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Abstract: Bees, both wild and domesticated ones, are hosts to a plethora of viruses, with most of
them infecting a wide range of bee species and genera. Although viral discovery and research on
bee viruses date back over 50 years, the last decade is marked by a surge of new studies, new virus
discoveries, and reports on viral transmission in and between bee species. This steep increase in
research on bee viruses was mainly initiated by the global reports on honeybee colony losses and
the worldwide wild bee decline, where viruses are regarded as one of the main drivers. While the
knowledge gained on bee viruses has significantly progressed in a short amount of time, we believe
that integration of host defense strategies and their effect on viral dynamics in the multi-host viral
landscape are important aspects that are currently still missing. With the large epidemiological
dataset generated over the last two years on the SARS-CoV-2 pandemic, the role of these defense
mechanisms in shaping viral dynamics has become eminent. Integration of these dynamics in a
multi-host system would not only greatly aid the understanding of viral dynamics as a driver of wild
bee decline, but we believe bee pollinators and their viruses provide an ideal system to study the
multi-host viruses and their epidemiology.

Keywords: virus tolerance; virus resistance; host; distribution; bee virus variants

1. Viral Defense Strategies of the Host and Their Implications on Viral Dynamics

While viral infections may sometimes wreak havoc on host populations, often trig-
gered by a host switch, they are indispensable components of a well-functioning ecosys-
tem [1,2]. Here, hosts and viruses have co-evolved and live in a dynamic equilibrium,
where viruses act as a top-down force controlling host populations. While viruses have
evolved a diverse range of host infection routes, the host’s defenses can generally be cate-
gorized into two main defense strategies to combat viral infections. Either the hosts can
prevent, eliminate, or significantly reduce a viral infection which is generally referred to
as viral resistance. A second defense strategy is called viral tolerance. Here, the host can
‘tolerate’ the viral infection and replication without any major detrimental effects on its
health [3].

Viral resistance has been investigated for a long time in animal studies, while viral
tolerance has only seeped in during the last decade mainly fueled by research from plant
pathogens, where tolerance research has a longer history. Both defense strategies benefit
the host’s fitness but have different outcomes for viral fitness. Resistant hosts generally
reduce the viral prevalence in the population, whereas tolerant hosts mostly have a positive
impact on viral prevalence [4,5]. The latter can be induced by so called super-spreaders.
These super-spreaders are tolerant hosts, experiencing no or only mild health effects of an
infection, and they infect a disproportional number of new hosts, far exceeding the general
reproduction number of the virus or pathogen at hand. Here, one could refer to the classic
textbook example of Mary Mallon, dubbed “Typhoid Mary”, an asymptomatic carrier of
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Salmonella enterica serovar typhi, who infected multiple people. Yet, one does not need to
go that far in history for such examples as the current SARS-CoV-2 pandemic is marked
by several super-spreader events, where people with no or very mild symptoms infect a
disproportional amount of people [6,7].

While these examples are all in a single host species, Homo sapiens (although both
SARS-CoV-2 and S. enterica can infect multiple host species [8,9]), super-spreading can
also occur between host species as most viruses readily circulate between host species,
which often hampers virus eradication [10]. Differences in defense mechanisms between
host species may result in one species coping better with infections than others and/or
transmitting a disproportional amount of pathogens [11]. For bee viruses, studies on viral
defense strategies on individual level scarce are mostly investigated in conjunction with
other factors, such as nutrition or pesticide exposure, which complicates the interpretation
of ‘pure’ viral tolerance or resistance [12–14]. There are ample prevalence studies that
report links with the viral prevalence in wild bees and the presence of honeybees [15–18].
It should, however, be noted that transmission directionality cannot be inferred from these
studies, which are correlational.

Yet, if one would assume that managed honeybee hives are indeed a source of the
virus spilling over to wild bees, it remains to be answered if this is due to the defense
strategies on the individual species level (e.g., they are more tolerant to certain viruses
compared to wild bees), if this is just a numbers game (where the social honeybee with
thousands of individuals per hive massively spreads the virus to the community, and
individual deaths do not impede colony development), if Varroa destructor is the driving
force, or a combination of these. V. destructor, an ectoparasitic mite of honeybees, has indeed
shown to play a major role in the viral dynamics in honeybees, where it can effectively
vector several viruses and increase viral load in parasitized colonies [19–21]. Here, Varroa-
infested honeybee hives, harboring very high loads of virus may form a super-spreader
to the environment, increasing viral exposure to other bee species [22]. Furthermore, the
transportation of honeybee hives may also render these hives super-spreaders, transporting
viruses across large distances and different ‘local’ bee communities.

Interestingly, it was recently shown that naturally, Varroa-resistant honeybee popula-
tions are more tolerant to viruses transmitted by this vector, such as Deformed wing virus
(DWV) and Acute bee paralysis virus (ABPV) as these mite-resistant populations had reduced
mortality, yet showed a similar infection dynamic compared to mite-susceptible honeybee
populations [14]. The relation with V. destructor, which has a nearly worldwide distri-
bution [19], and viral dynamics in honeybees has complicated the study of host defense
strategies in honeybees (Apis mellifera), the most studied bee species in the bee community.
Studies on species differences in viral defense strategies of bees are currently still lacking,
yet we believe this would greatly benefit our understanding of multi-host viral dynamics,
as we elaborate below.

2. Bee Pollinators as Study System for Multi-Host Viral Dynamics

The viral epidemiology in bee pollinators greatly lends itself as a study system to
address the role of tolerance and resistance in different host species in a multi-host viral
landscape, as bee pollinators share a specific ecological niche, namely flowers. Flowers
provide the main source of food for bees. Visitations of these flowers hence mediate an
indirect contact between individuals and species, which enables viral transmission via
fecal contamination of the flowers, as most of the viruses that infect bees have an oral-fecal
transmission route [21–24].

Here, the plant-pollinator network provides an ideal system to trace viral spread and
encounter locations. Recently, several studies have identified the pivotal role of plant-
pollinator networks in pollinator disease dynamics [25–27]. One could draw the parallel
with super-spreading events documented for SARS-CoV-2 with the visitation or aggregation
of multiple bees on the same flower, or the frequent visitation of flowers by multiple bees,
for example, due to shortage of sufficient flowers [25,28,29]. Although flowers provide
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the main route of inter-species transmission in bees, intra-species transmission, especially
in social bees (e.g., Apis sp. and Bombus sp.), mainly occurs in their colonies where high
numbers of individuals live closely together. Additionally, as mentioned before, for Apis
spp. the vector V. destructor also plays a major role in viral transmission for several bee
viruses [19–21].

While research on the role of flowers on transmission is beginning to take ground,
research on viral defense strategies of the hosts, i.e., resistance and tolerance, and its role in
viral dynamics is still mostly lacking. Yet, bee research would greatly benefit from such
studies to better understand what drives current emerging infectious disease in both wild
and managed bees, as disease is one of the main drivers of the current bee decline [30]. Ever
since the initial virus discoveries in honeybees, mostly by B. Bailey, B. Ball and colleagues,
now more than 50 years ago, viral research has progressed a lot in honeybees, as well as
in wild bees [31]. Sparked by the global decline of wild pollinators and colony losses of
managed honeybees, research on viruses in both wild and managed bees has exploded
over the last decade. Knowledge on the interaction with the bee host has been gathered
for several viruses, where honeybees and to a lesser extent bumblebees are the main
investigated host species.

Multiple studies have been undertaken to identify immune pathways (which are
remarkably similar between bee species [32]) and gene regulation involved in the antiviral
response of these bee hosts. Apart from the well-studied antiviral RNA interference (RNAi)
response, other immune responses have been identified to be involved in antiviral responses
in both honeybees and bumblebees. These include the Jak/Stat, Imd and other pathways,
as well as the Toll pathway. In the latter, the gene family NF-κB appears to play a key role
in immunosuppression, which can result in the destabilization of virus infection for cover
to overt infection [20,33]. As further research on these bee host-virus interactions continues,
our understanding of these mechanisms keeps growing [34–36]. This knowledge can be of
great assistance in understanding the immunological background of what makes a host
tolerant to a certain virus, as data from current research in non-bee hosts suggests there
appears to be a lack or suppression of the immune response to the infection [37]. However,
although the immune pathways of bees are relatively well characterized, knowledge on
viral cell entry of bee viruses is a crucial factor that is currently missing to obtain a full
picture of host viral dynamics. Unlike SARS-CoV-2, where the interaction with the ACE2
receptor is well described to induce host cell entry [38], no such data is currently available
for bee viruses. This is in part due to the lack of bee cell lines, which greatly aid the ease
of studying this process [39]. Viral cell entry of both Dicistoriviridae and Iflaviridae (both
Picornavirales) is assumed to be via receptor-mediated endocytosis, but the precise cellular
receptor(s) of these viruses are currently not known [40].

Data of the genomes of several bee species can further aid research on the bee’s viral
immune response, as well as data from multiple transcriptomic studies of bees under viral
infection and analogies with arthropods, such as the model insect Drosophila melanogaster
and its interactions with viruses. Furthermore, genome information of the bee hosts has
greatly assisted the discovery of undescribed viruses using metagenomics, as they simplify
the subtraction of bee sequences.

An interesting study, where genome information was of assistance, reports on the
integration of a part of the viral genome of Israeli acute paralysis virus (IAPV) in the
honeybee (Apis mellifera) genome [41]. The study continues to show the detection of IAPV-
derived transcripts and finds that bees harboring the viral segment in their genome, survive
injection with IAPV, contrary to those that do not harbor the viral segment [41]. Although
the study does not provide much information on the precise origin of the used honeybees,
the fact that they do not find the endogenous viral element (EVE) of IAPV in all tested
bees, and the fact that this phenomenon has not been reported elsewhere, strongly suggests
that this is an unfixed EVE (i.e., the EVE is not fixated in the host genome and not passed
on through generations) in the tested gene pool. Although there is currently no clear
understanding of the precise mechanisms of integration, endogenous viral elements of
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non-retroviruses (nrEVEs) are found in a wide range of taxa. nrEVEs are quite abundant
in mosquitoes where they are often studied and likely involved in antiviral immunity by
producing Piwi-interacting RNAs ([piRNAs] small non-coding RNA fragments which are
involved in a wide range of functions, including the regulation of gene expression and
fighting viral infections) [42–46]. This has recently been shown in Aedes aegypti, where
nrEVE with very high sequence similarity to cell-fusing agent virus (CFAV) were found
in the mosquito genome [42]. When they removed the nrEVE (using CRISPR-Cas9), viral
replication was increased in the ovaries alongside the reduction of CFAV-derived Piwi-
interacting RNAs [42].

3. Viruses and Their Variants

The majority of currently described bee viruses are RNA viruses (Piornavirales) with
a positive single stranded RNA (ssRNA) genome, just like SARS-CoV-2 (Nidovirales) (see
Table 1). Whether the currently described bee virus diversity represents the true virological
biodiversity of bee viruses is not known since the bulk of ‘newly’ described bee viruses
has been performed by high throughput transcriptomic studies. This method favors the
detection of these RNA viruses, particularly those containing a poly-A tail. Nonetheless,
most currently described viruses, with clear pathology in bees, all have a positive ssRNA
genome [23]. The mutation rate of RNA viruses (~10−6 to 10−4 substitutions per site per
cell infection [s/n/c]) is generally higher than that of DNA viruses (~10−8 to 10−6 s/n/c),
due to lack of proofreading activity of RNA viruses [47]. Hence, many RNA viruses are
genetically heterogeneous and exist as a quasispecies. These quasispecies can either live
as a cloud of mutants around a certain master variant, or several master variants can be
present, each having its own cloud of mutants. However, not all RNA viruses have this
very high mutation rate. Viruses of the Coronaviridae family (which have one of the largest
genomes of RNA viruses, and includes SARS-CoV-2) possess a highly conserved exonucle-
ase (nsp14) with proofreading function [48]. This likely explains the lower mutation rate of
coronaviruses (4 × 10−6 s/n/c) compared to other RNA viruses [49]. Interestingly, recent
research has shown that recurrent deletions (which cannot be corrected by a proofreading
enzyme) in the SARS-CoV-2 genome (more specifically the spike glycoprotein) likely ac-
celerate viral antigenic evolution, circumventing the ‘limiting’ effect of the proofreading
enzyme [50].

Table 1. Comparison between SARS-CoV-2 and two common bee virus families.

Genome Order Family Virus Genome
Size £

Virion
Size Enveloped Hosts Mutation

Rate
Infection

Dose

(+)ssRNA Nidovirales Coronaviridae SARS-CoV-2 ~29–30 kb ~120 nm yes Vertebrates (incl.
humans, bats)

~4 × 10−6

s/n/c 10–1000

(+)ssRNA Picornavirales *

Dicistroviridae

16 described
bee-infecting
viruses (e.g.,

Aki-virus
complex)

~8.5–10.2 Kb

~30 nm no
Invertebrates

(incl. Apis spp.,
Bombus spp.)

~10−6 to
10−4 s/n/c

106 to 1010

(oral)

Iflaviridae

12 described
bee-infecting
viruses (e.g.,

DWV-complex)

~8.8–9.7 kb 102 to 103

(injection) $

* In this table we have limited ourselves to the Picornavirales and here report on two virus families within this
order found in bee species, which currently contain most currently described bee viruses. For an extensive list
of currently described viruses found in bees we refer to [23]. $ Injection studies have been performed in both
Apis spp. and Bombus spp. yet only Apis spp. are parasitized by V. destructor, a vector of several bee viruses,
which punctures the bee body; reported injection doses are based upon injection studies. £ Genome size estimates:
SARS-CoV-2: [51]; Dicistroviridae and Iflaviridae: [52].

While the bulk of data on SARS-CoV-2 variants originates from population/community
data, some studies have shown within (human) host viral evolution [53]. However, most of
the intra-host variants were not observed as polymorphic in the population data which
suggests a strong bottleneck during transmission [53,54]. As it is estimated that around 10
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to 1000 virions are needed to induce a new infection, less dominant variants are less likely
to pass the transmission bottleneck [55].

This is in sharp contrast with the current data on the number of virions needed to
induce oral infection with several bee viruses in honeybees and bumblebees which is several
orders of magnitude larger (106 to 1010, depending on the virus and bee host) [56–60].
Sequence information on the viral genomes of most bee viruses has enabled research on
the viral adaptation of bee viruses, which also gained a lot of attention lately. Here, most
studies worked with the DWV-complex, a quasispecies for which three master variants are
identified (DWV-A, DWV-B and DWV-C), based upon nucleotide identity and differences
in effects on replication, virulence, and pathology [61–65]. Furthermore, despite mutations,
recombination events between variants have also been identified [60,66,67] and are known
to play a role in the generation of new variants with picorna-like viruses [68]. DWV is
predominantly found in honeybees (although it can infect other bee hosts as well [21,69]).
This virus can be regarded as a special case in the bee viruses as its epidemiology and
adaptation is mainly controlled by the presence of its vector, V. destructor (only present on
honeybees) [19,22,66]. Not only does the presence of V. destructor increase viral titer in the
honeybee hosts, but it also strongly decreases viral strain diversity and likely functions as a
bottleneck for viral diversity [67,70]. Here, only a very small inoculum is needed to induce
infection through injections (as performed by V. destructor parasitizing honeybees) [71],
which is in the same order of magnitude as for SARS-CoV-2. Recently, a fourth major
variant has been identified (DWV-D) via a sequencing analysis of old honeybee samples [72].
However, a large effort to detect the current presence of this variant, by screening RNA
libraries from different bee hosts and varroa mites, across the world, did not result in
the detection of the DWV-D variant. Either this variant has gone extinct, is replaced by
or pushed back by other variants, or is only present in a very restricted geographical
area [72]. The change in dominant variants of DWV is also documented in the UK and
USA, where over the last 5 to 10 years the previously dominant DWV-A variant is being
replaced by the DWV-B variant [73–77]. The underlying nature of this variant shift has not
been fully clarified. Yet some studies point to the higher replication and reduced virulence
costs of DWV-B infection, which may be due to different tissue tropism [64,73,78,79]. The
virus may evolve to less severe and more contagious/transmissible variants, causing less
harm to the host. However, other studies find that DWV-B is more virulent compared
to DWV-A [80,81]. The discrepancies between studies may be attributed to the complex
host-genotype-virus interaction determining the virulence of a certain variant [64], or
other confounding factors, such as differences in the presence of V. destructor between
studies. Further research is needed to elucidate this. Variant shifts have also been observed
during the SARS-CoV-2 pandemic, and currently the Omicron SARS-CoV-2 (B.1.1.529)
variant has replaced the more severe and less transmissible Delta SARS-CoV-2 (B.1.617.2)
variant [82]. Here, several studies have found that the Omicron variant has a lower
hospitalization rate as well as decreased risks of severe clinical symptoms compared to
the Delta variant [83–86]. However, due to the higher transmissibility of the Omicron
variant, i.e., reaching and infecting more people, some countries report a net increase in
absolute numbers of hospitalization compared to the Delta variant, yet still associated
with a lower clinical severity [87]. Theoretically, a virus is expected to evolve towards
an evolutionary stable virulence, which is an optimum found in the trade-off between
transmission and the negative effects of a viral infection, which may hamper its transmission
(e.g., mortality) [88]. However, vaccinations (i.e., those that alleviate the host’s symptoms
and do not prevent transmission, e.g., BNT162b2 vaccination against SARS-CoV-2 [89])
may alter the ‘natural’ evolution of viruses as it diminishes the negative effects of a virus
in vaccinated infected hosts, which may favor the evolution towards higher virulence in
unvaccinated hosts [90]. Currently, SARS-CoV-2 appears to be evolving towards higher
transmission and lower virulence.

Unlike, SARS-CoV-2 there are currently no commercially available vaccines or treat-
ments for bee viruses. Although there have been initiatives with the use of dsRNA to
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reduce the viral titer by triggering the RNAi immune response [36,91–93], products are
not commercially available [94]. Viral evolution is hence, not ‘disturbed’ by vaccination in
bees. However, as V. destructor plays a major role in honeybee viral dynamics, beekeeping
practices, such as treatments against V. destructor may affect viral evolution. One of the
suggested mechanisms underlying the shift of DWV-A towards DWV-B is that DWV-B may
be better adapted to vector-mediated transmission via V. destructor [78,95,96]. Furthermore,
Norton et al. [96] showed that the prevalence of DWV-A is highly dependent on the mite
presence and density. DWV-B, on the other hand, was far less dependent on mite presence
and always had a higher prevalence and infection load in both low and high mite densities
compared to DWV-A [96]. As good beekeeping practices include treatment against V.
destructor mites (which, when applied appropriately can significantly reduce mite levels,
yet it does not fully eradicate them [97]), this practice may also contribute to the shift
towards a dominant DWV-B. However, further research is still needed to elucidate precise
mechanisms underlying this variant transition of DWV in bees.

Contrary to humans, bees have only a limited traveling range, and the global dis-
semination of certain bee virus variants is mostly driven by human transportation and
trade of honeybees, or their products [21,98]. Therefore, the speed and scale of variant
dissemination are much lower as compared to the SARS-CoV-2 pandemic. Although the
high population density of honeybee hives, especially in large apiaries, provides the ideal
‘breeding ground’ for new variants to emerge, their dissemination will be slower compared
to SARS-CoV-2. The unprecedented magnitude of viral (genome) sequencing on a global
scale of SARS-CoV-2 will provide valuable data on viral evolution in general and variant
dissemination, which can be used to better understand variant shifts in bee viruses as well
as bee virology and epidemiology in general.

4. Conclusions

Research on bee viruses has come a long way, rapidly progressing over the last few
years. It is our opinion that with the current knowledge the time is right to integrate
and look at the host’s defense strategies and their role in viral dynamics in a multi-host
system. SARS-CoV-2 and the few studies on animals highlight the importance of these
defense strategies in shaping viral epidemiology, such as virus tolerance, which can result
in super-spreaders [6,37].
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