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Abstract

Low serum levels of high-density lipoprotein cholesterol (HDL-C) have been shown to be a

risk factor for coronary artery disease independent of low-density lipoprotein cholesterol

(LDL-C) in different populations. In this study, we investigated genetic variants through

genome-wide association studies to determine their association with HDL-C levels in a sam-

ple of 2,700 patients. We identified several SNPs associated with HDL-C levels in the Leba-

nese population using unadjusted and adjusted by biological factors models. We replicated

the association of rs3764261 within CETP with HDL-C levels in the study population, and

found other previously unidentified SNPs to be significant at the suggestive level, in both

previously identified and unidentified genes. This paper reports the first genome-wide analy-

sis of HDL-C in the Lebanese, Middle Eastern, population and supports the importance of

genome-wide association studies across different and minor ethnicities to understand better

the etiology of complex human diseases.

Introduction

High-density lipoprotein (HDL) cholesterol has been one of the most widely used factors in

cardiovascular risk assessment since the first reports of its strong inverse association with coro-

nary heart disease in large epidemiologic studies [1–3]. HDL is a heterogeneous set of macro-

molecules composed of quantitatively and qualitatively varying lipids, proteins, and

apolipoproteins [4]. The different subpopulations of HDL are formed by the interconversion

of lipids by cholesteryl ester transfer protein (CETP), lecithin:cholesterol acyltransferase

(LCAT), phospholipid transfer protein (PLTP), endothelial lipase (EL), hepatic lipase (HL),

and scavenger receptor BI (SR-BI). The mechanism by which HDL exerts its cardio-protective

effects has been hypothesized and evidenced to include anti-inflammatory, anti-oxidative, and

endothelial effects; however, its best recognized function is in reverse cholesterol transport
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which most contributes towards its anti-atherosclerotic protective properties [5, 6]. Athero-

sclerotic plaque development is central in the pathogenesis of cardiovascular disease and the

hallmark of atherosclerotic streaks are lipid laden macrophages known as foam cells, which

can accumulate cellular cholesterol in an unregulated manner through scavenger receptors [7].

HDL is thought to mediate the clearance of cholesterol from the periphery, increasing its efflux

and working against atherosclerotic plaque build-up, thus actively protecting against cardio-

vascular disease [8–11]. Serum HDL cholesterol (HDL-C) levels are thus commonly used clini-

cally in cardiovascular risk assessment formulas and are recognized as one of the constituents

of the metabolic syndrome.

The epidemiologic evidence linking the measured serum HDL-C to cardiovascular disease

risk has been robust [12–14]. Low levels of HDL-C have been shown to be associated with

heart disease independent of low-density lipoprotein cholesterol (LDL-C), such that a 1%

decrease in HDL-C is associated with a 3–4% increase in coronary artery disease (CAD) over

six years [12, 15, 16]. This component of HDL however has not been directly shown to mediate

protective effects of HDL, causing its role to be called into question. Arguments against its

risk-modulating role come from studies of monogenic disorders in HDL metabolism whereby

many Mendelian randomization studies did not show a correlation between HDL-C levels and

cardiovascular disease outcomes [17]. Of note however, monogenic disorders leading to

decreased CETP function have been consistently associated with increased HDL-C levels and

reduced cardiovascular disease risk [18–20].

The National Cholesterol Education Program by the National Lung, Heart, and Blood Insti-

tute put forth a report stating that normal HDL-C levels range between 40 mg/dl and 60 mg/dl

[21]. Studies have shown that lipid levels vary with respect to ethnicity [22]. The mean esti-

mated HDL-C levels of Lebanese patients undergoing cardiac catheterization is 40–44 mg/dL

[23, 24]. The estimated HDL-C levels of the overall Lebanese population is 40.14 ± 0.77 mg/dL

for men and 51.67 ± 0.77 mg/dL for women [25]. However, the genetic impact of HDL-C levels

on the Lebanese population has not been investigated.

Most dyslipidemia treatments aim to lower LDL-C to reduce the risk of CAD, though there

is a small, but growing, focus on treatments that instead alter HDL-C levels [13]. While treat-

ments aiming to modify HDL-C levels via medications such as CETP inhibitors have been in

development, results have been disappointing [26]. Despite achieving pharmacologically

increased HDL-C levels, a decreased cardiovascular risk has not followed, likely due to phar-

macological dissociation between HDL-C levels and HDL functionality [27]. Five genes

accounted for nearly 40% of the variation in HDL-C in the European. These are LIPC, CETP,

ABCA1, LPL, and LDLR, with LIPC accounting for most of the variation (53%) and LPL and

LDLR accounting for the least (6% each) [28]. CETP has been the gene most consistently and

strongly associated with HDL-C levels across several studies [29–31].

Genome-wide association studies (GWAS) aim to identify genetic risk factors associated

with both common and rare diseases by using common SNPs in the human DNA sequence

[32]. A common difficulty facing GWAS is the matter of population substructure. Phenotypes,

as well as allelic frequencies, are known to vary with ethnicity, potentially hindering the gener-

alizability of GWAS. Moreover, linkage patterns between sources of genetic variation differ, as

expected, because different ethnicities have not had the same amount of time to undergo

genetic recombination. However, this variation in linkage disequilibrium may yield a benefit

in locating true causal variants [32, 33]. This study is conducted on a previously collected pop-

ulation of CAD cases and controls. The specific aim of this study is to determine which genetic

loci are associated with HDL-C levels through genome-wide association analysis, in a popula-

tion where such studies have not been reported on previously or characterized in the

literature.

Genetic variability of HDL-C levels in Lebanese patients
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Materials and methods

Study design and data collection

The samples utilized in this study were derived from two separate patient collections. The first

included a total of 7,710 Lebanese patients undergoing cardiac catheterization that were

enrolled as part of two cross-sectional studies of the FGENTCARD Consortium [34]. While

recruiting subjects (cases and controls) from a catheterization laboratory may have some

drawbacks, yet it provides the advantage of having a clearly defined phenotype that makes the

distinction between cases and controls more robust. These patients were recruited at two

major hospitals, the Rafic Hariri University Hospital in Beirut (The Lebanese Capital), and the

“Centre Hospitalier du Nord” in north Lebanon, between May 2007 and June 2010. All partici-

pants provided written informed consent prior to filling out the questionnaire or giving blood

samples. Research and data collection in both cohorts were carried out in compliance with the

Helsinki Declaration, with the approval of the LAU Institutional Review Board and the Com-

mittee on Human Subjects in Research (CHSR). Catheterization by Judkins’ technique as well

as angiography of major vessels were as described elsewhere [34]. Coronary angiograms were

reviewed by two interventional cardiologists blinded to the patients’ HDL-C results. The extent

of coronary lesion was estimated visually by comparing the reduction in the diameter of the

narrowed vessel to a proximal assumed normal arterial segment. Clinical data was retrieved

from patients via a questionnaire or hospital records. Blood samples were collected for DNA

analysis and/or metabolic analyses.

The second included 775 patients who were enrolled via a cross sectional study of Lebanese

Type II Diabetes patients [35]. This study had two sites of enrollment, one in Beirut, and the

other in north Lebanon. Clinical data was retrieved from patients via a questionnaire. Blood

samples were collected for HbA1C, fasting blood glucose, and lipid profile measurements after

12 hours of fasting and DNA analysis.

Selection criteria were based on the complete availability of the patients’ relevant parame-

ters described in Table 1 as well as the availability of genotype data. Subjects on whom no

HDL-C values were obtained were excluded from the analyses.

All participants provided informed consent prior to filling out the questionnaire or giving

blood samples. Research and data collection were carried out in compliance with the Helsinki

Table 1. Descriptive statistics of the population.

Mean±SD Number (%)

Age 62.32±11.01

Sex Male 1965 (72.67%)

Female 739 (27.33%)

Diabetes Controls 1621 (59.95%)

Affected 1083 (40.05%)

CAD No stenosis 501 (18.53%)

� 50% stenosis 280 (10.36%)

>50% stenosis 1923 (71.11%)

Cholesterol (mg/dL) 182.89±48.03

Triglycerides (mg/dL) 183.36±112.982

LDL-C (mg/dL) 110.19±40.93

WBC 8.43±2.81

Hematocrit 40.57±4.65

BMI 28.16±4.43

https://doi.org/10.1371/journal.pone.0218443.t001
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Declaration, with approval of the LAU Institutional Review Board, and local ethics committees

on human research.

DNA was extracted from a total of 2,968 individuals using the standard phenol-chloroform

extraction procedure. Genotyping was performed on Illumina Human610 or 660W-Quad or

the HumanOmniEXP-12v1 Multi-use array, as this study was cross-sectional and conducted

in two phases.

SNPs underwent quality control using PLINKv1.07 (http://zzz.bwh.harvard.edu/plink/)

and only individuals with a genotyping call rate of 90% were kept. A total of 2,700 subjects

with an average genotyping call rate of 98.37% were used for the statistical analysis (S1 Table).

After frequency pruning, SNP call rate of 95% or more and minor allele frequency (MAF) of

1% or more, 307, 238 SNPs that overlapped the different genotyping platforms remained for

analysis.

The samples used in this study were previously clustered on a subset of leading principal

components. There was no indication of interaction with risk factors or identified risk SNPs.

The stratified populations showed no significant variations not observed in the combined pop-

ulation, except that the range of variability increased, consistent with smaller sample sizes [36].

Statistical analysis

The dataset of clinical information contained 76 variables. Variables that had a high percentage

of missing values (approximated 10% or more) were removed, as well as those that were

deemed to be clinically unrelated to HDL-C, bringing the total number of variables to 63. Log

transformed HDL-C was used as the dependent variable interest because of its skewed distri-

bution. Automated procedures, such as forward, backward, and stepwise selection, were used

to guide the process of variable selection. Ultimately, eight independent variables were chosen

to be included in the final linear model, including, age, sex, diabetes status, log-transformed

total cholesterol, log-transformed triglycerides, LDL cholesterol (LDL-C), BMI, and CAD cate-

gory (no stenosis, stenosis� 50% in 1+ vessels, stenosis > 50% in 1+ vessel). Additionally, we

controlled for the genotyping platform since the first set of DNA samples (first collection) was

genotyped using the Illumina Human610 or 660W-Quad while the second set of DNA samples

(second collection) was genotyped using the HumanOmniEXP-12v1 Multi-use array. Smoking

status was previously studied in this cohort and thus not included as a co-variate [37].

Missing values in continuous variables (total cholesterol, triglycerides, LDL-C, BMI) were

imputed using their median value. Automated procedures for data with imputation and for

data with the NA values removed produced similar results. Moreover, imputing NA values

with the median did not drastically change the mean value of any variable (percent change

between 0.05% and 1.6%). The median was chosen over the mean value as some variables had

a skewed distribution and the median is resistant to outliers. By imputing rather than remov-

ing NA values, 341 subjects, that would have been otherwise removed, remained in the analy-

sis. Imputation of clinical values was done using the R project for statistical computing

(https://www.r-project.org/).

We performed a genome-wide association test that is adjusted for the following three CAD

status: 1) no stenosis; 2) stenosis� 50% in any of the 4 main coronary vessels, and 3)

stenosis > 50% in any of the 4 main coronary vessels. Two association analyses were per-

formed. The first, an unadjusted association analysis with each SNP as the sole predictor

against log-transformed HDL-C. The second a linear model adjusted for the aforementioned,

clinical variables. Both the unadjusted and adjusted linear models were additive genetic mod-

els, which measure the effect of each additional minor allele on HDL-C. All reported p-values

from the GWA analyses are an asymptotic result based upon a Wald test. A p-value of 1.0x10-8

Genetic variability of HDL-C levels in Lebanese patients
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was used to determine genome-wide significance and a p-value of 1.0x10-5 was used for the

suggestive significance cutoff.

Given that we have a quantitative phenotype, we computed the power using the QTL asso-

ciation feature from Purcell et al. Our sample size of 2,700 yielded a power of 15.7% while con-

sidering a total QTL variance of 0.009, based on the R2 of the most significant SNP, a risk allele

frequency of 0.326, a D’ of 0.9, and assuming a significance level of 5E-8 [38].

Results

The mean age of individuals was 62.33 (±11.02) years old and 72.70% of the individuals were

males. The average total cholesterol level was 182.85 (±48.03) mg/dl. The average HDL-C level

was 39.98 (±11.78) mg/dl. In total, 18.52% of individuals had no stenosis, 10.33% had stenosis

less than or equal to 50% in at least one vessel, and 71.15% had more than 50% stenosis in at

least one vessel.

The genomic inflation factor was 1.004 for the studied population. The results from the

unadjusted association analysis did not find any SNPs to be significant at the genome-wide

level, but did find four SNPs to be significant at the suggestive significance level (Table 2). The

SNP with the smallest p-value from the unadjusted analysis was rs17799912 on chromosome

19 (β = 0.0524, TS = 5.023, p = 5.41E-07). All four SNPs had a Hardy-Weinberg chi-squared

z-statistic with an absolute value less than three.

The adjusted analysis yielded one SNP that reached genome-wide significance while adjust-

ing for age, sex, diabetes status, total cholesterol, triglycerides, LDL-C, BMI, CAD category,

(Fig 1, Table 3). The SNP with genome-wide significance, rs3764261, is on chromosome 16

(β = -0.03239, p = 2.38E-8). The MAF of rs3764261 is 0.326. There is no evidence of systematic

over-dispersion of the test statistics, intrinsic bias, or genotyping error in the results of the

adjusted analysis (Fig 2). This SNP showed borderline genome-wide significance in the unad-

justed analysis (p = 6.695E-7, Table 2). Nine other SNPs were found to be above the suggestive

significance threshold (Table 2). Two of these SNPs are on chromosome 16, and in close

Table 2. Regression coefficients of significant SNPs from adjusted and unadjusted analyses.

CHR SNP Position in bp Gene of Interest Effect Allele Beta 95% CI p-value

Unadjusted Analysis

6 rs4288204 47369202 — A 0.0366 (0.0215,0.0518) 2.29E-06

15 rs2062091 61201424 RORA C 0.0358 (0.0203,0.0513) 6.06E-06

16 rs3764261 56993324 5’ of CETP T 0.0411 (0.0249,0.0572) 6.70E-07

19 rs17799912 41535003 3’ of CYP2B6 T 0.0524 (0.0319,0.0728) 5.41E-07

Adjusted Analysis

1 rs951307 115357015 — T -0.0258 (-0.0363,-0.0144) 5.56E-06

3 rs822780 22989819 — G 0.0239 (0.0131,0.0347) 1.54e-05

4 rs7693827 41254862 USHL1AS1 T -0.0258 (-0.0368, -0.0148) 4.19e-06

6 rs2502465 75455385 — T 0.0298 (0.0169,0.0426) 5.61e-06

8 rs7835508 38782627 PLEKHA2 C -0.0273 (-0.0393,-0.0153) 8.21e-06

12 rs1599780 63834115 5’ of DPY19L2 A -0.0682 (-0.0978,-0.0387) 6.05e-06

15 rs934297 58752734 LIPC A -0.0252 (-0.0360, -0.0144) 4.84e-06

16 rs3764261 56993324 5’ of CETP T -0.0325 (-0.0438,-0.0212) 1.86e-08 ��

16 rs4783961 56994894 5’ of CETP A -0.0233 (-0.0341, -0.0126) 1.92e-05

16 rs1800775 56995236 5’ of CETP C 0.0256 (0.0150, 0.0362) 2.11e-06

�� P-value reaching genome-wide significance

https://doi.org/10.1371/journal.pone.0218443.t002
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proximity, 1.57 and 1.91 Kbp, to rs3764261. These SNPs are respectively rs4783961 (β =

0.02428, TS = 4.439, p = 9.420E-06) and rs1800775 (β = -0.02598, TS = -4.803, p = 1.647E-06).

The MAF of these two SNPs were 0.490 and 0.465, respectively. The LD between the top SNP

rs3764261 is found to be R2 = 0.436; D’ = 0.931 with rs4783961 and R2 = 0.418; D’ = 0.995 for

rs1800775. All significant SNPs had a Hardy-Weinberg chi-squared z-statistic with an absolute

value less than three.

Discussion

In this study, we examined genetic variants to determine alleles associated with HDL-C levels,

due to the role of HDL-C in the underlying pathology of disease such as CAD. Using genome-

Fig 1. Manhattan plot of results from adjusted GWA analysis: P-values reported are from the model adjusted for biological variables. Y-axis is shows the

significance (-log10 p-value) of each association. X-axis is split by chromosome and ordered by position in base pairs. A total of 307,238 SNPs were tested in an

association analysis of 2,700 Lebanese individuals. Line at suggestive significance cutoff (1x10-5).

https://doi.org/10.1371/journal.pone.0218443.g001

Table 3. Regression coefficients from adjusted model rs3764261.

Variable ß^ Test Statistic p-value

rs3764261 -0.03255 -5.641 <0.0001

Age 0.00123 3.22 0.001295

Sex (F) 0.1056 11.405 <0.0001

Diabetes 0.00401 0.457 0.647

log (total cholesterol) 1.2342 36.066 <0.0001

log (triglycerides) -0.32419 -37.116 <0.0001

LDL-C -0.004452 -21.743 <0.0001

BMI -0.00284 -3.089 0.00203

CAD Category

No Stenosis Ref — —

� 50% Stenosis in 1+ Vessels 0.02351 1.543 0.1230

> 50% Stenosis in 1+ Vessels -0.00776 -0.706 0.4800

HumanOmniExp-12v1 -0.04294 -3.961 <0.0001

With corresponding t-test statistic and p-value.

https://doi.org/10.1371/journal.pone.0218443.t003
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wide association analysis techniques, we identified several SNPs associated with HDL-C levels

in the Lebanese population using unadjusted and adjusted by biological factors models. This

study reports the first genome-wide analysis of HDL-C in the Lebanese, let alone Middle East-

ern, population. The performance of genome-wide association studies across a variety of eth-

nicities is important to refine our understanding of complex human diseases. Such inclusion

of diverse ethnicities and geographically distant populations in conjunction with the use of

linkage analysis and well as admixture analysis allow for better determination of the genomic

location of causal mutations [33, 39].

This study found no SNPs to be significant at the genome-wide level in the unadjusted

model and one SNP to be significant at the genome-wide level in the adjusted model. This

SNP, rs3764261, lies 5’ of CETP on chromosome 16q13 and has been previously found to be

associated with HDL-C levels across a wide array of populations, including European and Jap-

anese populations (S2 Table) [31, 40–43]. Moreover, this is the only SNP to be found at the

suggestive level (p = 6.695E-07) in the unadjusted analysis and crossing the threshold for

genome-wide significance in the adjusted analysis (p = 6.653E-09). The result of the adjusted

analysis shows that HDL-C level increases by 3.41% for every additional minor allele, T, while

adjusting for biological variables in the model. The average HDL-C levels for genotypes GG,

GT, and TT, are 38.9, 40.5, 42.5 mg/dl, respectively. The two additional SNPs found to be sig-

nificant at the suggestive level on chromosome 16 in the adjusted analysis are located in the 5’

region of the CETP locus. The first, rs4783961, showed a similar effect, such that for every

additional minor allele, A, HDL-C level increases by 2.46%, while adjusting for all other vari-

ables in the model. The average HDL-C levels for genotypes GG, GA, and AA, are 38.7, 40.3,

40.6 mg/dl, respectively. By contrast, rs1800775, finds a lowering effect for each additional

minor allele, C, such that for every additional minor allele HDL-C level decreases by 2.56%,

while adjusting for all other variables in the model. The average HDL-C levels for genotypes

AA, AC, and CC, are 41.3, 39.8, 38.5mg/dl, respectively. All reported SNPs were compared to

previously performed GWAS through https://www.ebi.ac.uk/gwas/, as well as the Global Lip-

ids Genetics Consortium database (S2 Table). Two SNPs were previously reported to be associ-

ated with levels of HDL-C, rs3764261 (p-value: 1.39E-769and rs1800775 (p-value = 3.33E-

644). [44–46]. The other SNPs found significant at the suggestive level have not been reported

to date in other studies. Interestingly, rs934297 of the hepatic lipase gene, LIPC, has been

found to be associated at a suggestive level.

While it makes great strides in identifying disease-associated loci, even going so far as to

support earlier findings from other ethnicities, there are some limitations to this study.

Decreased HDL cholesterol levels have constantly been associated with coronary artery disease

and type II diabetes, which may explain that we did not find variants with genome-wide levels

of statistical significance in our cohort. A number of individuals in this study were taking lipid

lowering medications, which are likely to alter their plasma lipid values, specifically LDL-C,

profile. Given the low power of this study to identify loci associated with HDL-C at GWAS

level, some loci previously described to be associated with HDL-C, such as CYP7A1, NPC1L1

and SCARB1, did not reach genome wide significance level in our cohort. Replication analysis,

with an increase in the number of enrolled participants would help unravel the role of more

rare variants in the etiology of cardiovascular diseases in relation to HDL-C [47]. It may also

be beneficial to investigate the use of imputation of additional SNPs based on their linkage

with already genotyped SNPs as this could lead to the discovery of additional significant SNPs

at the genome-wide level. The use of linkage between SNPs will help to fine map the exact loca-

tion of causal SNPs. Additionally, the common disease/common variant hypothesis states that

common disorders, such as low HDL-C or CAD, are likely influenced by genetic variants that

have a high minor allele frequency. If the genetic variants that effect common diseases have a
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high MAF, as the three found to be significant in CETP did, then they are likely to have a small

effect size, such that each individual SNP accounts for a relatively small amount of the varia-

tion in the common disease. In turn, if a common disorder shows heritability, as HDL-C does,

then many common genetic variants must account for the heritable genetic risk [32, 48]. For

such reasons, future studies should include haplotypes to determine if a specific sequence of

alleles is associated with and account for a larger portion of the variation in HDL-C levels in

the population. HDL-C levels are clinically used on a daily basis in cardiovascular risk assess-

ment tools, and an understanding of their variation is core to the understanding and treatment

of cardiovascular diseases. Continued exploration of genetic risk loci of HDL-C is fundamental

to an understanding of such diseases.

Supporting information

S1 Table. Studied population. For the 2,700 individuals who passed the QC, 2,171 individuals

were genotyped using the Illumina Human610/660W chips and 529 were genotyped using the

HumanOmniExp-12v1 chip.

(XLSX)

Fig 2. Q-Q plot of results from adjusted GWA analysis: For each point, y-axis is the observed–log10 p-value of association from a model

adjusted for biological variables. X-axis is the expected–log10 p-value under the null hypothesis. The line represents same expected and

observed p-value for every SNP. Deviations above the line show observed p-values higher than expected.

https://doi.org/10.1371/journal.pone.0218443.g002
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S2 Table. Major published association results on rs1800775 and rs3764261 in different

populations. RAF, risk allele frequency.

(XLSX)

S1 File. Supplementary data. All data underlying the findings described in the manuscript.

(XLSX)
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