invasive carcinoma is necessary and crucial to improve
benefits for clinical management.

Previous studies have described the various radiological
characteristics of SA (3, 4, 9, 10). SA may present mainly clustered
microcalcifications, asymmetric focal density, or focal architectural
distortion on mammography (3, 11). SA lesions can be detected as
microlobulated, angulated, or spiculated mass on ultrasonography (4,
12). On magnetic resonance imaging (MRI), SA can be seen as an
oval or irregular mass showing rapid early enhancement and delayed
persistent or washout kinetics (3, 9, 13). The Breast Imaging-
Reporting and Data System (BI-RADS) lexicon of the American
College of Radiologists (ACR) was used to assess the risk of
malignancy of breast lesions for further management (14). Due to
the multiple and atypical imaging features, SA and invasive
carcinoma could be classified into the same BI-RADS category,
such as category 4, and even category 5. The area under the curve
(AUC) of ultrasonography and mammography distinguishing
between benign and malignant lesions was 0.55 and 0.50,
respectively, by BI-RADS analysis as reported (15). It’s challenging
for radiologists to accurately differentiate SA from invasive carcinoma
through conventional imaging evaluation. Liang et al. (16) revealed
that an ultrasound-based nomogram could be used as a supplement
to distinguish malignant tumors from SA for precise biopsies. But
their feature estimation relied on a subjective analysis with inevitable
bias. It’s necessary to evaluate the differentiation by more objective
parameters (3, 4, 17).

Recently, radiomics has shown promise in reflecting the
relationships between radiological and pathological features
more objectively through machine learning and statistical
analysis methods. MRI-based radiomics has been widely
studied and a number of studies have proven the ability of the
2

classification and prognosis of breast carcinoma (18, 19).
Whereas, the role of radiomics in differentiating SA from
breast carcinoma is unclear. Furthermore, previous literature
mainly focused on different single-static phases of enhanced
images, and the consistency was controversial (19–23). The
development of lesions was a dynamic process that cannot be
fully reflected by single static characteristics. Multi-phase
enhanced and dynamic radiomics has gained increasing
attention and the roles remain to be further revealed (22, 24–26).

In this study, we hypothesized that radiomic analysis might
identify the associations between the quantitative imaging features
and the lesion pathophysiology. This study aims to establish a
radiomic model that combined multi-phase enhancement and
dynamic features on dynamic contrast‐enhanced magnetic
resonance imaging (DCE-MRI) to evaluate their capacity in
differentiating SA from breast carcinoma and to compare it with
BI-RADS analysis. External validation was performed to assess the
preoperative discrimination of the proposed model.
2 MATERIALS AND METHODS

This retrospective study was approved by the Medical Ethics
Committee of our institutions and the requirement for informed
consent was waived. The workflow of the study is summarized
in Figure 1.

2.1 Patient
Patients who underwent DCE-MRI examination between January
2015 and December 2019 were retrospectively collected in two
institutions. The inclusion criteria for the study were as follows:
(1) Patients were pathologically confirmed SA or invasive ductal
carcinoma (IDC). (2) Patients received breast MRI examination
within 2weeks before surgery. (3) MRI scans were available for
qualitative and radiomic analysis. (4) The boundary of the lesions was
well-defined on MRI. (5) No previous chemotherapy or radiation
therapy. (6) No biopsy or surgery before MRI examination.

2.2 Magnetic Resonance
Imaging Protocols
MRI examination was performed with different scanners in two
institutions (institution I: Magneton Verio, Siemens AG, 3T,
Germany; institution II: Ingenia, Philips Healthcare, 3T, China).
They applied the same protocol for dynamic contrast
enhancement including one pre-contrast and five dynamic
May 2022 | Volume 12 | Article 888141

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ruan et al. Radiomics Improved BI-RADS Diagnostic Performance
post-contrast series with fat-saturated T1-weighted dynamic
sequences. Contrast material was injected into the elbow vein
(0.1 mmol/kg of gadodiamide) and followed by a 20 mL saline
flush at a rate of 2.0 mL/s. Contrast-enhanced images were
acquired at 1, 2, 3, 4, and 5 minutes after contrast injection.
The scanning parameters of the two institutions were as follows:
(1) Institution I: TR 4.51, TE 1.61, flip angle 10°, slice thickness
1.0 mm, FOV 320× 320, image matrix 420 × 420; (2) Institution
II: TR 4.2, TE 2.1, flip angle 12°, slice thickness 1.0 mm, FOV
339× 339, image matrix 407 × 407.

2.3 BI-RADS Analysis
According to the 5th edition ACR BI-RADS lexicon (14) on the
standard protocol, MRI data were independently evaluated by
three radiologists: Observer 1 (O1) with 9 years of experience,
Observer 2 (O2) with 10 years of experience, and Observer 3
(O3) with 14 years of experience. The three radiologists were
blinded to the clinical data and the pathological results. To assess
the diagnostic accuracy of BI-RADS analysis, BI-RADS category
3 was considered as probably benign, and BI-RADS categories 4
and 5 were considered suspicious or highly suggestive of
malignancy. The diagnostic performance of the three observers
was analyzed.
Frontiers in Oncology | www.frontiersin.org 3
2.4 Radiomic Analysis
2.4.1 Image Processing and Tumor Segmentation
The original contrast-enhanced MRI images of enrolled patients
were exported in Digital Imaging and Communication in
Medicine (DICOM) format from the two institutions. MRI
signal intensity standardization and gray-level quantization
were applied to reduce the gray-level differences caused by the
imaging procedure before delineation.

Two radiologists, Observer 4 (O4) with 4 years of experience
and Observer 5 (O5) with 11 years of experience, who were
blinded to the clinical data and pathological results, evaluated the
contrast-enhanced MRI images using ITK-SNAP (Version 3.6)
software for 3D manual segmentation. The volumes of interest
(VOIs) were delineated along the inner margin of the tumor on
each slice of the five enhanced phases images by the two
observers, respectively. All pixels’ gray scales inside the VOIs
were extracted for analysis.

2.4.2 Feature Extraction and Selection
For each VOI, 396 radiomic features were extracted using the
A.K. (Artificial Intelligent Kit, A.K., Version 3.2.2., GE
Healthcare) software. The radiomic features were composed of
six categories of parameters and classed as follows: Histogram
A

B

FIGURE 1 | Workflow of the study. (A) An overview workflow of the present study. (B) The process of radiomics analysis was mainly composed of four parts:
images acquisition, tumor segmentation, feature extraction and selection, model building and validation.
May 2022 | Volume 12 | Article 888141
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features (n=42), texture features (n=10), gray level co-occurrence
matrix (GLCM, n=144), gray level run length matrix (GLRLM,
n=180), gray level size zone matrix (GLSZM, n=11), and
morphological features (n=9). Five enhanced phases resulted in
a total of 1980 features of each case for multi-phase analysis.

The interobserver agreement was assessed with the intraclass
correlation coefficient (ICC) to evaluate the reliability and
reproducibility. Features with ICCs higher than 0.75 were
considered reliable and selected. A Spearman correlation
analysis was performed to identify the highly correlated
features. Features with a mean absolute correlation higher than
0.9 were considered redundant and eliminated. Then maximum
relevance and minimum redundancy (mRMR) (27) were
performed to eliminate the redundant and irrelevant features
by the R package glmnet (version 3.3.2).

We defined the changes of radiomic features between each
enhancement phase (Phasex + 1 – Phasex, for instance, Phase2-
Phase1) as the dynamic radiomic features, which was consistent
with the dynamic radiomic study in previous literature (25). The
multi-phase enhancement features selected by mRMR were used
to assess the dynamic radiomic analysis.

2.4.3 Model Building and External Validation
The least absolute shrinkage and selection operator (LASSO)
regression using 10-fold cross-validation was adopted to choose
the optimized subset of features (28). We used the LASSO
regression to build radiomic signatures based on each single-
phase enhancement and a final model by combining multi-phase
enhancement features and dynamic radiomic features. Features
with non-zero coefficients were selected from the optimal
features and were combined linearly to construct a
radscore model.

2.5 Statistical Analysis
Statistical analysis was conducted by R software (version 3.5.1)
and MedCalc (version 19.1). Statistical group comparisons of
data were analyzed by A chi-square test or Fisher’s exact test
(normal variables) and Mann-Whitney U test (continuous
variables). P < 0.05 was considered statistically significant. The
agreement between two radiologists was evaluated using
interclass correlation coefficient (ICC) analysis, which was
defined as good consistency between 0.75 and 1.00, fair
consistency between 0.40 and 0.75, and poor consistency under
0.40. The correlation and collinearity of radiomic features were
evaluated using the variance inflation factor (VIF) function. The
radiomic models were tested using an independent testing set.
The classification performance of BI-RADS analysis and
Frontiers in Oncology | www.frontiersin.org 4
radiomic analysis were respectively subjected to ROC analysis,
by using sensitivity, specificity, and area under the ROC curve
(AUC) to evaluate the classification efficacy. The comparison of
ROC curves was performed by Delong’s test.
3 RESULTS

3.1 Patients Characteristics
A total of 125 lesions from 125 patients (age range: 24-81 years;
mean age: 49.97 ± 11.85 years) were recruited. The training
cohort was comprised of patients from institution I (n =88). The
external validation cohort was comprised of patients from
institution II (n = 37). The pathological distribution was IDC
in 47 patients, SA in 41 patients of institution I, and IDC in 20
patients, SA in 17 patients of institution II.

3.2 BI-RADS Analysis
The AUC values of the three observers (O1, O2, and O3) were
0.71 (95%CI [0.60, 0.80] p<0.001), 0.78 (95%CI [0.67, 0.86]
p<0.001), and 0.80 (95%CI [0.70, 0.88) p<0.001] in the training
cohort, respectively (Table 1; Figure 2). There were statistically
significant differences between O1 and O2, O3 (O1 vs O2, p =
0.001; O1 vs O3, p < 0.001), and there was no statistically
significant difference between O2 and O3 (p=0.116). In the
validation cohort, the AUC values of the three observers were
0.68 (95%CI [0.50, 0.82] p = 0.042), 0.77 (95%CI [0.61, 0.89] p <
0.001) and 0.77 (95%CI [0.61, 0.89] p < 0.001), respectively
(Table 1; Figure 2). There were statistically significant
differences between O1 and O2, O3 (O1 vs O2, p < 0.001; O1
vs O3, p < 0.001), and there was no statistically significant
difference between O2 and O3 (p = 0. 94).

3.3 Radiomic Analysis
Based on the result of reproducibility analysis by two radiologists
(O4, O5), 1794 out of 1980 (90.6%) radiomic features had good
consistency (ICC ≥ 0.75). The numbers of features with fair
consistency (0.75 > ICC ≥ 0.40) and poor consistency (ICC <0.4)
were 99 (5.0%) and 87 (4.4%), respectively. Features with an ICC ≥
0.75 were considered robust and were maintained for further
processing. We randomly selected one of the groups of data for
radiomic analysis on account of the good level of consistency. Then,
mRMR was applied to eliminate the redundant and irrelevant
features. In this study, only 20 features were retained by mRMR.
The LASSO classifier was used to select the optimal radiomic feature
subset to build a radscore.
TABLE 1 | Performance of the three observers of BI-RADS analysis.

Observer Training cohort Validation cohort

SEN SPEC AUC (95%CI) p value SEN SPEC AUC (95%CI) p value

O1 0.89 0.44 0.71 (0.60-0.80) <0.001 0.50 0.77 0.68 (0.50-0.82) 0.042
O2 0.92 0.49 0.78 (0.67-0.86) <0.001 0.85 0.59 0.77 (0.61~0.89) 0.001
O3 0.94 0.51 0.80 (0.70-0.88) <0.001 0.90 0.53 0.77 (0.61-0.89) 0.001
May
 2022 | Volume 12 | Article
O1, 2, 3 BI-RADS analysis of Observer 1, 2, 3; AUC, area under the ROC curve; SEN, sensitivity; SPEC, specificity.
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In the training cohort, the AUCs ranged from 0.81 to 0.88 for
the five single phase enhancement of radiomic analysis, in which
DCE-phase2 obtained the best performance with an AUC of 0.88
(95% CI [0.79, 0.94] p<0.001) (Table 2; Figure 3).

A total of 11 optimal features, nine from the multi-phase
enhancement (one was from DCE-phase1, six were from DCE-
phase2 and two were from DCE-phase3), and two from dynamic
radiomic features, showed the best predictive ability for final
model building with AUC value of 0.92 (95%CI [0.84, 0.97] p <
0.001) (Table 2). There was no collinearity among the 11 features
after verification by the VIF function. Details of the correlation
between the 11 optimal features and radscore formula are
described in Supplementary materials.

The diagnostic performance of the single-phase enhancement
and the final model of radiomics was validated using external
validation data collected from institution II, with the AUCs
ranged from 0.81 to 0.86 for the five single-phase enhancement
of radiomic analysis. And the DCE-phase2 obtained the highest
AUC value of 0.86 (95%CI [0.71, 0.95] p < 0.001). The final
model displayed AUC of 0.90 (95%CI [0.75, 0.97] p < 0.001).

There were statistically significant differences in the radscore
values for both the training cohort and validation cohort of SA
and IDC (Figure 4).

3.4 Comparative Analysis
AUC of the final model was higher in differentiating SA from
IDC compared to both BI-RADS analysis and single-phase
Frontiers in Oncology | www.frontiersin.org 5
enhancement in both training and validation cohorts, and all
three observers of BI-RADS analysis showed statistically
significant differences with the final model in the training
(p<0.05 for all) (Figure 2). In the validation cohort, the final
model showed a statistically significant difference with O1 of the
BI-RADS analysis observers (p = 0.03). Details of the comparison
of BI-RADS analysis and the final model of radiomics are
described in Supplementary materials.

Figure 5 shows two cases with SA and IDC, respectively, and
indicates that the final model of radiomics can differentiate SA
from IDC when the lesions present similar MRI findings.
4 DISCUSSION

Our study established and validated a final model which
incorporated multi-phase enhancement and dynamic radiomic
features on DCE-MRI for differentiation between SA and IDC.
The final model showed better diagnostic efficacy than either the
BI-RADS analysis or radiomic analysis of single-phase alone,
which indicated the superiority of the multi-phase enhanced
scanning and kinetic parameters in the disease identification.

SA is a benign but complex lesion characterized
pathologically with the proliferation of the epithelial,
myoepithelial, and basement membrane (5, 17). SA can form
adenosis tumors and may be confused with invasive carcinoma
because of an irregular pattern with involvement of the adipose
TABLE 2 | Performance of single phase enhancement and the final model of radiomics analysis.

Model Training cohort Validation cohort

SEN SPEC AUC (95%CI) p value SEN SPEC AUC (95%CI) p value

DCE-p1 0.62 0.95 0.83 (0.74-0.91) <0.001 0.75 0.82 0.81 (0.65-0.92) <0.001
DCE-p2 0.81 0.88 0.88 (0.79-0.94) <0.001 0.95 0.65 0.86 (0.71-0.95) <0.001
DCE-p3 0.79 0.85 0.86 (0.77-0.92) <0.001 0.90 0.76 0.83 (0.68-0.94) <0.001
DCE-p4 0.64 0.90 0.83 (0.73-0.90) <0.001 0.70 0.88 0.82 (0.66-0.93) <0.001
DCE-p5 0.68 0.83 0.81 (0.71-0.88) <0.001 0.80 0.77 0.81 (0.65~0.92) <0.001
Final model 0.87 0.88 0.92 (0.84-0.97) <0.001 0.85 0.82 0.90 (0.75-0.97) <0.001
May
 2022 | Volume 12 | Article
DCE-p dynamic contrast enhanced phase.
A B

FIGURE 2 | Comparison of BI-RADS analysis and radiomics. ROC curves of BI-RADS analysis and the final model of radiomics on training cohort (A) and external
validation cohort (B).
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tissue, fibromammary tissue, and pseudo perineural invasion on
routine hematoxylin-eosin staining. Immunohistochemistry of
the myoepithelium is requisite for a definite diagnosis of this
condition. A previous study described MRI features of SA of the
breast with correlation to the pathology and showed that SA
component was associated with masses with indeterminate or
suspicious kinetics (13). These may be the plausible reasons why
SA could mimic invasive carcinoma on clinical and imaging
presentation. Although research has reported that SA may
convey an approximate doubling of breast cancer risk as a
single feature, the presence of sclerosing adenosis alone in a
core biopsy does not require surgical excision (29, 30). Close
clinical follow-up or routine imaging is recommended (1, 7, 31).
Accurately distinguishing SA from invasive carcinoma via a non-
invasive, preoperative method is crucial to help avoid
unnecessary biopsy and surgery for both patients and clinicians.

The studies of differentiating SA from invasive carcinoma on
MRI were scarce. The BI-RADS atlas provided standardized
imaging terminology to assess the risk of malignancy while the
imaging evaluation was based on subjective observation by the
naked eye. Liu et al. (4) found that the BI-RADS atlas could be a
powerful tool in demonstrating the SA lesion, and in
Frontiers in Oncology | www.frontiersin.org 6
differentiating SA from IDC lesions on ultrasonography.
Nevertheless, it’s regrettable that the study didn’t indicate the
diagnostic efficacy and there was no assessment of inter-group
consistency. Liang et al. (16) developed an ultrasound-based
nomogram for distinguishing malignant tumors from nodular
SA and demonstrated that the nomogram could build a precise
sequence of biopsies when multiple nodular SA and malignant
masses were classified into the same BI-RADS category. Both of
the above studies were estimated by relying on a subjective
analysis with inevitable bias.

In our study, the AUCs of three observers ranged from 0.68 to
0.80 and the diagnostic capacity of BI-RADS analysis based on
experiences showed inconsistency. There were statistical
differences between observers with varying experiences (O1 vs
O2, O1 vs O3, p < 0.01), indicating that conventional image
evaluation might be influenced by subjective experience.
Compared with the BI-RADS analysis based on qualitative
assessment, the advantage of the fully quantitative radiomic
analysis is reflected in the consistency between observers of
different experiences. 90.6% of radiomic features had good
consistency (ICC ≥ 0.75) despite significant differences in
experience between the two radiologists who performed
radiomic analysis. Even junior physicians can accurately
delineate tumors on MR images, and distinguish SA from
invasive carcinoma preliminarily by radiomic analysis. Texture
parameters, GLCM parameters, and GLRLM parameters
contributed to the final model construction, which indicated
that the heterogeneity of lesions was more sensitive in
differentiation. Radiomic features represented underlying
histologic characteristics that could not be acquired by the
observer’s naked eye. In addition, our study also showed the
final radiomic model was superior to BI-RADS analysis.

Dynamic contrast-enhanced scans have been widely used in
breast radiomic studies, however, extracting post-contrast
images at which time points was controversial (19). Ahmed
et al. (32) found that texture features showed differences among
different phases after enhancement. Significant differences were
mainly seen at 1-3 minutes post-contrast administration.
Karahaliou et al. (24) and Fan et al. (22) analyzed the images
A B

FIGURE 4 | The box plot of the radscore in the final model. Mann-whitney analysis of radscore for distinguishing SA from IDC in the training cohort (A)
and validation cohort (B) (p < 0.01).
A B

FIGURE 3 | Comparison of single phase enhancement and the final model of
radiomics. ROC curves of single phase enhancement and the final model on
training cohort (A) and external validation cohort (B).
May 2022 | Volume 12 | Article 888141
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of two phases after enhancement and showed different results.
The contrast enhancement performance was related to the
abnormal tumor angiogenesis. These malignant lesion vessels
tend to be large, leaky, and typically showed intense
enhancement with rapid uptake and washout of contrast, while
benign lesions and normal tissues were slower and less intense
enhancement (33). Thus, the intensity of lesion enhancement on
MRI at post-contrast 2 min was considered the most critical in
conventional image assessment (33, 34). In our study, DCE-
phase2 presented the best diagnostic performance among single-
phase enhancement analyses, which was consistent with the
previous study.

DCE-MRI can provide tumor kinetic characteristics by
generating pharmacokinetic maps of contrast agents. Previous
research had shown that kinetic characteristics improved the
diagnostic performance of enhancement sequences (23, 35–37).
Jiang et al. (23) and Chai et al. (37) both showed the diagnostic
performance of the combination of kinetic and radiomic
features was superior to radiomic features alone, but the two
studies did not perform external validation to confirm the
generalization under different scanners. In addition, Chai
Frontiers in Oncology | www.frontiersin.org 7
et al. (37) only analyzed the single-layer image of lesions.
Previously we established and validated a nomogram model
combined radiomics and kinetic curve pattern to detect
metastatic axillary lymph nodes in patients with invasive
breast cancer, which showed a better performance than the
radiomic model or the kinetic curve pattern alone (38).
However, the kinetic curve pattern was evaluated by naked
eyes in routine assessment, which caused inevitably
inconsistency due to subjectivity. To a certain extent,
different scanning protocols may affect the pattern of the
kinetic curve. Consequently, we improved it by conducting
quantitative analysis on the kinetic changes between adjacent
phases and the AUC of the final model reached 0.90 with the
dynamic radiomic features.

There were some limitations in the current study that still
need to be further investigated: (1) This study was a retrospective
analysis, and the number of SA cases was limited. (2) No
comparison or combination with DWI analysis was performed
in this study. (3) The efficacy of clinical factors was not evaluated.
(4) In the dynamic radiomic analysis, we only calculated the
primary kinetic change of the two adjacent phases. More time-
A B

DC

FIGURE 5 | MRI and histopathologic findings of two cases of SA and IDC. (A, B) MRI and histopathologic findings of a 47-year-old woman with SA. The DCE-MRI
image showed an irregularly shaped mass with spiculated margin and heterogeneously enhancement (A). The lesion was classified as malignant by BI-RADS
analysis and benign by radiomic analysis. Histopathological examination proves SA (Hematoxylin-eosin staining; original magnification×100) (B). (C, D) MRI and
histopathologic findings of a 66-year-old woman with IDC. The DCE-MRI image showed an irregularly shaped mass with lobulated margin and heterogeneously
enhancement (C). The lesion was classified as malignant by both BI-RADS analysis and radiomic analysis. The histopathologic result was IDC (Hematoxylin-eosin
staining, original magnification×100) (D).
May 2022 | Volume 12 | Article 888141
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related features with a large sample are expected to verify the
conclusions in further studies.
5 CONCLUSION

Our study showed that a final model integrated multi-phase
enhancement and dynamic radiomic features extracted from
DCE-MRI could show better diagnostic performance compared
to BI-RADS analysis in distinguishing SA from IDC. Radiomics
based on DCE-MRI might help clinicians to make more
appropriate management for each patient.
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