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Abstract: Circular RNAs (circRNAs) constitute a large class of non-coding RNAs characterized by a
covalently closed circular structure. They originate during mRNA maturation through a modification
of the splicing process and, according to the included sequences, are classified as Exonic, Intronic, or
Exonic-Intronic. CircRNAs can act by sequestering microRNAs, by regulating the activity of specific
proteins, and/or by being translated in functional peptides. There is emerging evidence indicating
that dysregulation of circRNA expression is associated with pathological conditions, including cancer,
neurological disorders, cardiovascular diseases, and diabetes. The aim of this review is to provide
a comprehensive and updated view of the most abundant circRNAs expressed in pancreatic islet
cells, some of which originating from key genes controlling the differentiation and the activity of
insulin-secreting cells or from diabetes susceptibility genes. We will particularly focus on the role
of a group of circRNAs that contribute to the regulation of β-cell functions and that display altered
expression in the islets of rodent diabetes models and of type 2 diabetic patients. We will also provide
an outlook of the unanswered questions regarding circRNA biology and discuss the potential role of
circRNAs as biomarkers for β-cell demise and diabetes development.
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1. Introduction

Circular RNAs (CircRNAs) are non-coding RNAs that form covalently closed circles.
They are generally generated by covalent binding of the 5′ site of an upstream exon
with the 3′ end of the same or of a downstream exon. CircRNAs are neither capped
nor polyadenylated (in contrast to linear transcripts) and are resistant to exoribonuclease
degradation. Therefore, the life span of circRNAs is usually longer (19–48 h) than that
of linear transcripts (4–9 h). Once produced, circRNAs can remain in the nucleus or be
exported to the cytoplasm, where they can accomplish different functions [1–3].

CircRNAs were initially identified in 1976 in plant viroids [4] and later in archaea [5],
and animals [6]. Following high-throughput sequencing and bioinformatics analysis,
thousands of circRNAs have been identified so far, and over 100,000 circRNAs are estimated
to be expressed in human cells. Some of them are conserved between species (in particular
between humans and mice), are tissue-specific, and modulate mRNA transcription, splicing,
and translation, affecting diverse cellular processes [1–3]. Abnormal expression of circRNAs
has been implicated in a wide range of human cancers [7], in metabolic dysfunction [8,9],
and in cardiovascular diseases [10,11].

The discovery and characterization of circRNAs have revolutionized the RNA world
and rewritten the relationship between different RNA species. Here we will illustrate the
peculiar mechanisms that lead to their generation, their proposed biological roles, and their
emerging contribution to the regulation of pancreatic β-cell function and dysfunction.
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2. Biogenesis, Classification, and Degradation of circRNAs

According to the genomic sequences from which they originate, circRNAs are classi-
fied as: Exonic, exonic-intronic, or intronic. To understand how circRNAs are generated
and then classified, it is fundamental to understand the splicing mechanisms. Linear
splicing is defined as a process of mRNA maturation, where introns are removed from
a precursor RNA and exons are linearly joined to form the mature mRNA (Figure 1A).
Different sequences in the introns are important for the splicing reaction [12]: The splice-
donor site (SD) at the beginning of an intron (5’ left end), the splice-acceptor site (SA)
at the end of an intron (3’ right end), and the branch point (BP) (Figure 1B). The branch
point is a sequence located anywhere from 18 to 40 nucleotides from the 3′ end of the
intron. Successful splicing is assured by the specific interaction between different small
nuclear ribonucleoproteins (snRNPs) of the spliceosome, and the above described intronic
sequences [12].
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Figure 1. Generation of circRNAs by back splicing. (A) The immature pre-mRNA undergoes linear splicing where introns
are removed, and exons are linearly joined to form the mature mRNA. (B) Introns contain different important sites for
the splicing reaction: The splice-donor site (SD) at the 5’ left end, the splice-acceptor site (SA) at the 3’ right end, and the
branch point (BP). (C) The immature pre-mRNA undergoes back splicing when there is a formation of a loop between the
intron sequences flanking the downstream SD site and the upstream SA site. The formation of the loop is promoted by
base pairing between inverted repeat elements of the flanking introns, such as Alu elements (Alu) or by the dimerization
of RNA-binding proteins (RBP) that specifically bind to the flanking introns. Consequently, an upstream BP extends to a
downstream SD site and allows the formation of a covalent binding between the 5′ site of an upstream exon and the 3′ end
of a downstream exon, creating an Exon-Intron circRNA. If the intron is spliced-out from a transient Exon-Intron circRNA,
or the covalent binding occurs between the 5′ site of an exon with the 3′ of the same exon, an Exonic circRNA originates.

The generation of circRNAs occurs through a process called back splicing [13]. Con-
trary to the canonical linear splicing, back splicing occurs after the formation of a loop
between the intron sequences flanking the downstream SD site and the upstream SA site
that brings them into proximity (Figure 1C). Consequently, an upstream BP extends to a
downstream SD site and allows the physical interaction between the SA and the SD, and
the covalent binding of the 5′ site of an upstream exon with the 3′ end of a downstream
exon. The Exon-Intron circRNA (EI-circRNA) is then formed. If the intron is spliced-out
from a transient EI circRNA, or the covalent binding occurs between the 5′ site of an exon
with the 3′ of the same exon, an Exonic circRNA (E-circRNA) originates (Figure 1C).
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The switch between linear splicing and back splicing is regulated by several factors.
The looping of the introns (occurring in the back splicing) can be mediated by base pairing
between inverted repeat elements (such as Alu elements), which are located in the upstream
and downstream introns [14–16] or by the dimerization of RNA-binding proteins (RBPs)
that bind to specific motifs in the flanking introns [17,18] (Figure 1C).

On the other hand, linear splicing is favored by exons surrounded by short flanking
introns and/or by introns bound to the trans-acting RBPs double-stranded RNA-specific
adenosine deaminase (ADAR1) and ATP-dependent RNA helicase A (DHX9). These
RBPs disrupt base-pairing between inverted repeat elements and therefore prevent the
looping of intron sequences, promoting canonical linear splicing [19–21]. ADAR1 is a
highly conserved RNA-editing enzyme that binds double-stranded RNA and deaminates
adenosine bases to inosine (A-to-I). Both ADAR1 and DHX9 bind to double-strand RNA
formed by base pairing Alu elements and interfere with their stability. Indeed, a robust
increase in circRNA expression was observed after depletion of both ADAR1 [16] and
DHX9 [19]. ADAR1 downregulation also decreased hyper-editing events, suggesting a
negative effect of A-to-I editing events on circRNA biogenesis [16]. Moreover, DHX9
depletion reduced translation of mRNAs containing inverted-repeat Alu elements in their
3′ UTRs, and this effect was rescued by overexpression of wild type DHX9, but not by
a helicase-dead mutant. Therefore, the helicase activity of DHX9 seems to be crucial to
resolve the double-stranded RNA structures originated by inverted Alu repeats and for the
inhibition of circRNA synthesis [19].

Besides the back-splicing mechanism, circRNAs can originate also from the processing
of lariat sequences [13,22]. Lariats are lasso-shaped molecules that originate from pre-
mRNAs when a 5′ end of a spliced intron is joined to the BP adenosine of the intron with
a 2′–5′ phosphodiester bond. These branched circRNAs containing a linear 3′ tail can be
debranched (i.e., linearized) and degraded, or evade debranching and lose their 3′ tail, thus
becoming stable circular transcripts. When lariats originate from linear splicing, they only
contain introns (intronic lariat) and if they escape the debranching, they produce Intronic
circRNAs (I-circRNAs) (Figure 2). However, lariats can also originate from alternative
splicing, and therefore contain alternative exons together with the introns. Back splicing of
hybrid exon-intron lariats generates E-circRNAs [13,22] (Figure 2).

Following biogenesis, except for the intronic ones, most circRNAs, are exported to
the cytoplasm [23], where they accomplish their functions, before degradation. Due to
their closed circular structure, they are relatively stable molecules and their turnover
implies mechanisms that differ from those of linear RNAs [2]. Several pathways have been
proposed to contribute to circRNA degradation, but the precise mechanisms involved are
still poorly understood. The depletion of GW182, a key component of processing bodies
(P-bodies), has been reported to trigger the accumulation of cytoplasmic circRNAs in
Drosophila S2 cells, and its overexpression decreased the levels of steady-state circRNAs [24].
Though, the molecular events involved in GW182 regulation of circRNA turnover are
still unknown [24]. A different mechanism involving m6A methylation of circRNAs has
also been described [25]. Indeed, upon m6A-modifications, circRNAs are recognized by
YTHDF2, allowing this protein to form a complex with the adaptor protein HRSP12 and
RNase P/MRP (endoribonucleases), that degrades the circRNAs [25]. Interestingly, m6A
methylation of nascent pre-RNA favors the binding of the m6A reader protein hnRNPG,
promoting alternative splicing vs. linear splicing [26], therefore indirectly regulating the
production of the circRNAs. Finally, an Argonate2 (Ago2)-dependent cleavage has been
reported for the exonic circRNA ciRS-7/Cdr1as. This circRNA contains a sequence with
high complementarity to miR-671 that, upon binding of the microRNA (miRNA) (see
Section 3.1), promotes the cleavage by Ago2 [27].
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Figure 2. Generation of circRNAs from lariats. Lariats are lasso-shaped molecules that originate from pre-mRNAs during
both alternative splicing and linear splicing. Lariats are formed when a 5′ end of a spliced intron is joined with a covalent
bond to the BP adenosine of the intron. The lariat can either be linearized by specific RNA lariat debranching enzymes
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circRNAs. However, lariats can also originate from alternative splicing, and therefore contain alternative exons together
with the introns. Back splicing of hybrid exon-intron lariats generates Exonic circRNA.

3. Biological Functions of circRNAs

The function of the majority of the circRNAs is unknown, but emerging evidence
shows that they play important roles in many biological processes. Different types of
circRNAs have distinct localizations, and consequently diverse functions. I-circRNAs and
EI-circRNAs are found mainly in the nucleus, whereas the vast majority of the E-circRNAs
are enriched in the cytoplasmic fraction [28]. Active transport processes of circRNAs from
the nucleus to the cytoplasm have been described [23].

CircRNAs localized in the nucleus regulate gene expression through the modulation
of transcription and/or alternative splicing [29]. Cytoplasmic circRNAs have diverse func-
tions: They can act by sequestering miRNAs [30–33] or proteins [34,35], they can enhance
protein activity [36,37], form scaffolds to mediate complex formation between specific
enzymes and substrates [38,39], or recruit proteins to specific locations [40]. Furthermore, a
subset of circRNAs undergo cap-independent translation under specific conditions [41–44].

3.1. circRNAs Acting as miRNA Sponges

MicroRNAs (miRNAs) are small non-coding RNAs that fine tune gene expression at
the posttranscriptional level, by binding to the 3′ untranslated regions of target mRNAs and
inhibiting their expression [45]. Cytoplasmic circRNAs can contain miRNA binding sites
in their sequences and therefore sequester these small RNAs, preventing the interaction
with specific mRNA targets. This way, circRNAs indirectly modulate the expression of the
mRNA targeted by the sequestered miRNAs. In this scenario, it is important to consider
the stoichiometric relationship between the miRNA binding sites present in the circRNA
and the number of sites within the targets, as highly abundant circRNAs containing many
binding sequences are more likely to compete with endogenous RNAs [31,46]. For example,
the well-characterized circRNA, ciRS-7/Cdr1as, contains more than 70 conserved binding
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sites for miR-7 and is highly expressed in brain and pancreatic islets. Thus, this circRNA
has the potential to regulate the expression of miR-7 target genes [30,32,33]. However,
whether ciRS-7 inhibits or protects miR-7 from degradation may depend on the cellular
context [32,47,48]. Indeed, removing the ciRS-7 locus from the mouse genome led to the
reduction of miR-7 levels [32], whereas other studies found a negative correlation between
ciRS-7 expression and miR-7 expression [47,48].

Of note, some circRNAs possess binding sites for many miRNAs rather than multiple
sites for one particular miRNA. This is the case for the oncogenic circCCDC66, that contains
binding motifs for several miRNAs, including miR-33b and miR-93, which target the
MYC oncogene [49]. Consequently, some circRNAs can have either tumor-suppressive or
oncogenic activities.

Many other circRNAs with miRNA sponging ability have been described, including
circHIPK3 and circBIRC6 [50,51], and are reviewed in [14,31,50,52].

3.2. circRNAs Interacting with Proteins

One of the first circRNAs proposed to function as a protein sponge is circMbl,
which originates from the gene that encodes the splicing factor muscleblind (mbl) in
D. melanogaster and the homologous gene muscleblind-like protein 1 in humans (MBNL1).
Interestingly, circMbl contains a binding site for mbl and MBNL1, respectively, and the
introns flanking circMbl have many mbl (or MBNL1) binding sites [35]. The binding of
mbl (or MBNL1) facilitates the looping of the nascent RNA to promote circMbl biogenesis.
Therefore, an autoregulatory circuit may exist in which excess mbl or MBNL1 decreases
the production of its own mRNA by promoting circRNA biogenesis, and the circRNA
promotes the linear splicing of the gene by tethering mbl or MBNL1 [35].

Other circRNAs, such as circPABPN1 and circANRIL, also function by interacting with
specific proteins [34,53]. circPABPN1 sequesters the protein RBP Hu-antigen R (HUR) and
consequently suppresses the translation of nuclear poly(A) binding protein 1 (PABPN1)
mRNA [34]. circANRIL impairs ribosome biogenesis by binding to pescadillo homologue
1 (PES1), an essential pre-ribosomal assembly factor, and consequently induces nucleolar
stress and p53 activation [53].

Some others circRNAs, such as circAmotl1 [39] and circFoxo3 [38], function as scaf-
folds to facilitate the colocalization of enzymes with their substrates. CircAmotl1 physically
binds to both PDK1 and AKT1 to facilitate PDK1-dependent phosphorylation and nu-
clear translocation of AKT1 in murine cardiomyocytes, epithelial cells, and endothelial
cells [39]. In vivo, circ-Amotl1 expression has a cardioprotective effect in a mouse model
of cardiomyopathy [39]. On the other hand, circFoxo3 promotes the interaction between
mouse double-minute 2 (MDM2) and p53 in cancer cells, and, therefore, the degradation of
p53 [38]. In the non-tumoral cell line NIH3T3, circ-Foxo3 binds to the cell cycle regulators
cyclin-dependent kinase 2 (CDK2) and cyclin-dependent kinase inhibitor 1 (p21) to gener-
ate a ternary complex inhibiting the binding between the two proteins and repressing cell
cycle progression at the G1 stage [54]. Circ-Foxo3 can also interact with the anti-senescence
proteins ID1 and E2F1 and the stress-associated proteins FAK and HIF1a, retaining these
proteins in the cytoplasm and blocking their function, thereby promoting cardiac senes-
cence [55]. However, more recently, a miRNA-sponging activity has been attributed to
circFoxo3 in tumors [56,57], demonstrating a potential flexibility of circRNA functions,
depending on the cellular context. This demonstrates that some circRNAs are able to bind
to several RBPs and can function as messengers carrying spatial and temporal biological
information in various tissues, developmental stages, and cellular conditions.

Recently, an extensive screening of circRNA-RBP interactions has been performed,
with the aim of obtaining a broader picture of the circRNA-RBP interactome [58]. A
comprehensive catalogue of circRNA-RBP interactions in HepG2 and K562 cells was
generated, and several candidates have been characterized [58]. In particular, it was
demonstrated that circCDYL associates to IGF2BP1 and IGF2BP2, and that this interaction
modulates proliferation of bladder cancer cells. Indeed, the inhibition of circCDYL perturbs
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the expression of key cancer genes, and elevated levels of circCDYL are linked to the overall
survival of bladder cancer patients [58].

This study corroborates the concept that cell-type-specific circRNA-RBP interactions
can play key regulatory roles in tumorigenesis and, in general, in the regulation of different
cellular functions.

3.3. circRNAs Translated to Proteins

Even if circRNAs do not contain 5′ caps and poly(A) tails, some of them can be
translated in a cap-independent manner. This is possible in case of the presence of internal
ribosome entry sites (IRESs) [59] or the incorporation of an m6A modification in the 5′

untranslated region (UTR) of the RNA [60,61]. In fact, when Wang et al. engineered an
IRES in a circRNA, a protein corresponding to the circRNA was translated [62]. Another
study found that m6A modification is abundant in many circRNAs, and that the presence
of this methylation drives their translation in a manner similar to IRES [42]. In this study,
the efficiency of translation was modulated by the degree of m6A in the transcript [42].
Interestingly, these two cap-independent translation mechanisms may not be independent.
Indeed, high degree of m6A methylation was detected in the IRES-activated protein-coding
circRNA circZNF609 in myoblasts, suggesting a possible connection between these two
cap-independent translation processes [44]. In this particular study, the circRNA-derived
peptides corresponded to truncated versions of the canonical proteins, lacking essential
functional domains; therefore, these peptides were found to act as dominant-negative
protein variants [44]. Of particular interest is the discovery in Drosophila of a circRNA
generated from the sulfateless gene (circSfl), which is consistently upregulated, particularly
in brain and muscle, of different long-lived insulin mutant flies [63]. CircSfl was found to
be translated, and circSfl protein levels were increased in insulin mutant flies. Moreover,
overexpression of the circSfl ORF from a linear transcript extended the lifespan of female
flies, indicating that the protein encoded by circSfl is sufficient to increase Drosophila
lifespan [63]. Despite these interesting and promising findings, for most of the circRNA-
derived peptides identified so far, the function, if any, remains unknown.

3.4. circRNAs Regulating Mitochondrial Functions

Eukaryotic cells contain many copies of mitochondrial DNA [64]. Moreover, mitochon-
drial DNA is translated in pre-mRNA that can be processed by splicing. Indeed, mtRNA
introns contain canonical splice sites, and the majority of the ribonucleoproteins that are
part of the nuclear spliceosome machinery are imported into mitochondrial compartments
and bind to mtRNA transcripts. Together, these observations confirm the occurrence of
splicing in mtRNAs and suggest that the nuclear spliceosome complex can mediate mtRNA
splicing within the organelle. In addition, the presence of hundreds of backsplicing junction
reads supports the existence of mitochondria-encoded circRNAs (MecciRNAs) in different
vertebrate species [65]. Detailed studies on MecciND1 and MecciDN5 further suggest
that they may interact with nuclear encoded proteins and promote their importing into
mitochondria [65].

Recent work by Zhao and colleagues demonstrate that the mitochondria-located cir-
cRNA SCAR is dysregulated in the liver of patients with non-alcoholic fatty liver disease
(NAFLD). SCAR directly interacts with ATP5B, a subunit of the mitochondrial ATP syn-
thase, and turns off mitochondrial permeability transition pore (mPTP). Lipid overload
inhibits SCAR expression in fibroblast, and consequently mPTP is no longer inhibited,
causing a deleterious rise in ROS formation [66]. Using experiments carried out in vivo,
the authors proved that the human circRNA SCAR can interact with mouse ATP5B and is
able to alleviate high fat diet-induced cirrhosis in mice, providing evidence for a potential
therapeutic strategy to prevent the development of this disease [66].
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4. circRNAs in Pancreatic Islet Cells

Pancreatic β-cells are the only cells in our body able to produce and secrete insulin
in response to glucose and, therefore, are central players in the control of blood glucose
homeostasis. Loss or dysfunction of β-cells can lead to the release of insufficient insulin
to cover the organism needs, promoting diabetes development. Different classes of non-
coding RNAs are involved in the regulation of β-cell functions and in diabetes development,
and there is now emerging evidence that circRNAs may be among them [9].

The first circRNA studied in pancreatic islet cells was ciRS-7/CDR1as, which acts as
a sponge of miR-7, one of the most abundant miRNAs present in β-cells. This circRNA
is abundant, largely cytoplasmic, and originates from the antisense of the Cerebellar
Degeneration-Related protein 1 gene (CDR1) [67]. Since it contains about 70 conserved
miR-7 binding sites, it is either termed Cdr1as (antisense) or ciRS-7 (Circular RNA Sponge
for miR-7) [67]. Overexpression of ciRS-7 in murine islet cells was found to increase insulin
content and secretion [68]. Moreover, Myrip and Pax6, regulating insulin granule secretion
and insulin transcription, respectively, were identified as new targets of miR-7 and were
modulated by the level of ciRS-7.

Global profiling of the circRNAs using a microarray approach led to the identification
of thousands of circRNAs in human pancreatic islets, 497 of which were also conserved
in mouse islets [33]. Three of the most abundant circRNAs were further investigated:
CircAFF1, and circHIPK3, which originate from exonic sequences of the Aff1 and Hipk3
genes, respectively, and ciRS-7/Cdr1as [33].

The expression of each of these circRNAs in β-cell lines and primary islet cells was
confirmed using divergent primers. Moreover, the modulation of their expression with
siRNAs directed against the circularized junctions, or against sequences specific to the
circRNAs in rodent islet cells, revealed that they contribute to the regulation of insulin
secretion and/or to the control of the β-cell mass. Indeed, circAFF1 deficiency was found
to enhance apoptosis, but had no effect on β-cell proliferation or in glucose-stimulated
insulin secretion. Interestingly, circHIPK3 and ciRS-7/CDR1as were reduced in the islets of
diabetic db/db mice, which lack the leptin receptor and are severely obese. Mimicking this
decrease in the islets of wild type animals resulted in impaired insulin secretion, reduced
β-cell proliferation, and survival [33].

Silencing of ciRS-7/CDR1as results not only in a decrease in insulin secretion [33,68],
but also reduces prolactin-stimulated proliferation of primary rat β-cells and MIN6 cells,
without affecting β-cell survival. These data suggest that alterations of ciRS-7 levels under
diabetic conditions may contribute to β-cell dysfunction and to the loss in the functional
β-cell mass.

Moreover, circHIPK3 was found to control insulin mRNA levels and insulin secretion
in pancreatic β-cells [33]. Indeed, the knockdown of circHIPK3 in MIN6 reduced insulin
promoter activity. Microarray analysis after circHIPK3 knockdown resulted in a downregu-
lation of genes involved in insulin secretion, including Akt1, Slc2a2, and Mtpn [33]. Similar
changes in gene expression upon circHIPK3 knockdown were also detected in rat and
human islets, corroborating the role of this circRNA in the regulation of glucose-stimulated
insulin secretion, insulin biosynthesis, proliferation, and apoptosis.

Mechanistic studies revealed that circHIPK3 is likely to act as a miRNA sponge.
Indeed, silencing of circHIPK3 resulted in the up-regulation of a large number of genes that
are enriched for putative targets of miR-124-3p, miR-338-3p, miR-29b-3p, and miR-30 [33].
Moreover, after circHIPK3 silencing there was a decrease in the activity of a luciferase
construct containing the 3′ UTR of human MTPN, which is known to be controlled by miR-
124-3p [69]. This result is consistent with a rise in the repressive activity of miR-124-3p after
circHIPK3 knockdown. Together, these observations suggest that circHIPK3 modulates the
activities of β-cells by sequestering a group of miRNAs that control the expression of key
β-cell genes, such as Slc2a2, Akt1, and Mtpn [33].

More recently, other circRNAs dysregulated in the islets of diabetic db/db mice were
identified by high-throughput RNA sequencing [70]. This study discovered hundreds of
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circRNAs that display expression changes in mouse pancreatic islets; one of them, circ-
Tulp4, is downregulated in the islets of diabetic models and in MIN6 cells under lipotoxic
condition. CircTulp4 was found to regulate cell proliferation through the interaction with
miR-7222-3p, which inhibits the expression of sterol O-acyltransferase 1 (SOAT1). The
accumulation of soat1 activates cyclin D1 expression, thus promoting cell cycle progression.
These findings indicate that circTulp4 regulates β-cell proliferation via a signaling cascade
including miR-7222-3p/soat1/cyclin D1 [70].

The first study aiming to investigate the transcriptional landscape of circRNAs in
different human islet cell types, compared published RNA-seq datasets of FACS-sorted
human α-, β-, and exocrine cells [71]. This analysis showed that circRNAs are highly
abundant in both α- and β-cells and identified 10,830 circRNAs expressed in human
α-, β-, and exocrine cells. More specifically, 36 circRNAs candidates were differentially
expressed, 22 upregulated and 14 downregulated, in β-cells compared to α-cells, and
about 400 circRNAs were found to be generated particularly in one or in the other islet
cell type. Of these, seven circRNAs were highly selective for α-cells and one of them for
β-cells. The identification of cell-specific α- and β-cell circRNAs suggests they may play
a role in regulating specific cellular function. However, their biological role in islet cells
remains to be elucidated. A more recent study of the whole circRNA profile carried out
in human islets of healthy donors and T2D patients, identified 2619 circRNAs expressed
in islet donors [72]. Among them, 13 co-localized with the GWAS association signal for
T2D. Despite the number of circRNAs identified in this study is lower than in the previous
one (10,830 circRNAs in Kaur et al.), there was a considerable overlap between the two
circRNA profiles, especially for the first top 100 abundantly expressed transcripts. Out of
the five most abundant circRNAs present in the islet cells, CAMSAP1, CIRBP, RPH3AL,
RHOBTB3, and ZKSCAN1, four of them were differentially expressed in the islets of T2D
donors [72]. Moreover, the expression of two of them changed in palmitate-treated human
EndoC-βH1 cells. Of note, the level of circCAMSAP1 in the peripheral blood of patients
with T2D showed a negative association with the diabetes status and might have a future
utility as a biomarker [72].

Of particular interest was the recent discovery of β-cell specific circRNAs derived
from the insulin gene [73,74]. To obtain a comprehensive picture of all circRNAs present
in islet cells, a two-algorithm computational approach was used to de novo annotate
potential circular transcripts detectable in high-throughput RNA-sequencing data from
mouse pancreatic islets [73,75]. This computational approach predicted the expression of
15,925 putative circRNAs, which included circRNAs generated from key β-cell genes such
as Chga, Chgb, Gck, Glp1r, Pcsk1, Pcsk2, and Slc30a [73]. Interestingly, this strategy led
also to the identification of three potential circRNAs generated from the second intron of
the insulin pre-mRNA that were named circular intronic Ins2 (ci-Ins2). The presence of
these circular transcript was confirmed by RT-qPCR using specific divergent primers in
mouse, rat, and human islets. Gel electrophoresis revealed the amplification of two or more
qPCR products in DNase-treated and reverse-transcribed islet RNA from each of the three
species. Sequencing of these qPCR products indicated two common types of non-colinear
junctions between species corresponding to the lariat or to the totality (full length) of the
second intron of the insulin pre-mRNA [73].

While this study was ongoing, Das et al. independently analyzed the same RNA-
sequencing data set [75], using two different algorithms (CIRCexplorer2 and CIRI2A) and
identified a total of 67,146 and 28,903 circRNAs, respectively [74]. Interestingly, this group
also identified circRNAs generated from the mouse preproinsulin 2 (Ins2) gene, out of
which only two were generated from exon 2, while the others were derived from intron
2 [74]. These computational data were further verified by RT-qPCR with divergent primers
placed on exon 2 and intron 2. This led to the detection of multiple alternative circular
transcripts, but the presence of exonic circ-Ins2 was not confirmed in mouse islets and in the
murine βTC6 beta cells [74]. Furthermore, in agreement with the findings obtained in our
laboratory [73], RT-PCR analysis using the primer spanning the circRNA junction proved
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the existence of multiple circular intronic RNAs generated from intron 2 [74], potentially
originating by the recognition of multiple branchpoints [76].

In our study, we also examined ci-Ins2 functions in pancreatic β-cells, focusing on the
lariat-derived circRNA [73], since this class of circRNAs has been shown previously to play
important regulatory roles in other cell types [36]. No essential role could be attributed
to rat ci-Ins2 in β-cell survival and proliferation. However, deficiency of this lariat in rat
and human islet cells resulted in reduced insulin release in response to nutrients (glucose)
and/or membrane-depolarizing compounds (KCl). Transcriptomic analysis after ci-Ins2
knock down revealed changes in the expression of key genes involved in the secretory
pathway of β-cells [73]. Indeed, silencing of rat ci-Ins2, or human ci-INS, was associated
with a reduction in a remarkable number of mRNAs encoding for essential components of
the secretory machinery of β-cells, including the voltage-dependent Ca2+ channel subunit
Cacna1d and different targets and regulators of Rab3 GTPases. Moreover, ci-Ins2 silencing
also reduced the Ca2+ peak and integrated Ca2+ load in rat islet cells challenged with
stimulatory and membrane-depolarizing K+ concentrations, confirming the impairment
on Ca2+ dynamic during insulin secretion. Most of these changes were consistent in both
species and were reproduced upon silencing with different gapmeR sequences, confirming
the specificity of the effect [73].

Computational analysis revealed that ci-Ins2 can potentially interact with several
RBPs [73,74]. Indeed, the interaction with TARDNA-binding protein 43 kDa (TDP-43),
an RBP identified as a potential ci-Ins2 target in both studies [73,74], was confirmed
experimentally [73]. TDP43 is of particular interest because knockout of this RBP in β-
cells results in defective insulin secretion [77]. Moreover, TDP-43 knockout and ci-Ins2
silencing result in a decrease in the expression of a common set of genes and, in particular,
in genes involved in insulin exocytosis [77]. Taken together, our findings suggest that
ci-Ins2 regulates insulin secretion in part through direct interaction with TDP-43 (Figure 3).
It is plausible to hypothesize that ci-Ins2 functions as a co-activator of TDP-43 because the
expression of most genes involved in insulin secretion is reduced upon silencing of TDP-43
or ci-Ins2.

Interestingly, the level of ci-Ins2 is reduced in the islets of rodent models of T2D as
observed for circHIPK3 and ciRS-7 [33] and in palmitate and glucose treated βTC6 cells [74].
In addition, the level of ci-INS, the human homolog of ci-Ins2, is lower in the islets of T2D
donors and is inversely correlated to HbA1c levels [73], suggesting that reduced ci-Ins2
and ci-INS may contribute to β-cell failure in T2D.

Taken together, these findings suggest that circRNAs may play a key role in the regu-
lation of β-cell activity, and may be potentially involved in the pathogenesis of T1D and
T2D. However, even if alteration in the expression of circRNAs have been demonstrated
to play a role in the onset and/or progression of many autoimmune diseases [78,79], the
potential contribution of circRNAs in T1D pathogenesis has been so far poorly investigated,
especially in the β-cell context. Indeed, at present, the only evidence for a possible implica-
tion of circRNAs in T1D is the reduction in the expression of circARHGAP12 in the islets
of pre-diabetic NOD mice, which spontaneously develop T1D [33]. However, the role, if
any, of circARHGAP12 in β-cells remains to be clarified since silencing of this circRNA in
MIN6B1 cells had no effect on proliferation, survival, or insulin secretion [33].
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5. Circular RNAs as Potential Disease Biomarkers

Despite intensive research, the causes of pancreatic β-cell failure during the develop-
ment of diabetes remain incompletely understood. The therapeutic strategies currently
available to prevent the manifestation of the disease and delay its progression need to be
ameliorated. The efficacy of the treatments would be greatly improved by implementing
them during the initial phases of the disease and by identifying individuals with the highest
risk of developing it. This goal can be achieved using biomarkers capable of predicting
and/or monitoring the progression of T1D and T2D and their long-term complications.
The level of circRNAs varies in different tissues and according to cellular conditions [7,80].
Moreover, as outlined in the previous chapters, the expression of some circRNAs is al-
tered under disease states [7–11], including diabetes [72,73,81]. Finally, some circRNAs are
secreted in the extracellular space and are abundant in body fluids (blood, saliva, urine,
cerebrospinal fluid) and are detectable in liquid biopsies [82,83]. Thus, detailed analysis of
the level of specific circRNAs may potentially be useful to monitor the functional state of
β-cells under pre-diabetic conditions and to predict β-cell failure and demise.

Many circRNAs have been reported to be enriched in small extracellular vesicles called
exosomes [84]. These vesicles are secreted by the cells in the extracellular space and in body
fluids, and exosomal miRNAs are already used as biomarkers for different diseases [85,86].
There is emerging evidence indicating that the level of circRNAs in exosomes holds a
prognostic and diagnostic potential. Thus, the level of circNRIP1 in circulating exosomes is
upregulated and correlates with tumor size in gastric cancer patients [87]. This circRNA
acts as a sponge for miR-149-5p, affecting the expression level of AKT1. Consequently,
circNRIP1 promotes proliferation and migration in gastric cancer cells [87]. In another
study, Xie et al. compared the circRNA expression profile in serum exosomes of colorectal
cancer patients and healthy subjects, and found that exosomal circRNAs in cancer samples
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are more abundant than in control samples. Therefore, the analysis of exosomal circRNAs
may provide novel powerful tools for early non-invasive diagnosis of cancer [88].

In view of the recent discovery of thousands of circRNAs in pancreatic islets and of the
capacity of β-cells to release RNAs in different types of vesicles under physiopathological
conditions [9], the analysis of circRNAs in body fluids may potentially yield precious
information for identifying individuals at risk for developing diabetes or its long-term
complications. The use of specific circRNAs as biomarkers for T1D and T2D occurrence
and progression is attractive and deserves further investigation. However, several technical
obstacles still need to be overcome. In fact, the analysis and the quantification of circRNAs
is technically more complex than the measurement of other RNA classes such as miRNAs.
The design of primers specifically amplifying a selected circRNA is often challenging [2].
This is usually achieved using convergent primers spanning over the circular junction
that amplify a sequence differing from the corresponding linear transcript. However, this
approach is often amplifying several circRNAs sharing the same circular junction, but
including a different number of exons/introns. Another key issue, will be to identify the
ideal candidate to mirror the functional state of the insulin-secreting cells. Ci-Ins2 would
be a potentially attractive candidate since its expression is β-cell specific and decreases in
the islets of T2D donors [73]. The first step would be to investigate if ci-Ins2 is detectable in
human blood and whether its level changes in samples of T1D and T2D patients. In case
of a lack of sensitivity due to the low number of copies present in the blood, it could be
envisioned to assess whether ci-Ins-2 is present in exosomes or in other extracellular vesicles
(EVs). Indeed, as mentioned above, some circRNAs are abundant in EVs circulating in the
blood and other body fluids [84]. However, the exosomes released by β-cells represent only
a very tiny proportion of the vesicles present in body fluids and routine isolation of EVs
specifically released by β-cells is not yet possible. Thus, the analysis will need to be focused
on circRNAs that are highly specific for β-cells to avoid confounding effects from vesicles
released by other tissues. Microarray or RNA sequencing analysis may provide a broader
picture of the circRNAs circulating in body fluids under healthy and diabetes conditions.
Indeed, using a microarray approach, almost a hundred differentially expressed circular
transcripts were identified in the blood of T1D patients, and the changes of six of them
were confirmed by qRT-PCR [89]. Interestingly, one of them, Hsa_circ_0002473, originates
from the DNAJC3 gene that also encodes for a GRP78-interacting protein that facilitates
its membrane translocation in dying pancreatic β-cells [90]. Moreover, DNAJC3 loss-of-
function mutations lead to a monogenic and recessive form of diabetes mellitus in humans.
However, the tissue distribution of Hsa_circ_0002473 was not yet investigated and we still
don’t know whether Hsa_circ_0002473 plasma levels correlate with β-cell-demise. Thus,
further studies need to be performed to confirm whether Hsa_circ_0002473 represent a
potential biomarker to monitor β-cell loss during T1D pathogenesis.

These technical obstacles are likely to be overcome in the near future thanks to the
accumulating information about the expression and the role of circRNAs in β-cells. Solving
these issues will be an essential prerequisite to open the way to a systematic assessment of
the possible use of circulating circRNAs as T1D and T2D biomarkers.

6. Conclusions and Perspectives

The presence of circular transcripts has long been neglected and considered a rare and
poorly relevant event. It has now become clear that this particular class of transcripts is
abundant in mammalian cells and constitutes an important fraction of the transcriptome.
Recent progress in circRNA research has uncovered new aspects about their biological
functions, implicating them both in physiological and pathological processes. However,
despite the fact that thousands of circRNAs have already been identified, the field is still in
its infancy, and only for very few of them we have information about their involvement in
the regulation of cellular activities. The majority of the circRNAs might have a unique, but
still unknown function, or act together to accomplish a specific task. However, it is possible
that a fraction of the detected circRNAs merely reflects byproducts of the splicing reaction
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that are expressed at concentrations insufficient to significantly affect cellular functions.
CircRNAs have been reported to be abundant in aging cells [91,92]. Given the resistance
of circRNAs to exonucleolytic decay, this may reflect the unavoidable accumulation of
splicing error byproducts without a biological function. However, even if individually
not very abundant, the accumulation of a large number of these splicing byproducts
may potentially impact on cellular function and contribute to cellular senescence. A large
number of circRNAs is expressed in β-cells, some of which originate from key genes
controlling the differentiation and the function of the insulin-secreting cells or from diabetes
susceptibility genes. We have initial evidence indicating that at least some of these circular
transcripts participate in the regulation of β-cell activities and are dysregulated under
diabetes conditions. Future and more systematic studies will most probably uncover the
involvement of many additional circRNAs in the control of β-cell functions. A better
understanding of how these crucial circRNAs are produced and degraded inside the cells,
may potentially favor the design of strategies allowing to positively regulate the activities
of the insulin-secreting cells. As previously discussed, circRNA availability is driven
by a complex network of factors regulating both their synthesis and clearance from the
cell that are still incompletely understood (Figure 4). CircRNA synthesis depends on
specific conditions that promote back splicing instead of linear splicing, or that inhibit lariat
debranching to favor the generation of lariat-derived circRNAs (see Section 2). On the other
hand, clearance of circRNA has been proposed to occur through different cellular pathways
(see Section 2) or by active secretion through extracellular vesicles, adding another level
of complexity [93,94] (Figure 4). The processes modulating the level of the circRNAs
expressed in pancreatic β-cells have not been investigated so far. The elucidation of these
regulatory mechanisms will not only help with understanding the causes of circRNA
dysregulation under diabetes conditions, but will also set the basis for the development
of new tools to modulate/control the functions of these non-coding RNAs in pancreatic
β-cells.
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The discovery of circRNAs has opened an entirely new investigation field and the
study of the role of these non-coding RNAs promises to take a central place in islet research
in the coming years. Further validation of the sequencing data will help uncovering new
circRNAs involved in different aspects of β-cell biology and will guide the selection and
the use of circular transcripts as indicators of β-cell health or demise.
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