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Abstract

The somatic co-evolution of tumors and the cellular immune responses that combat them

drives the diversity of immune-tumor interactions. This includes tumor mutations that gener-

ate neo-antigenic epitopes that elicit cytotoxic T-cell activity and subsequent pressure to

select for genetic loss of antigen presentation. Most studies have focused on how tumor

missense mutations can drive tumor immunity, but frameshift mutations have the potential

to create far greater antigenic diversity. However, expression of this antigenic diversity is

potentially regulated by Nonsense Mediated Decay (NMD) and NMD has been shown to be

of variable efficiency in cancers. Here we studied how mutational changes influence global

NMD and cytolytic immune responses. Using TCGA datasets, we derived novel patient-

level metrics of ‘NMD burden’ and interrogated how different mutation and most importantly

NMD burdens influence cytolytic activity using machine learning models and survival out-

comes. We find that NMD is a significant and independent predictor of immune cytolytic

activity. Different indications exhibited varying dependence on NMD and mutation burden

features. We also observed significant co-alteration of genes in the NMD pathway, with a

global increase in NMD efficiency in patients with NMD co-alterations. Finally, NMD burden

also stratified patient survival in multivariate regression models in subset of cancer types.

Our work suggests that beyond selecting for mutations that elicit NMD in tumor suppressors,

tumor evolution may react to the selective pressure generated by inflammation to globally

enhance NMD through coordinated amplification and/or mutation.

Author summary

The interactions between cancers and their immune microenvironments drive a co-evolu-

tionary process. This can start with the mutational changes that generate neo-antigenic

epitopes, leading to the activation of a cytotoxic T-cell response. Activated and proliferat-

ing T cells can search out and destroy tumor cells. Then, increased killing of the tumor

can lead to changes such as increased expression of PD-L1 and/or loss of function muta-

tions in MHC Class I proteins that help a tumor evade immune surveillance. Frameshift
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mutations in particular have been found to generate highly antigenic epitopes. However,

they can also activate nonsense mediated decay (NMD), leading to the suppression of

such epitopes. This presents a paradox in how frameshift mutations and NMD interact in

eliciting/evading immune surveillance during the course of tumor evolution. Here, we

identify a new example of conditional selection, whereby tumors can coordinately mutate

and/or amplify genes in the NMD pathway. We observed significant co-occurrence of

mutations and copy number alterations among the NMD pathway genes. The co-alter-

ations within the NMD pathway increase the global NMD efficiency and are associated

with lower cytolytic activity, and in some cases, worse overall survival.

Introduction

The co-evolutionary arms race between cancer and the immune response can drive tumor evo-

lution. Tumors with high levels of clonal neoantigens have higher levels of T-cell infiltration

[1], and higher response rates to immunotherapies [1–3]. High levels of immune infiltration

are also associated with loss of function mutations in Class I MHC proteins [4], suggesting that

the inflammation caused by T-cell-tumor recognition can result in selective pressure to lose T-

cell tumor interactions. Many of the same variables that have been associated with immune

infiltration in untreated tumors have also been associated with therapeutic response to check-

point inhibitors [5–9]. Thus, exploring the predictors of inflammation and survival in the pub-

lic TCGA datasets is an important source of hypotheses about immuno-therapeutic responses

in human tumors, and gives us a window into the process of co-evolution between tumors and

the immune system that shapes the immune ecology of the tumor and its microenvironment.

Only a minority of patients across multiple cancer types have been shown to be sensitive to

single agent immunotherapy [10–13]. This has prompted the rapid clinical development of

anti-PD-1 antibodies alongside biomarkers in diverse patient populations and in combination

with a variety of established and experimental therapeutics. Notably, combining checkpoint

inhibitors with patient stratification has led to the approval of Pembrolizumab (an anti-PD-1

monoclonal antibody) in previously untreated NSCLC patients with PD-L1 positive tumors

[14]. However, like targeted therapy, only a minority of NSCLC patients are PD-L1 positive.

Unlike targeted therapy, patients that are PD-L1 negative have non-trivial response rates to

immunotherapy.

Beyond PD-L1 positivity, other factors such as tumor mutational burden, microsatellite

instability, oncogenic viruses have also been associated with therapeutic response and tumor

immune infiltrates [3,4,15]. The rationale for their utility is that increased antigenic burden

creates a specific T-cell response. Neoantigen burden due to non-synonymous substitutions

has been clearly associated with immunotherapeutic success, cytolytic activity, and overall sur-

vival [1,2,16]. This link has also been demonstrated in a prospective clinical trial with nivolu-

mab plus ipilimumab. In this randomized trial, the authors demonstrated that stage IV or

recurrent NSCLC (not previously treated with chemotherapy and with a tumor PD-L1 expres-

sion level of less than 1%) who have more than 10 nonsynonymous mutations per megabase

have a 42.6% progression free survival at 1 year [17]. However, this recent clinical trial only

examined single amino acid mutations, and many prior predictions of neoantigen burden also

tended to predict neoantigens using single substitution variants [16,18–20].

Interestingly, like PD-1, many patients with high neoantigen burden fail to respond to

immunotherapy, and some patients with low neoantigen burden have durable responses to

immunotherapy and exhibit high levels of tumor inflammation with cytolytic cells [2,21]. As
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such, there is a critical need to continue to understand and predict mediators of tumor immu-

nity in humans. Recently, multiple improvements to neoantigen predictions have been made

by incorporating clonality [1], indel mutations [22], and intron retention mutations [23] into

studies of immune infiltration and immune response in tumors.

Specifically, frameshift mutations have been examined genomically, pre-clinically, and in

patient case studies [24,25]. These revealed that mutagenic indels provide a highly immuno-

genic source of antigens [24]. However, deeper investigations of the different mechanisms of

neoantigen generation have the potential to expand the prognostic power of clinicians to pre-

dict immunotherapy responses and indications. Moreover, better predictions of the neoanti-

gen landscape should aid current and future efforts to develop neoantigen derived peptide

vaccines. These peptide vaccines may help turn immunotherapy non-responsive tumors into

immunotherapy responsive tumors.

However, the use of frameshift mutations for predictions in pan-cancer analyses raises an

important question. Frameshifts were not initially considered in genomic analyses of neoanti-

gens because they were considered to be unlikely to be expressed due to nonsense mediated

decay (NMD) [1]. Frameshift mutations cause premature termination codons (PTCs), result-

ing in mRNAs that are the target of nonsense-mediated decay (NMD). While NMD should

lead to a loss of expression of the resulting transcripts, NMD has been found to function with

varying efficiency [26]. This may lead to reduced NMD and result in the expression of frame-

shift mutations that could be presented as neoantigens. In addition, genomic analyses of

frameshift mutations and their expression suggests that NMD operates with reduced efficiency

in cancer [24]. Finally, there is also evidence in preclinical models that inhibiting nonsense

mediated decay can enhance tumor immunity [27]. Thus, we believe that NMD itself may also

act as an independent biological filter of which indels are expressed, and thus we aimed to

quantify the additional information that NMD brings to the prediction of frameshift neoanti-

gens. We hypothesize that additional orthogonal predictive metrics of immune activation can

be derived based on patient-level NMD efficiencies. Here, we examined multiple cancer indi-

cations for associations between NMD/mutational burden with cytolytic activity/survival. We

find that accounting for NMD and indel mutations is significantly better than accounting for

indels alone. We also find that NMD derived metrics have some independent prognostic value

alongside current clinical parameters like PD-L1 expression and simple tumor mutation bur-

den (TMB) [3,28].

Results

NMD metrics are orthogonal predictors of tumor cytolytic activity

Recent work by Rooney et al. used the transcript levels of two cytolytic effectors GZMA and

PRF1 (S1 Fig) to assess the immune cytolytic activity [4]. Here, using this measure for immune

cytolytic activity, we quantitatively examined 17 cancer indications for the contribution of

mutation variant counts to observed cytolytic activity (high versus low). We performed a pan-

cancer analysis using a random forest model with the total counts of each mutation variant

type as features. A final AUROC value of 0.59 suggest that using mutation counts does not

fully explain the cytolytic activity, but they are statistically significant contributors (S2A and

S2B Fig). Almost all the mutation variants are important and contribute to the model accuracy

(S2C Fig). As expected, we observed that missense, nonsense, and silent mutation variants are

correlated [24]. However, frameshift mutation counts are not strongly correlated with silent

mutation counts, hence suggesting frameshift are an orthogonal predictor (S2D Fig).

Recent developments have suggested that frameshifts (which create very distinct neoepi-

topes) can improve the prediction of inflamed tumors and patient survival [24]. However, this
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presents a question: does patient level NMD independently associate with metrics of tumor

inflammation and overall survival in a manner that is independent from indel abundance?

Previous work performed an approximate correction for NMD, but, the NMD process has

been shown to be complex and variable [26], and could be measured at the patient level by

many metrics. For instance, the central tendency of NMD across all transcripts should give an

indication of the efficiency of the process of NMD within an individual while the maximum

NMD level within an individual for a specific transcript might measure the propensity for

NMD to inhibit specific neoantigens. We hypothesized that to understand the role of nonsense

mediated decay more deeply, we had to investigate many measures of NMD activity simulta-

neously. As NMD efficiency is measured at the individual gene level, while cytolytic activity is

measured at the patient-level, we began by deriving multiple patient-level measures of ‘NMD

burden’, using different approaches to aggregate the NMD efficiency values (Fig 1A and S3

Fig). This included a burden metric of nonsense mutations (ns), frameshift mutations (fs), and

combined nonsense and frameshifts (ns+fs). We used multiple aggregated NMD metrics in

order to cover our uncertainty in the relevant metric to generalize gene-level to patient-level

NMD burden. We first examined the correlation among the variables, and observed that

related variables (i.e. NMD related metrics, cytolytic activity metrics) tended to cluster

together (Fig 1B). In addition, simple metrics of mutation abundance are positively correlated

with cytolytic activity while most NMD-based metrics are negatively correlated (Fig 1B, S4

Fig). This suggests that higher NMD efficiency lowers the expression of indels and possibly

neoantigens. This is consistent with NMD suppressing neoantigens in experimental models of

cancer [27].

Using our NMD features, we built pan-cancer models using mutation counts only, NMD-

burden only, or a combination of the two feature groups. Surprisingly, NMD alone was as

good of a predictor of pan-cancer cytolytic activity as mutations (AUROCs of ~0.6). Impor-

tantly, the combined model improved upon single data type predictors with an AUROC of

0.67 (Fig 1C and 1D). These results were significant as based on cross-validation, the AUROCs

for mutation counts only, NMD-burden only, and mutation+NMD models were 0.59 ±0.03,

0.59 ± 0.03, and 0.66 ± 0.02. Thus, mutation counts and NMD-burden offer equally important

orthogonal information that combines to improve our understanding of cytolytic activity in

tumors (Fig 1D and 1E).

The NMD pathway is significantly and coordinately altered in cancer

A potential explanation for an association between the central tendency of NMD across all

genes within a patient and cytolytic activity is that T-cell infiltration might exert selective pres-

sure upon tumors to mutate or amplify genes in the NMD pathway. Towards this hypothesis

we utilized the TCGA pan-cancer data sets. Focusing on the major genes in the NMD pathway

(SMG1,5,6,7 and UPF1,2,3B) [29], we first examined whether these genes were amplified in

cancer. Examining all patients in the Pan-Cancer dataset, we observed amplification of NMD

pathway genes (Fig 2A) that resembled a gain of function pathway such as MAPK family mem-

bers more than they did tumor suppressors such as P53 and PTEN (i.e. more amplifications

than deletions were observed, S5 Fig). Beyond amplification, while none of the individual

genes in the NMD pathway are predicted to be drivers of cancer, we thought it was possible

that tumor evolution might select for co-occurrence of multiple individual NMD pathway

mutations. Surprisingly, all 21 pairwise combinations of the 7 core NMD pathway genes exhib-

ited a tendency towards mutational co-occurrence at a multiple hypothesis corrected p-value

<0.001 (Fig 2B). The 7 genes were also co-amplified more often than one would expect by

chance (corrected p-values < 0.05, Fig 2B). Only one of these pairwise mutual amplifications,
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Fig 1. NMD burden as orthogonal predictors of cytolytic activity. (A) Schematic of data processing pipeline for deriving NMD burden, incorporating TCGA datasets

for CNA, exome-seq, and mRNA-seq. (B) Pan-cancer correlation among features for mutations and NMD burden. (C) Pan-cancer ROC for random forest model with

mutation variant counts only (Mut), NMD burden only (NMD), or combined (Mut+NMD). (D) Out-of-bag error of overall model (black) and for predicting cytolytic

activity low (red) and high (green), for combined random forest model. (E) Variable importance of the features used in the combined model, based on mean decrease in

model accuracy. nmdns: NMD metric based on nonsense transcripts; nmdfs: NMD metric based on frameshift transcripts; nmdptc: NMD metric based on nonsense and

frameshift transcripts; _n_decayed: number of transcripts with NMD; _frac_decayed: fraction of transcripts with NMD; _max: maximum NMD efficiency value; _med:

median NMD efficiency; _mean: mean NMD efficiency; .wt: NMD efficiency metric weighted by mRNA expression.

https://doi.org/10.1371/journal.pcbi.1007467.g001
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SMG5-SMG7, contains 2 genes that reside in a similar genomic location on chromosome 1.

Importantly, this co-alteration appears to also have a functional consequence. When we exam-

ined patients with no NMD alterations versus patients with co-alterations (i.e. >1 alteration)

we observed a significant trend towards increasing NMD efficiency as NMD genes became

coordinately altered (Fig 2C and S6 and S7 Figs). Moreover, patients with NMD alterations

had lower cytolytic activity (S8 Fig).

Effects of NMD burden in individual cancer types

We next examined the contribution of our NMD metrics to predicting cytolytic activity in

each individual indication in the TCGA. We observed varying AUROC patterns of mutations,

counts, NMD burden, and combined models across the different indications (Fig 3 and S1

Table). Notably, for example, the contribution of NMD burden in GBM/LGG and LUSC

toward predicting cytolytic activity were minimal while mutational counts added predictive

value. On the other hand, in BLCA and LUAD, NMD burden contributed more than muta-

tional counts toward predicting cytolytic activity. In indications COAD/READ, SKCM,

HNSC, KIPAN, STAD, and UCEC, both NMD and mutational burden were important. In 6

Fig 2. NMD alterations co-occur and associated with improved NMD efficiency. (A) Amplifications/deletions of genes in the NMD pathway (SMG1,5,6,7 and

UPF1,2,3B) across different indications. (B) Co-occurrence of copy number and mutations of NMD genes, using the TCGA pan-cancer atlas datasets on cBioPortal. (C)

NMD efficiency of patients with co-altered NMD genes versus those without any alterations. Y-values are shown as the difference in median of log10 transformed NMD

metric values (co-altered versus no alterations). Each dot corresponds to a specific NMD burden metric in a given indication. Dots shown in red are statistically

significant with adjusted p-value< 0.05; Mann-Whitney test with Benjamini-Hochberg multiple hypothesis correction.

https://doi.org/10.1371/journal.pcbi.1007467.g002
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out of 15 indications, the combined model resulted in AUROC values better than the individ-

ual models. We also randomized the input data and observed no predictive power in any of

the null models (S9 Fig). Hence, the contributions of mutational counts and/or NMD burden

were clearly significant. We next examined the individual prediction metrics within each fea-

ture category across the indications to infer which processes were important in which tumor

type. The metric values varied in significance across all the TCGA indications (S10 Fig) with

varying levels of contribution/significance toward the final model (S11 Fig). The features that

contributed toward multiple indications included counts of missense, silent, and total muta-

tions, and several of the NMD burden metrics (mostly as measured by mean or median) (S11

Fig). Most importantly, we observed that the metrics contributing toward the model are con-

cordant with the final AUROC values of the model (e.g. indications where only NMD metrics

are important based on AUROC values (Fig 3) also had only NMD metrics as important and

statistically significant (S11 Fig)).

Effects of NMD burden on survival outcomes

In addition to cytolytic activity, we examined the effects of NMD burden on survival. Here, we

used the overall survival from TCGA clinical data and performed univariate Cox regression

for each feature across all the indications. With multiple hypothesis correction, we observed

mutational counts or NMD burden influence survival for a subset of the cancer types (BRCA,

GBM/LGG, KIPAN, OV, SKCM, and UCEC) (S2 Table). We examined melanoma in particu-

lar, as it is among the cancer type with the highest tumor mutational burden (TMB) and many

clinical biomarkers have been studied, with robust response to immunotherapies [30,31]. As

expected, in melanoma higher cytolytic activity was associated with a better survival outcome

(hazard ratio of cyt-high vs cyt-low, 0.5; 95% CI, 0.3–0.7); p-value = 0.002) (Fig 4A). A NMD

burden metric was also shown to contribute to the overall survival differences (specifically

nmdptc_med, which was found to be statistically significant in both univariate and multivari-

ate models). Here a high NMD burden led to lower cytolytic activity (Fig 4B) and a worse over-

all survival (Fig 4C). We have also examined other known clinical biomarkers, including

discretized TMB and PD-L1 levels, both of which were found to stratify the survival outcomes

in subsets of cancer types (S12 Fig). Upon controlling for the covariates TMB, PD-L1, age, gen-

der, and TNM stage, the same NMD burden metric was also found to be significant in mela-

noma (Fig 4D). All covariates were checked to be valid for the proportional hazards

assumption based on scaled Schoenfeld residuals (S13 Fig).

Discussion

A tumor’s mutational burden/neoantigen repertoire has been associated with inflammation,

overall survival and therapeutic response to immunotherapies. Previous studies in the TCGA

and in patients treated with checkpoint inhibitors have identified similar variables that predict

immune infiltration and checkpoint response [4,8,32–34]. Because frameshift neoantigen

availability is hypothetically regulated by the efficiency of the NMD process, and functional

evidence has suggested that inhibition of NMD can induce a tumor immune response and

tumor regression in pre-clinical models by exposing neoantigens [27], we derived orthogonal

patient-level metrics based on gene level NMD efficiencies [26] that improved our ability to

predict tumor cytolytic activity both within and across TCGA cancer types. Tumors with co-

Fig 3. NMD burden improves predictivity of cytolytic activity. Individual ROC, AUROC, and out-of-bag (OOB) error of random forest models, for (A)

indications without microsatellite instability (MSI) incorporated into the model, and (B) indications with MSI incorporated into the model. AUROC data are shown

as AUROC ± SE of AUROC from cross-validation.

https://doi.org/10.1371/journal.pcbi.1007467.g003
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amplifications and mutations in the NMD pathway had increased NMD efficiencies and were

less likely to have immune infiltration. Beyond cytolytic activity we found that NMD metrics

stratified some cancer types by distinct overall survival outcomes. These stratifications

remained to be significant in melanoma after controlling for established clinical covariates

PDL1 status and TMB.

Fig 4. Cytolytic activity and NMD burden stratifies overall survival outcomes. (A) Kaplan-Meier overall survival for SKCM, stratified by cytolytic activity

(categorized into low, med, and high based on quartiles). Legend shows the number of patients in each cytolytic activity level. (B) Association of feature nmdptc_med

(NMD burden based on nonsense and frameshift, calculated based on median) on cytolytic activity. Statistical significance was determined using Mann-Whitney test.

(C) Kaplan-Meier overall survival for SKCM, stratified by nmdptc_med (categorized into low, med, and high based on quartiles). (D) Forest plot of hazard ratios of

each variable, in a multivariate Cox regression model for NMD burden (nmdptc_med), controlling for age, gender, TNM stage, tumor mutational burden (TMB), and

PD-L1 levels.

https://doi.org/10.1371/journal.pcbi.1007467.g004
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In tumor suppressors, mutations arise spontaneously, and if they occur in a region that elic-

its NMD, the mutation can be selected for because NMD will eliminate the mRNA of the

tumor suppressor. Clearly tumor evolution does not need to alter NMD to create loss of func-

tion in tumor suppressor proteins, it is simply selecting for mutations that happen to elicit

NMD. However, our study suggests that at the level of a patient (and not a gene), mutations in

NMD and a global increase in NMD efficiency can be selected for. The origin of the alterations

in the NMD process could be due to enhanced suppression of tumor suppressor genes, or

enhanced suppression of tumor neoantigens. Regardless of the causative selective pressure, the

consequence is a tendency for genomic amplifications and mutations to co-occur within the

key proteins in the NMD machinery (SMG 1,5,6,7, and UPF 1,2,3B). Consistent with this co-

alteration, we observed that these co-occurring mutations/amplifications increased NMD effi-

ciency in patients that had low cytolytic activity. This suggests that pan-cancer tumor evolution

might select for co-alteration in the NMD pathway. The association of amplifications and not

deletions as well as the observed functional increase in NMD efficiency suggests that cytolytic

activity is inhibited by gain of function alterations in the NMD pathway.

The identification of correlates of tumor immune activity is a broad field with numerous

potential candidates. One difficulty in interpreting these studies is that many studies find sig-

nificant associations without quantifying the proportion of the data explained (and unex-

plained) by those variables. Thus, deciding which covariates to add, and how to quantify

progress towards full prediction of cytolytic activity is difficult without the careful presentation

of how much we understand versus how much we do not. Therefore, we present ROC curves

and out-of-bag error estimates for all models. This quantitation allows us to clearly see that

while we have identified significant predictors, our AUCs are mostly between 0.6 and 0.7,

except for the pan-kidney dataset that has an AUC>0.8. This is for both previously studied

mutational burden as well as our novel NMD burden. This suggests additional factors may

contribute toward the full cytolytic activity observed.

A potential weakness of this study is the use of mutation burden rather than MHC class I

binding predictions. However, predicting neoantigen-MHC class I binding remains challeng-

ing and prune to high false positives [35]. We chose here to instead focus on mutation burden

to minimize confounders from imperfect predictions. In addition, previous studies showed

that mutation burden is highly correlated with neoantigen burden [4,24], and as such likely to

harbor similar information.

Beyond predictions of cytolytic activity, we quantified tumor mutation burden [36] and

PD-L1 positivity across all sample and indications in the TCGA. In melanoma the effect of

NMD significantly added to a multivariate Cox regression model. Though the effect was more

modest after correcting for co-variates, we suggest that it is easy to examine NMD in future

clinical datasets with larger cohorts to confirm the predictability based on NMD. In addition,

as the survival outcomes stratified by NMD were limited to subsets of cancer types and differ-

ent NMD metrics were found to be important, this highlights potentially the limitations of bio-

markers such as that proposed here in being broadly applicable in a pan-cancer setting. We

recommend that groups performing biomarker studies in treated and untreated patients

should add metrics of NMD to attempt to understand and stratify responses across diverse

cancers.

In addition to better understanding immunity and, potentially, the response to checkpoint

therapy, the inhibition of NMD has been proposed as a therapeutic strategy in cancer [27].

Suppression of NMD can create a therapeutic effect through cell intrinsic (via restoring the

activity of a tumor suppressor) or extrinsic mechanisms (via tumor immunity). Suppressing

NMD activity has been proposed via directly inhibiting the NMD machinery (e.g. SMG1 or

UPF1-SMG5/7 interactions) or modulating translation to promote PTC read-throughs [37].

Evolution of the NMD pathway is associated with decreased cytolytic immune infiltration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007467 October 28, 2019 10 / 17

https://doi.org/10.1371/journal.pcbi.1007467


Should a clinical candidate to inhibit NMD arise, the road to biomarker driven application of

the cell intrinsic therapeutic effects is clear, but picking indications for the immune dependent

activity requires studies like this one. Thus, we suggest that indications whose cytolytic activity

is particularly well explained by NMD, or patients with alterations in the NMD pathway that

increase NMD efficiencies might be interesting indications to look for cell non-autonomous

immune driven efficacy of future NMD inhibitors.

Materials and methods

Datasets

The following The Cancer Genome Atlas (TCGA) datasets were acquired from Board Institute

GDAC Firehose repository: mRNA-seq V2 RSEM level 3, mutation calls level 3, copy number

level 3, and clinical data level 1, for the following indications: BLCA (bladder urothelial carci-

noma), BRCA (breast invasive carcinoma), CESC (cervical and endocervical cancers), COAD/

READ (colorectal adenocarcinoma), GBM/LGG (glioma), HNSC (head and neck squamous

cell carcinoma), KIPAN (pan-kidney cohort), LUAD (lung adenocarcinoma), LUSC (lung

squamous cell carcinoma), OV (ovarian serous cystadenocarcinoma), PRAD (prostate adeno-

carcinoma), SKCM (skin cutaneous melanoma), STAD (stomach adenocarcinoma), THCA

(thyroid carcinoma), and UCEC (uterine corpus endometrial carcinoma), downloaded over

the period from October to December of 2017. Microsatellite instability (MSI) data was

acquired from Hause et al[38]. MSI was included for analyses only for indications with at least

10 cases of MSI-H and MSS each (UCEC and STAD satisfied this criteria). Note COAD/

READ also had substantial MSI-H, but the mutation calls dataset for the COAD/READ was

limited (to 223 patients), thus after merging across datasets, there were too few MSI-H patients

for MSI to be included for subsequent analyses.

Data preprocessing and quality controls

The datasets were further preprocessed in preparation for analyses and modeling in R. For all data-

sets, only one tumor sample was used per patient (filter was based on sample type code). In the

case of patient tumors with multiple vials, the lowest-valued vial was used. For mRNA-seq data,

the transcripts per kilobase million (TPM) value was used. TPM was calculated as scaled estimate

(tau value) � 1e6. For CNA data, missing CNA were treated as zero (no CNA). For calculating

NMD efficiency and burden (more details in NMD feature engineering section), a series of data

cleaning and quality controls were performed (S2 Fig). PTC-bearing transcripts were excluded if

they overlapped with CNA. Genes were removed from the NMD efficiency and burden calcula-

tion if the WT was noisy (CV> 0.05 or< 10 samples) or low expression (median TPM< 5).

Cytolytic activity

The cytolytic activity was calculated as the geometric mean of the expressions (in TPM+0.01)

of GZMA and PRF1 [4]. The cytolytic activity values were also categorized into high/low with

upper/lower quartiles.

NMD feature engineering

Metrics for nonsense-mediated decay burden was derived based on NMD efficiency values.

The calculation for NMD efficiency was based on Lindeboom et al [26]. The data was prepro-

cessed as described in the data quality controls section above. The efficiency was calculated at

the gene-level, as the negative log base 2 transform of the ratio between the expression of the

mutant-bearing transcript and the median mRNA expression of that transcript (calculated
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from samples with no mutations and copy number variations for that transcript). We accord-

ingly derived NMD efficiencies for nonsense-, frameshift-, and nonsense/frameshift-bearing

transcripts. Here it is important to clearly distinguish between NMD metrics. A measure of

NMD burden is at the patient-level and is unique to this paper, while the measurement of NMD

efficiency is at the gene-level and is the same as Lindeboom et al. To turn NMD efficiency mea-

surements into estimates of NMD burden at the patient level, the NMD efficiency values were

aggregated in several ways. This included calculation of the: median, mean, maximum, total

number of genes with NMD, the fraction of total genes with NMD, and the median of the

expression-weighted efficiency value (weighted by percentile of median WT gene expression

out of all median WT gene expressions), and mean of the expression-weighted efficiency value.

Random forest model

A random forest model was used for predicting cytolytic activity (as a binary classification of

low/high) based on the engineered feature set using the randomForest package in R. The ran-

dom forest is a robust machine learning model that controls for overfitting internally and

robust to multicollinearity. The hyperparameters for our random forest models were tuned

using the caret package across the following values: number of randomly selected variables to

try at each split, mtry [Round(α/2), α, 2α], where α = Roundð
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

Þ and N is the number of

features; and number of trees to try [500, 1000]. The combination of hyperparameter values

chosen for the final model was based on the model with the highest AUC. Since the overall

goal of the model is to infer importance, the entire dataset with all patients was used for model

building. Although random forest internally controls for overfitting, 10-fold cross-validation

was also performed to check for robustness of the model. Different models were built with dif-

ferent subsets of feature classes (e.g. mutation, NMD burden, MSI, mutation + NMD burden,

mutation + MSI, NMD burden + MSI). Pan-cancer models were also created. The individual

datasets per indication were pooled together to generate the pan-cancer dataset. All metric cal-

culations (e.g. median, etc.) were calculated at the per-indication level. Variable importance

and significance were calculated using the rfPermute package. We also built null models where

the dependent variable (cytolytic activity) was randomized. Ten randomized datasets were

generated and random forest models (with cross-validation) were constructed on each. The

final performance of the null model was reported as the mean and standard error of the AUR-

OCs and OOB errors for each cancer type.

NMD alterations and pathway alterations

For NMD co-occurrence analyses, we used the cBioPortal [39] to examine all TCGA pan-can-

cer datasets (pan_cancer_atlas) on Jan 8, 2019. We searched NMD genes SMG 1,5,6,7 and

USP 1,2,3B. Amplifications and mutations were searched separately. For copy number alter-

ations of different pathways, we also searched the corresponding genes in cBioPortal. Genetic

alterations of NMD and their association with NMD efficiency metrics and cytolytic activity

metrics were also examined, with the metrics calculated per methods described above. For

copy number variations, amplifications and deep deletions were considered using copy num-

ber cutoff of 1 and -1, respectively. NMD genes with no copy number variations (copy number

value of zero) and no mutations were used as controls.

Survival analyses

Survival analyses were performed using the survival package in R. The survival function was

estimated using Kaplan-Meier product limit method and its variance was estimated using
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Greenwood’s method. The hazard ratios were calculated using Cox proportional hazards

model. In addition to univariate models, multivariate models were performed where each fea-

ture was controlled for age (categorical, < or� 65), gender (categorical, male/female), TNM

stage (categorical), TMB (categorical,� or > median), and PD-L1 level (categorical, low/med/

high with low/high based on top/bottom quartiles of TPM values). TMB was determined using

total mutation counts of missense, nonstop, nonsense, and frameshift divided by 38Mb, an

estimate of the exome size. The p-values were corrected for multiple hypothesis testing using

Benjamini-Hochberg. Proportional hazards assumption for the final Cox regression models

were also checked based on scaled Schoenfeld residuals plots and two-sided p-values.

Statistical analyses

All analyses were performed in R. Correlations among the covariates were calculated with

Spearman correlation. In univariate analyses of feature values, the difference between categori-

cal cytolytic low versus high was tested using Mann-Whitney for continuous features and Chi-

squared for categorical features. Statistical test for trend between NMD metrics and NMD

genetic alterations was performed using Jonckheere-Terpstra test. Statistical methods for ran-

dom forest model and for survival analyses were described in their respective sections above.

Code and data availability

Code for the analyses and outputs are available on GitHub at https://github.com/

pritchardlabatpsu/NMDcyt.

Supporting information

S1 Table. Multivariate random forest model performances for each cancer type.

(XLSX)

S2 Table. Hazard ratios and statistical significance from univariate Cox regression models

for each feature per cancer type.

(XLSX)

S1 Fig. Mutation variant counts are associated with cytolytic activity, albeit small. (A) Pan-

cancer ROC curve for predicting cytolytic activity, using a random forest model with only

counts of each mutation variant type (B) Out-of-bag error of overall model (black) and for pre-

dicting cytolytic activity low (red) and high (green). (C) Variable importance of the features

used in the model, based on mean decrease in model accuracy. (D) Association in mutation

counts among different mutation variant types. Missense, silent, and nonsense are correlated

while frameshift is not.

(TIF)

S2 Fig. Correlation of gene expressions for GZMA and PRF1, component genes used for

cytolytic activity.

(TIF)

S3 Fig. Pipeline schematic for data preprocessing and metric calculations for NMD bur-

den. The mRNA-seq, CNA, and exome-seq datasets were incorporated. Noisy genes were fil-

tered out, followed by derivation of gene-level NMD efficiency values. expr, expression.

(TIF)

S4 Fig. Univariate regression of each feature to cytolytic activity, aggregated by indication.

Features were grouped into mutations (A), NMD frameshift-bearing (fs) (B), NMD nonsense-
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bearing (ns) (C), and NMD nonsense/frameshift-bearing (ptc) (D).

(TIF)

S5 Fig. Copy number alterations in different pathways across multiple indications, using

the TCGA pan-cancer atlas datasets on cBioPortal. Amplifications are shown in red and

deletions in blue.

(TIF)

S6 Fig. NMD efficiency of patients with co-amplified NMD genes versus those without any

alterations. Y-values are shown as the difference in median of log10 transformed NMD metric

values (co-altered versus no alterations). Dots shown in red are statistically significant with

adjusted p-value < 0.05; Mann-Whitney test with Benjamini-Hochberg multiple hypothesis

correction.

(TIF)

S7 Fig. Association between NMD co-alterations and global NMD efficiency (measured by

different patient-level NMD metrics). Statistical significance was assessed with Jonckheere-

Terpstrata test for trends and p-values were multiple hypothesis corrected using the Benja-

mini-Hochberg method. Results with adjusted p-value < 0.05 are shown. The p-values shown

in the plots are based on Mann-Whitney test of pair-wise comparisons.

(PDF)

S8 Fig. Association between NMD co-alterations and cytolytic activity. Statistical signifi-

cance was assessed with Mann-Whitney test and p-values were multiple hypothesis corrected

using the Benjamini-Hochberg method. Results with adjusted p-value < 0.05 are shown.

Nominal p-values shown in plots.

(TIF)

S9 Fig. Null models were not predictive of cytolytic activity. ROC, AUROC, and out-of-bag

(OOB) error of random forest models, built from ten randomized datasets, for (A) indications

without microsatellite instability (MSI), and (B) indications with MSI. AUROC data are

shown as AUROC ± SE of AUROCs.

(TIF)

S10 Fig. Distribution of values for each feature per indication. Features were grouped into

mutations (A), NMD frameshift-bearing (fs) (B), NMD nonsense-bearing (ns) (C), and NMD

nonsense/frameshift-bearing (ptc) (D).

(TIF)

S11 Fig. Random forest model (with mutation variant counts (Mut) and NMD burden

(NMD) combined) feature summaries for all indications. (A) Mean decrease in model accu-

racy when a given feature is removed from the model. (B) Standardized mean decease in accu-

racy values from (A). (C) Statistically significant features from the model, with p-value < 0.05

marked in black.

(TIF)

S12 Fig. Univariate overall survival analysis of SKCM for TMB (A) and PDL1 (B).

(TIF)

S13 Fig. Scaled Schoenfeld residuals for each covariate in the Cox regression model used in

Fig 4C (SKCM).

(TIF)
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