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The fungal strains Pseudogymnoascus are a kind of psychrophilic pathogenic fungi
that are ubiquitously distributed in Antarctica, while the studies of their secondary
metabolites are infrequent. Systematic research of the metabolites of the fungus
Pseudogymnoascus sp. HSX2#-11 led to the isolation of six new tremulane
sesquiterpenoids pseudotremulanes A–F (1–6), combined with one known analog
11,12-epoxy-12β-hydroxy-1-tremulen-5-one (7), and five known steroids (8–12). The
absolute configurations of the new compounds (1–6) were elucidated by their ECD
spectra and ECD calculations. Compounds 1–7 were proved to be isomeride structures
with the same chemical formula. Compounds 1/2, 3/4, 1/4, and 2/3 were identified
as four pairs of epimerides at the locations of C-3, C-3, C-9, and C-9, respectively.
Compounds 8 and 9 exhibited cytotoxic activities against human breast cancer (MDA-
MB-231), colorectal cancer (HCT116), and hepatoma (HepG2) cell lines. Compounds 9
and 10 also showed antibacterial activities against marine fouling bacteria Aeromonas
salmonicida. This is the first time to find terpenoids and steroids in the fungal genus
Pseudogymnoascus.

Keywords: Antarctic fungus, Pseudogymnoascus sp. HSX2#-11, sesquiterpenoids, steroids, cytotoxicity,
antibacterial activity

INTRODUCTION

Tremulanes, a family of sesquiterpenoids with characteristic structures of 5/7 fused bicyclic system,
were rarely discovered in nature until 2015 (Guo et al., 2016). However, from 2016 to 2020, about
60 tremulane derivatives were found (Guo et al., 2016; Isaka et al., 2016; Wu, 2016; Chen et al.,
2017, 2018; Cong et al., 2020; Wang et al., 2017, 2020; Ding et al., 2018, 2019, 2020a,b; Zhou et al.,
2018; Duan et al., 2019; Wu et al., 2019, 2020; He et al., 2020; Lee et al., 2020; Shi et al., 2020; Sun
C.-T. et al., 2020), and the number is twice as many as before. Most of them were isolated from the
cultures of the basidiomycetes Irpex lacteus (Chen et al., 2018, 2020; Ding et al., 2018, 2019, 2020a,b;
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Zhou et al., 2018; Duan et al., 2019; Wu et al., 2019; Shi et al.,
2020; Sun C.-T. et al., 2020; Wang et al., 2020). All the tremulanes
isolated from 2016 to 2020 were derived from fungi, except
one derivative, which was obtained from a traditional Chinese
medicine tabasheer (Wu, 2016). Some of them were discovered to
have different bioactivities, such as tremutin A with the inhibition
of the lipopolysaccharide-induced proliferation of B lymphocyte
cells (Wang et al., 2020), and 5-demethyl conocenol C showed
antifungal activities (Wu et al., 2019).

The extreme environments of Antarctica, including cold,
dry climate and intense solar radiations, have nurtured a
number of unique microbial resources (Cong et al., 2020).
It has been proved that Antarctic microorganisms, especially
fungi, have the potential capacity to produce novel secondary
metabolites to adapt to the harsh environments (Kwon et al.,
2017; Rusman et al., 2018; Yu et al., 2019; Sun C. et al.,
2020). Pseudogymnoascus are known as a kind of psychrophilic
pathogenic fungi with ubiquitous distribution in Antarctica
(Rosa et al., 2020; Santos et al., 2020; Martorell et al.,
2021). These fungal strains have been proved to have the
abilities to produce cold-adapted enzymes to adapt severe cold
Antarctic environment (Loperena et al., 2012; Poveda et al.,
2018). Pseudogymnoascus can be antagonistic fungi against
potato scab pathogens from potato field soils (Tagawa et al.,
2010) and have been certified to be one of the predominant
microbial colonizers in the root endosphere and rhizosphere
of turfgrass systems (Xia et al., 2021). The extracts of some of
Pseudogymnoascus strains exhibit potent bioactivities, such as
antimicrobial, herbicidal, and antitumoral activities (Henríquez
et al., 2014; Gonçalves et al., 2015; Gomes et al., 2018; Ferrarezi
et al., 2019). However, only four studies have been done
on the secondary metabolites of the genus Pseudogymnoascus
until now, as far as we know, and most of the obtained
structures focus on polyketides, showing antimicrobial activities
(Figueroa et al., 2015; Guo et al., 2019; Fujita et al., 2021; Shi
et al., 2021). Rare studies about the secondary metabolites of
these fungi enlighten that there is latent space for searching
novel compounds. Pseudogymnoascus sp. HSX2#-11 was an
Antarctic fungus isolated from a soil sample of the Fields
Peninsula, which can produce abundant and various secondary
metabolites, according to our previous research on the fingerprint
spectrum and molecular network of its ethyl acetate extract
of the fermentation broth (Shi et al., 2021). Further chemical
investigation resulted in the isolation and identification of six
new tremulane sesquiterpenoids, pseudotremulanes A–F (1–6),
together with one known analog 11,12-epoxy-12β-hydroxy-
1-tremulen-5-one (7; Zhou et al., 2008), and five known
steroids, ganodermasides A (8), B (9), and D (10; Weng
et al., 2010, 2011), ergosterol (11; Feng et al., 2010), and
dankasterone B (12; Amagata et al., 2007; Figure 1). Compounds
8 and 9 exhibited cytotoxicities against human breast cancer
cell line MDA-MB-231, colorectal cancer cell line HCT116,
and hepatoma cell line HepG2 (Table 3). Compounds 9
and 10 showed antibacterial activity against marine fouling
bacteria Aeromonas salmonicida. Here, we address the isolation,
structure elucidation, and biological activity evaluation of the
isolated compounds.

EXPERIMENTAL SECTION

General Experimental Procedures
Optical rotations were measured on a JASCO P-1020 digital
polarimeter (JASCO, Japan). The UV spectrum was recorded
using an Implen Gmbh NanoPhotometer N50 Touch (Implen,
Germany). ECD spectra were obtained on a Jasco J-815-
150S circular dichroism spectrometer (JASCO, Japan). NMR
spectra were recorded on a Bruker AVANCE NEO (Bruker,
Switzerland) at 600 MHz for 1H and 150 MHz for 13C in
CDCl3. Chemical shifts δ were recorded in ppm using TMS as
the internal standard. HR-APCI-MS spectra were measured on
a Thermo Scientific LTQ Orbitrap XL spectrometer (Thermo
Fisher Scientific, Bremen, Germany). HPLC separation was
performed using a Hitachi Primaide Organizer Semi-HPLC
system (Hitachi High Technologies, Tokyo, Japan) coupled with
a Hitachi Primaide 1430 photodiodearray detector (Hitachi High
Technologies, Tokyo, Japan). A Kromasil C18 semi-preparative
HPLC column (250× 10 mm, 5 µm; Eka Nobel, Bohus, Sweden)
was used. Silica gel (200–300 mesh; Qingdao Marine Chemical
Group Co., Qingdao, China) and Sephadex LH-20 (Amersham
Biosciences Inc., Piscataway, NJ, United States) were used for
column chromatography (CC). Precoated silica gel GF254 plates
(20× 20 cm, Yantai Zifu Chemical Group Co., Yantai, China).

Fungal Materials
The soil samples were collected in ice-free areas (about 10 cm
underground) of the Fields Peninsula using sterile spatulas
and sterilized WhirlPak bags (Sigma-Aldrich, United States),
and were transported to the lab in sealed foam package with
dry ice added by airplane, at the Chinese 35th Antarctic
expedition in 2019. The fungus Pseudogymnoascus sp. HSX2#-
11 was isolated from a soil sample from Fields Peninsula. The
strain was deposited at −80◦C in the State Key Laboratory
of Microbial Technology, Institute of Microbial Technology,
Shandong University, Qingdao, China.

The identification of the fungal strain HSX2#-11 was
conducted by the analysis of the 28S rRNA gene sequence.
The fresh fungal mycelium (about 1.00 mg) was dispersed
in a 50 µl lysis buffer for the microorganisms to direct
PCR (Takara, Cat# 9164), saved in metal bath (Yooning,
China) at 100◦C for 30 min to extract its genomic DNA
as the template DNA. The PCRs were performed in a final
volume of 50 µl, which was composed of the template
DNA (3 µl), ITS1 (1 µl), ITS4 (1 µl), PrimeSTAR R© Max
DNA Polymerase (25 µl, Takara, Cat# R045A), and ultrapure
water (20 µl), under the following procedures: (1) initial
denaturation at 98◦C for 5 min; (2) denaturation at 98◦C
for 30 s; (3) annealing at 55◦C for 30 s; (4) extension at
72◦C for 1 min; and (5) final extension at 72◦C for 10 min.
Steps 2–4 were repeated 30 times. The PCR products were
then submitted for sequencing (BGI, China) with the primers
ITS1 and ITS4. The sequence of HSX2#-11 was searched in
the NCBI nucleotide collection database through the BLAST
program. The phylogenetic tree of the top 20 most similar
to this fungal sequence identified the strain HSX2#-11 as
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FIGURE 1 | Structures of compounds 1–12.

FIGURE 2 | Phylogenetic tree of the fungus Pseudogymnoascus sp. HSX2#-11.

a Pseudogymnoascus sp. (Figure 2), with GenBank (NCBI)
accession number MT367223.1.

Extraction and Isolation
The fungal strain Pseudogymnoascus sp. HSX2#-11 was
fermented in a PDA liquid medium in 200 Erlenmeyer flasks
(300 ml in each 1,000-ml flask) at 16◦C in air condition room
for 45 days. The culture (60 L) was filtered to separate the

broth from the mycelia. Then the mycelia were extracted three
times with EtOAc (3 × 4,000 ml) and then repeatedly extracted
with CH2Cl2–MeOH (v/v, 1:1) three times (3 × 4,000 ml).
The broth was extracted repeatedly with EtOAc (3 × 60 L)
to get the EtOAc layer. All the extracts were combined and
then evaporated to dryness under reduced pressure to afford a
residue (71.5 g). The residue was subjected to vacuum liquid
chromatography on silica gel using step gradient elution
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with EtOAc–petroleum ether (PE; 0–100%) and then with
MeOH–EtOAc (0–100%) to afford eight fractions (Fr.1–Fr.8).
Fr.2 was the pure compound 11 (89.7 mg). Fr.3 was first
subjected to the gradient elution of ODS CC with MeOH in
H2O (10–100%) and then purified by using semipreparative
HPLC on an ODS column (Kromasil C18, 250 × 10 mm, 5 µm,
2 ml/min) eluted with 85% MeOH–H2O to give compound
12 (2.7 mg). Fr.4 was isolated by CC on Sephadex LH-20
eluted with CH2Cl2–MeOH (v/v, 1:1) to afford two fractions
(Fr.4.1, Fr.4.2). Fr.4.1 was subjected to silica gel CC eluting
with EtOAc–PE (0–50%) to get three fractions (Fr.4.1.1–4.1.3).
Fr.4.1.1 was first purified by HPLC eluted with 60% MeOH–H2O
to give compound 7 (1.9 mg), and then purified by HPLC eluted
with 40% MeCN–H2O to afford 5 (0.1 mg) and 6 (0.2 mg).
Fr.4.1.2 was subjected on HPLC eluting with 35% MeCN–H2O
to give 1 (0.7 mg) and 2 (0.7 mg). Fr.4.1.3 was separated on
HPLC eluting with 30% MeCN–H2O to get 3 (0.6 mg) and
4 (0.5 mg). Fr.4.2 was first separated on silica gel CC eluting
with EtOAc–PE (0–50%), and then purified by HPLC eluting
with 75% MeOH–H2O to gain 8 (13.6 mg), 10 (3.1 mg), and
9 (11.1 mg).

Pseudotremulane A (1): colorless oil; [α]20
D + 8.6 (c 0.058,

MeOH); UV (CH2Cl2) λmax (log ε): 224 (4.90) nm; CD (3.4 mM,
MeOH) λmax (1ε) 204 (+9.51), 230 (−4.31) nm; 1H and 13C
NMR data, see Tables 1, 2; HR-APCI-MS m/z 251.1641 [M + H]+
(calcd for C15H23O3, 251.1642).

Pseudotremulane B (2): colorless oil; [α]20
D + 13.9 (c 0.058,

MeOH); UV (CH2Cl2) λmax (log ε): 223 (4.82); CD (3.4 mM,
MeOH) λmax (1ε) 223 (+4.80) nm; 1H and 13C NMR data, see
Tables 1, 2; HR-APCI-MS m/z 251.1641 [M + H]+ (calcd for
C15H23O3, 251.1642).

Pseudotremulane C (3): colorless oil; [α]20
D + 20.6 (c 0.050,

MeOH); UV (CH2Cl2) λmax (log ε): 228 (4.48); CD (4.0 mM,
MeOH) λmax (1ε) 217 (+3.05) nm; 1H and 13C NMR data, see
Tables 1, 2; HR-APCI-MS m/z 251.1642 [M + H]+ (calcd for
C15H23O3, 251.1642).

Pseudotremulane D (4): colorless oil; [α]20
D + 8.5 (c 0.042,

MeOH); UV (CH2Cl2) λmax (log ε): 223 (4.88); CD (2.4 mM,
MeOH) λmax (1ε) 205 (+13.51), 232 (−5.56) nm; 1H and 13C
NMR data, see Tables 1, 2; HR-APCI-MS m/z 251.1641 [M + H]+
(calcd for C15H23O3, 251.1642).

Pseudotremulane E (5): colorless oil; [α]20
D −75.0 (c 0.008,

MeOH); UV (CH2Cl2) λmax (log ε): 224 (5.51); CD (1.2 mM,
MeOH) λmax (1ε) 222 (−0.29), 247 (+1.29) nm; 1H and 13C
NMR data, see Tables 1, 2; HR-APCI-MS m/z 251.1638 [M + H]+
(calcd for C15H23O3, 251.1642).

Pseudotremulane F (6): colorless oil; [α]20
D + 7.9 (c 0.017,

MeOH); UV (CH2Cl2) λmax (log ε): 221 (5.17); CD (6.0 mM,
MeOH) λmax (1ε) 223 (+4.29) nm; 1H and 13C NMR data, see
Tables 1, 2; HR-APCI-MS m/z 251.1641 [M + H]+ (calcd for
C15H23O3, 251.1642).

Cytotoxicity Assays
Cytotoxicities against human breast cancer (MDA-MB-231),
colorectal cancer (HCT116), lung carcinoma (A549), pancreatic
carcinoma (PANC-1), and hepatoma (HepG2) cell lines were
evaluated using the SRB method (Skehan et al., 1990).

Adriamycin was used as a positive control. The cell lines of
MDA-MB-231, HCT116, A549, PANC-1, and HepG2 in the
logarithmic growth phase were seeded into 96-well plates with
5,000 cells/well (100 µl/well), respectively. After 24 h of culture,
the isolated compounds to be tested were added (the final
concentration was shown in Supplementary Table 1), and three
replicates were set for each concentration. The dosage of DMSO
in the solvent control group was 0.1% of the maximum dose
used in the test group. After 72 h of drug treatment, 10%
(m/v) of cold trichloroacetic acid was added to each well to
fix the cells. After SRB staining, 150 µl/well Tris solution was
added to determine the optic density (OD) values at 515 nm
on a microplate reader (TriStar2 S LB 942 Multimode Reader,
Berthold Technologies, Germany). The inhibition rates of the
tumor cell growth were calculated by the following formula:

Inhibition rate (%) =
(
ODDMSO − ODcompound

)
/

ODDMSO × 100

The IC50 values were calculated using the method of log
(inhibitor) vs. normalized response in the software package
GraphPad Prism 5.

Antibacterial Activity Assays
The antibacterial activities were evaluated by the conventional
broth dilution assay (Appendino et al., 2008). Nine marine
fouling bacteria, Pseudomonas fulva, Aeromonas hydrophila,
A. salmonicida, Vibrio anguillarum, V. harveyi, Photobacterium
halotolerans, P. angustum, Enterobacter cloacae, and
E. hormaechei, were used, and cipofloxacin was used as a
positive control. The initial screening of antibacterial activity
assays was tested in a 96-well plate. Each well contained 198 µl
tested bacterial suspension (2–5 × 105 CFU/ml in LB broth)
and 2 µl compound (final concentration was 20 µM). Three
replicates were performed. The plates were incubated at 37◦C
for 24 h, and then the OD values were tested at 600 nm in
a microplate reader (TriStar2 S LB 942 Multimode Reader,
Berthold Technologies, Germany). The inhibitory rates were
calculated according to the following formula:

Inhibition rate (%) =
(
ODDMSO − ODcompound

)
/

ODDMSO × 100

The MIC values of some active target compounds were
evaluated using the twofold serial dilution method. The
concentrations of the compounds ranged from 100 to 6.25 µM.
The other steps were the same as in the primary screening. The
MIC values were calculated using the method of log (inhibitor) vs.
normalized response in the software package GraphPad Prism 5.

RESULTS

Structure Elucidations of Isolated
Compounds
Pseudotremulane A (1) was obtained as a colorless oil.
Its molecular formula, C15H22O3, was determined by the
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TABLE 1 | 1H NMR data of compounds 1–6 in CDCl3 at 600 MHz.

No. 1 2 3 4 5 6

1 2.71, t (10.5)

3 3.03–2.99, m 3.14–3.08, m 3.15, d (12.1) 3.03, d (12.2) 3.16, dt (12.1, 2.8)

4 2.23, dd (13.5, 6.1) 1.95, ddt (14.0, 5.3, 2.7) 1.96, ddt (13.3, 5.5, 2.8) 2.25, dd (14.1, 6.2) 2.47, d (16.9) 2.01–1.96, m

1.75, dd (13.5, 6.2) 1.62, ddd (14.0, 12.5, 2.1) 1.63, ddd (13.3, 12.1, 2.1) 1.88–1.78, m 2.38–2.29, m 1.65, d (13.2)

5 2.05, dd (14.2, 8.5) 2.03–1.98, m 2.04–1.99, m 2.11–2.04, m 1.71–1.62, m 2.05–2.02, m

1.47, td (14.2, 6.2) 1.77, dt (13.5, 2.7) 1.81–1.79, m 1.49, dt (13.3, 6.2) 1.79, t (13.2)

6 2.11–2.07, m 1.91–1.86, m 1.91, dq (7.0, 3.0) 2.17–2.11, m 2.08–2.00, m 1.96–1.91, m

7 3.10–3.03, m 2.89–2.83, m 2.98–2.92, m 3.16, br s 2.08–2.00, m 2.91–2.86, m

8 1.82–1.77, m 1.82–1.79, m 1.58, t (12.0) 1.60, t (12.0) 1.60–1.56, m 1.69, d (12.0)

1.41, t (12.5) 1.40, dd (13.3, 10.7) 1.50, dd (12.0, 8.4) 1.42, dd (12.0, 7.3) 1.53–1.50, m 1.46, dd (12.0, 8.1)

10 2.32, d (17.5) 2.13, d (16.1) 2.07, d (15.7) 2.17–2.11, m 3.64, dd (10.5, 6.2) 3.73, s

1.90, d (17.5) 1.86–1.82, m 1.85–1.81, m 2.11–2.04, m

11 4.67, d (10.3) 4.75, d (13.2) 4.75, d (13.3) 4.67, d (12.0) 4.91, d (17.8) 5.00, d (13.6)

4.65, d (10.3) 4.69, d (13.2) 4.68, d (13.3) 4.62, d (12.0) 4.81, d (17.8) 4.88, d (13.6)

13 0.93, d (7.2) 0.88, d (6.9) 0.86, d (7.0) 0.93, d (7.1) 0.96, d (5.8) 0.91, d (7.0)

14 1.11, s 1.12, s 0.92, s 1.06, s 0.95, s 1.07, s

15 3.46, d (10.6) 3.30, d (10.6) 3.52, s 3.49, s 1.07, s 0.82, s

3.39, d (10.6) 3.26, d (10.6)

TABLE 2 | 13C NMR data of compounds 1–6 in CDCl3 at 150 MHz.

No. 1 2 3 4 5 6

1 138.5, C 138.8, C 138.4, C 138.0, C 45.0, CH 140.8, C

2 125.0, C 125.6, C 125.8, C 125.2, C 162.9, C 132.6, C

3 43.56, CH 44.5, CH 44.6, CH 43.6, CH 128.8, C 44.7, CH

4 26.5, CH2 22.7, CH2 22.6, CH2 26.5, CH2 20.1, CH2 22.2, CH2

5 33.1, CH2 36.9, CH2 36.9, CH2 33.2, CH2 33.5, CH2 36.9, CH2

6 32.7, CH 31.5, CH 31.5, CH 32.6, CH 32.7, CH 30.7, CH

7 43.59, CH 48.4, CH 47.7, CH 43.2, CH 41.5, CH 47.5, CH

8 40.8, CH2 40.1, CH2 39.7, CH2 40.6, CH2 42.3, CH2 41.1, CH2

9 42.6, C 43.8, C 43.9, C 42.8, C 39.0, C 42.6, C

10 41.2, CH2 41.5, CH2 41.6, CH2 41.1, CH2 83.6, CH 80.1, CH

11 69.20, CH2 69.6, CH2 69.6, CH2 69.2, CH2 71.1, CH2 68.9, CH2

12 177.8, C 179.3, C 179.3, C 177.8, C 175.3, C 178.6, C

13 17.5, CH3 12.0, CH3 12.1, CH3 17.7, CH3 12.1, CH3 12.9, CH3

14 24.3, CH3 23.6, CH3 22.7, CH3 23.2, CH3 23.9, CH3 22.1, CH3

15 69.18, CH2 68.9, CH2 71.2, CH2 71.5, CH2 29.1, CH3 25.7, CH3

TABLE 3 | Cytotoxicities (IC50, µM) of compounds 8 and 9.

Compounds 8 9

MDA-MB-231 30 ± 2.0 27 ± 1.7

A549 >40 >40

HCT116 25 ± 1.5 23 ± 0.93

HepG2 21 ± 1.0 23 ± 1.3

PANC-1 >40 >40

HR-APCI-MS spectrum (Supplementary Figure 7), with five
degrees of unsaturation. The analysis of 1H NMR and 13C NMR
spectra (Supplementary Figures 1, 2) combined with the HSQC
spectrum (Supplementary Figure 3) of 1 indicated two methyl
signals at δH 0.93 (3H, d, 7.2 Hz), δC 17.5; δH 1.11 (3H, s), δC

24.3, six methylenes, including two oxygenated methylenes at δH
3.39 (1H, d, 10.6 Hz), 3.46 (1H, d, 10.6 Hz), δC 69.18; δH 4.65 (1H,
d, 10.3 Hz), 4.67 (1H, d, 10.3 Hz), δC 69.20, three methines, and
four quaternary carbon signals, including two olefinic carbons
at δC 125.0 and δC 138.5, and one ester group at δC 177.8,
which represented two degrees of unsaturation (Tables 1, 2).
The other degrees of unsaturation revealed that there had been
three rings in the structure of 1. These data suggested that 1
was tremulane-type sesquiterpenoid similar to 11,12-epoxy-12β-
hydroxy-1-tremulen-5-one (7; Zhou et al., 2008). There had been
three obvious differences between 1 and 7. The disappeared
ketone carbonyl in 7 was replaced by the arisen methylene at
C-5 in 1 (Tables 1, 2); this was further confirmed by the key
HMBC correlation from H-13 to C-5 (Figure 3). The HMBC
correlations from H-11 to C-12, and H-4 to C-12 indicated the
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FIGURE 3 | Key COSY and HMBC correlations of compounds 1–6.

FIGURE 4 | Key NOESY correlations of compounds 1–4 and 6.

ester group carbon at C-12 (Figure 3). The lower field shift of
C-15 data (Tables 1, 2) compared with those of 7, combined
with the HMBC correlations from H-15 to C-8, and H-14 to
C-15 elucidated the oxidation of C-15 (Figure 3). Thus, the
planer structure of 1 was unambiguously confirmed. The relative
configurations of 1 were determined by NOESY spectra analysis
(Supplementary Figure 6). The NOESY correlations between H-
14 and H-8b, H-8b and H-13, and H-13 and H-3 indicated that
H-14, H-13, and H-3 were in the same orientation (Figure 4).
The other orientation of H-6, H-7, and H-15 was suggested by
the NOESY cross-peaks of H-6/H-8a and H-7/H-15 (Figure 4).
Therefore, the relative configurations of 1 were assigned as
3R∗,6R∗,7R∗,9S∗.

Pseudotremulane B (2) was gained as a colorless oil, with
the molecular formula of C15H22O3 determined by HR-APCI-
MS indicating five degrees of unsaturation and had the same
molecular formula as 1 (Supplementary Figure 14). The 1H and
13C NMR data of 2 were very similar to those of 1 (Tables 1, 2).
The downfield shift of C-2, C-3, C-5, C-7, C-9, C-11, and C-12
and the high-field shift of C-4, C-6, C-8, C-13, and C-14 in 13C
NMR suggested the difference configurations between 1 and 2.
The NOESY cross-peaks of H-15/H-3 and H-3/H-7 declared that
H-3, H-7, and H-15 were in the same face (Figure 4). The NOESY
correlation of H-13 and H-14 indicated that H-13 and H-14 were
in another face. Therefore, the relative configurations of 2 were
assigned as 3S∗,6R∗,7R∗,9S∗.
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Pseudotremulane C (3) was acquired as a colorless oil. The
HR-APCI-MS of 3 exhibited the same molecular formula with
1 and 2 (Supplementary Figure 21). The strong similar 1H and
13C NMR data between 2 and 3 (Tables 1, 2) suggested that they
shared the same planer structures. The high-field shift of C-14
and the downfield shift of C-15 (Table 2) revealed the difference
configurations of C-9 of 2 and 3. The α-orientation of H-3, H-7,
and H-14 was determined by the NOESY correlations of H-3/H-
7 and H-7/H-14 (Figure 4). The β-orientation of H-13 and H-15
was determined by the NOESY cross-peaks of H-13/H-8a and H-
8a/H-15 (Figure 4). Compounds 2 and 3 were a pair of epimeride
at the location of C-9.

Pseudotremulane D (4) was obtained as a colorless oil, with
the same molecular formula with 1–3, according the analysis
of its HR-APCI-MS spectrum (Supplementary Figure 28).
Careful analysis of the 1H and 13C NMR data of 1 and 4
indicated that they had the same planer structures. The difference
configurations of C-9 of 1 and 4 were determined by the high-
field shift of C-14 and the downfield shift of C-15 (Table 2). The
NOESY correlations of H-3/H-13, H-13/H-8a, and H-8a/H-15
(Figure 4) revealed the β-orientation of H-3, H-13, and H-15.
The α-orientation of H-7 and H-14 was proved by the NOESY
cross-peak of H-7/H-14 (Figure 4). Compounds 1 and 4 were a
pair of epimeride at the location of C-9.

Pseudotremulane E (5) was obtained as a colorless oil. Its
molecular formula was the same as 1–4, as suggested by HR-
APCI-MS (Supplementary Figure 35). The NMR spectra of
5 revealed the presence of three methyls, four methylenes
(one oxygenated), four methines (one oxygenated), and four
quaternary carbons (one ester group carbon, two olefinic, and one
sp3 quaternary carbon; Supplementary Figures 29–31). These
characteristic NMR spectroscopic data of 5 showed similarities
with those of 11,12-epoxy-12β-hydroxy-1-tremulen-5-one (7;
Zhou et al., 2008). Compared with 7, the disappeared ketone at C-
5 was substituted by methylene [δH 1.71–1.62 (2H, m), δC 33.5]
in 5 (Tables 1, 2), elucidated by the 1H-1H COSY correlations
of H-6/H-5 and H-5/H-4, and further confirmed by the HMBC
correlations from H-13 to C-5, and H-5 to C-3, C-4, and C-7
(Figure 3). The position of the double bond was changed from
C-1/C-2 in 7 into C-2/C-3 in 5, proved by the 1H-1H COSY cross-
peak of H-1/H-7 and the HMBC signals of H-10/C-2, H-11/C-2,
and H-5/C-3 (Figure 3). The absence of carbonyl carbon (δC
175.3) in 5 and the disappeared oxygenated methine at C-12 in
7, combined with the molecular formula of 5, revealed that there
had been an ester group at C-12 in 5. The large coupling constants
of H-1/H-10 (J = 11.0 Hz) and H-1/H-7 (J = 11.0 Hz) revealed
the β-orientation of H-1 and the α-orientation of H-7 and H-10
(Table 1). The overlapped 1H NMR signals of H-6/H-7 and H-
13/H-14 increased the difficulties to decide the configurations of
5 (Table 1). However, based on biogenetic considerations, H-13
was proposed to have β-orientation be the same with 1–6.

Pseudotremulane F (6) was isolated as a colorless oil. The
same molecular formula of C15H22O3 was determined by the
HR-APCI-MS spectrum (Supplementary Figure 42). The three
methyls, four methylenes (one oxygenated), four methines (one
oxygenated), and four quaternary carbons (one ester group
carbon, two olefinic, and one sp3 quaternary carbon) exhibited

FIGURE 5 | Experimental ECD spectra of compounds 1–6.

in the NMR spectra (Supplementary Figures 29–31), indicating
the similar structures of 6 and 5. The most obvious differences of
13C NMR data between 6 and 5 were the downfield shift of C-1
(δC 140.8 in 6 vs δC 45.0 in 5) and the high-field shift of C-2 (δC
132.6 in 6 vs δC 162.9 in 5) and C-3 (δC 44.7 in 6 vs δC 128.8
in 5; Table 2), elucidating that the olefinic bond location was
changed from C-2/C-3 in 5 into C-1/C-2 in 6. This was further
confirmed by the HMBC correlations from H-11 to C-2, H-4 to
C-2, and H-8 to C-1 (Figure 3). The β-orientation of H-13 and
H-14 was revealed by the NOESY cross-peaks of H-13/H-4b and
H-4b/H-14, and the α-orientation of H-3, H-7, H-15, and H-10
was suggested by the NOESY correlations of H-3/H-7, H-7/H-15,
and H-15/H-10 (Figure 4).

The absolute configurations of 1–6 were determined by their
ECD spectra (Figure 5) and were further confirmed by ECD
calculations. The experimental ECD spectrum of 1 exhibited a
negative cotton effect at 230 nm. According to the π-π∗ CD
octant rule for olefins (Guo et al., 2016), the negative cotton effect
at 230 nm was caused by ester carbonyl (C-12) and oxymethene
(C-11) lying in the negative contribution region (Figure 5).
Combined with the relative configuration conclusions, the
absolute configurations of 1 were established as 3R,6R,7R,9S,
and named as pseudotremulane A. The similar ECD spectra of
4 and 5 with the negative cotton effects at 232 and 222 nm
(Figure 5), respectively, indicated the absolute configurations of
3R,6R,7R,9R–4 and 1S,6R,7R,10S–5. The positive cotton effects
of the ECD spectra of compounds 2 (223 nm), 3 (217 nm), and 6
(223 nm) elucidated the absolute configurations of 3S,6R,7R,9S–
2, 3S,6R,7R,9R–3, and 3S,6R,7R,10R–6 (Figure 5). Thus, the
structures compounds 2–6 were completely confirmed and
named as pseudotremulanes B-F, respectively.

To further conform these results, the theoretical ECDs of
compounds 1–6 (Figure 6) were calculated to compare with
their experimental ECD spectra (Mazzeo et al., 2013; Cao et al.,
2020). The MMFF94S method was used to conformational
searches of 1a–6a to obtain the lowest energy conformers with
relative energies between 0 and 10 kcal/mol. Gaussian 09 package
was used to optimize the searched conformations. The first
optimization was set at the gas-phase RB3LYP/6-31G(d) level to
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FIGURE 6 | Experimental and calculated ECD of compounds 1–6.

FIGURE 7 | Proposed biosynthetic pathway for 1–7.

get preferential conformations with the relative energies less than
2.5 kcal/mol. Then the conformers were optimized again at the
set of gas-phase B3LYP/6-311 + G(d). The total 60 electronic
excited states were calculated at the set of gas-phase RB3LYP/6-
311 + + G(2d,p). Boltzmann statistics were used to simulate

ECD with a standard deviation of σ 0.4 eV. The theoretical ECD
spectra of 1b–6b were obtained by directly reversing the spectra
of 1a–6a, respectively. The results exhibited that the experimental
ECDs of 1–6 were matched well with the calculated ECDs of 1a–
6a, respectively, which further verified the absolute structures of
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FIGURE 8 | Inhibition rates of tested cell lines of compounds 8 and 9.

1–6 (Figure 6). Interestingly, compounds 1/2, 3/4, 1/4, and 2/3
were identified as four pairs of epimeride at the locations of C-3,
C-3, C-9, and C-9, respectively.

The structures of 7–12 were determined as 11,12-epoxy-12β-
hydroxy-1-tremulen-5-one (Zhou et al., 2008), ganodermasides
A, B, and D (Weng et al., 2010, 2011), ergosterol (Feng et al.,
2010), and dankasterone B (Amagata et al., 2007), respectively,
by comparing their NMR data with those in the literature.

Proposed Biosynthetic Pathway for 1–7
Compounds 1–7 could derive from tremulane, a 5/7 endocyclic
system sesquiterpenoid (Figure 7; He et al., 2020; Wang
et al., 2020). As exhibited in Figure 7, compounds 1–7
could be obtained after a series of oxidation, lactonization,
dehydrogenation, and revivification of tremulane. The
intermediate products 1a/2a/3a/4a were obtained after the
oxidation of tremulane at C-11, C-12, and C-15 and lactonization
at C-11 and C-12. Then the dehydrogenation of the intermediate
products at C-1 and C-2 acquired the compounds 1–4. Similarly,
compounds 5, 6, and 7c were gained from tremulane after the
reactions of oxidation, lactonization, and dehydrogenation.
Compound 7 was obtained from the revivification of 7c.

Bioactivity Evaluations of Isolated
Compounds
All the isolated compounds (1–12) were evaluated for their
cytotoxic activities against five human cancer cell lines (MDA-
MB-231, HCT116, HepG2, A549, and PANC-1). Compounds 8
and 9 exhibited cytotoxicities against MDA-MB-231, HCT116,
and HepG2 cell lines with the IC50 values ranging from 21 to
30 µM (Table 3 and Figure 8).

FIGURE 9 | Inhibition rates of A. salmonicida of compounds 9 and 10.

The antibacterial activities of the isolated compounds (1–12)
were also evaluated against nine marine fouling bacteria P. fulva,
A. hydrophila, A. salmonicida, V. anguillarum, V. harveyi,
P. halotolerans, P. angustum, E. cloacae, and E. hormaechei.
Compounds 9 and 10 showed antibacterial activities against
marine fouling bacteria A. salmonicida with the MIC values of 30
and 36 µM, respectively (Figure 9). The MIC value of the positive
control ciprofloxacin (CPFX) was 7.8 µM (Figure 9).

CONCLUSION

In summary, six new tremulane sesquiterpenoids,
pseudotremulanes A–F (1–6), together with one known
analog, 11,12-epoxy-12β-hydroxy-1-tremulen-5-one (7), and
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five known steroids, ganodermasides A (8), B (9), and D (10),
ergosterol (11), and dankasterone B (12), were isolated from
the Antarctic-derived fungus Pseudogymnoascus sp. HSX2#-11.
Compounds 1–7 were proved to be isomeride structures with
the same chemical formula. Compounds 1 and 2, 3 and 4, 1 and
4, and 2 and 3 were identified as four pairs of epimeride at the
locations of C-3, C-3, C-9, and C-9, respectively. Compounds 8
and 9 exhibited cytotoxicities against MDA-MB-231, HCT116,
and HepG2 cell lines. Compounds 9 and 10 showed antibacterial
activities against marine fouling bacteria A. salmonicida. This
is the first time to discover terpenoids and steroids from the
fungal genus Pseudogymnoascus. Our chemical investigation of
the Antarctic fungus Pseudogymnoascus sp. HSX2#-11 enriches
the chemical diversity of this fungal species.

DISCUSSION

The genus Pseudogymnoascus as a kind of psychrophilic
pathogenic fungi is widely distributed in Antarctica (Rosa
et al., 2020; Santos et al., 2020; Martorell et al., 2021).
Pseudogymnoascus can be one of the antagonistic fungi against
potato scab pathogens from potato field soils, which could
be used as potential agents to control potato scab disease
(Tagawa et al., 2010). Pseudogymnoascus spp. has been certified
to be one of the predominant microbial colonizers in the
root endosphere and rhizosphere of turfgrass systems (Xia
et al., 2021). The extracts of some Pseudogymnoascus strains
exhibit potent bioactivities, such as antimicrobial, herbicidal,
and antitumoral activities (Henríquez et al., 2014; Gonçalves
et al., 2015; Gomes et al., 2018; Ferrarezi et al., 2019). To the
best of our knowledge, only 22 natural products, including 6
new compounds, were discovered from Pseudogymnoascus up
to now (Figueroa et al., 2015; Guo et al., 2019; Fujita et al.,
2021; Shi et al., 2021). More than 70% of the previously isolated
structures belong to polyketides; others are alkaloids (13.6%),
benzene derivative (9.1%), and fatty acid (4.5%). Our research
isolated 12 natural products (1–12), including 6 new compounds
(1–6), from the fungus Pseudogymnoascus 2#-11. All of
the isolated compounds are first obtained from the genus
Pseudogymnoascus. This is the first time to discover terpenoids
and steroids from the genus Pseudogymnoascus. The whole
number of the fungal strain secondary metabolites increased by
35%, and the number of their new compounds is doubled. This
greatly enriches the number and diversity of natural products of
the genus Pseudogymnoascus. Except for antimicrobial activities
of some of the previously obtained polyketides (Figueroa et al.,
2015; Fujita et al., 2021; Shi et al., 2021), no other activities were
found in Pseudogymnoascus in previous studies. This study is the
first to identify secondary metabolites with cytotoxic activities (8
and 9) in Pseudogymnoascus.

The isolated new sesquiterpenoids (1–6), with characteristic
structures of 5/7 fused bicyclic system, belong to the family
of tremulanes. Tremulane derivatives have been found from
cultures of Phellinus tremulae (Ayer and Cruz, 1993), P. igniarius
(Liu et al., 2007; Wu et al., 2020), Conocybe siliginea (Zhou
et al., 2008; Wu et al., 2010; He et al., 2020), Huperzia serrata

(Ying et al., 2013), Flavodon flavus (Isaka et al., 2016), Coriolopsis
sp. (Chen et al., 2017), Colletotrichum capsici (Wang et al., 2017),
I. lacteus (Chen et al., 2018, 2020; Ding et al., 2018, 2019, 2020a,b;
Zhou et al., 2018; Duan et al., 2019; Wu et al., 2019; Shi et al.,
2020; Sun C.-T. et al., 2020; Wang et al., 2020), and Gymnopilus
junonius (Lee et al., 2020). This is the first time to find tremulane
derivatives from Pseudogymnoascus.
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