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Physical exercise improves the overall health status by preventing the development
of several diseases. In recent years, it has been observed that physical exercise
impacts gut microbiota by increasing the presence of beneficial bacteria and microbial
diversity. In contrast, a sedentary lifestyle increases the incidence of chronic diseases
that often have an associated loss of microbial diversity. The gut microbiota is a vast
ecosystem in which microorganisms interact with each other in different ways; however,
microbial ecosystem interactions are scarcely studied. The goal of this study was to
determine whether individuals with a sedentary lifestyle have lower diversity in their
gut microbiota and how microbial diversity is associated with changes in bacterial
network interactions. For that purpose, diet, body composition, physical activity, and
sedentarism behavior were characterized for individuals who did or did not comply with
the World Health Organization recommendations for physical activity. The composition
of the gut microbiome was determined by 16S rRNA gene sequencing. Reorganization
of microbial structure with lifestyle was approached from network analysis, where
network complexity and the topology of positive and negative interdependences
between bacteria were compared and correlated with microbial diversity. Sedentary
lifestyle was significantly associated with a diet low in fiber and rich in sugars and
processed meat, as well as with high visceral and total corporal fat composition.
The diversity (phylogenic diversity, Chao, observed species, and Shannon’s index) and
network complexity of the gut microbiota were significantly lower in sedentary compared
to active individuals. Whereas mutualism or co-occurrence interactions were similar
between groups, competitiveness was significantly higher in the active lifestyle group.
The mutualism-competition ratio was moderate and positively associated with diversity
in sedentary individuals, but not in active individuals. This finding indicates that there is
a critical point in this ratio beyond which the stability of the microbial community is lost,
inducing a loss of diversity.
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INTRODUCTION

The gut microbiota has emerged as an important factor in
human health and disease. Indeed, specific microbial patterns
have been associated with numerous disorders, such as cancer
or cardiovascular disease (Marchesi et al., 2011; Jie et al., 2017).
Numerous studies that compare the gut microbiota in health
and disease point to the loss of microbial diversity as a disease
characteristic. For instance, patients with ileal Crohn’s disease,
irritable bowel syndrome or rheumatoid arthritis, have lower
microbiota diversity compared to their healthy peers (Jeffery
et al., 2011; Imhann et al., 2016). Microbiota diversity has also
been associated with disease severity (McMurtry et al., 2015),
and correlates with immune system parameters (Ribeiro et al.,
2017). The physiological state of the host is also associated with
microbiota composition, and aging and obesity are connected
with decreased microbiota richness (Ley et al., 2006b; Turnbaugh
et al., 2008; Claesson et al., 2012). These associations may be
due to lifestyle characteristics that govern the gut microbial
community, diets rich in sugars and/or fats, or the loss of
mastication efficiency that leads to a modification of the diet
or antibiotic intake, among others. However, the underlying
mechanisms through which this loss of diversity occurs and
the effects on the structure of the microbial community remain
unclear. From an ecological perspective, microbial communities
with greater diversity are more stable, resistant to pathogenic
invasions, exhibit a higher capacity for recovery, and show
functional redundancy that leads to more efficient utilization of
resources. Together, these effects promote health benefits for the
host (Lozupone et al., 2012; Karkman et al., 2017).

The gut microbiota is a complex ecosystem characterized by
its composition, as well as the interactions among species that
shape the microbial community. Most previous studies focused
on the estimation of cooperation strength among species, under
the assumption that mutualism is the driving force of diversity
structure (Rejmánek and Starý, 1979). Consequently, they
underevaluate competition (Gracia-Lázaro et al., 2018). It is now
well accepted, however, that positive and negative interactions
define the community and ecosystem (Agrawal, 2007; Mougi and
Kondoh, 2012; Suweis et al., 2013). Thus, diversity is based on
both competition and mutualism networks. Notwithstanding the
great advancements in sequencing technologies s made to reveal
the structure and variations of the microbiota network and its
relationship with the host, this task remains challenging.

To understand the relationship between the microbiota
and the host, it is necessary to know both the composition
of the gut microbiota and the interactions that define the
microbiota network. Additionally, structure and function of the
bacterial communities are critically important. Understanding
the interactions will help develop treatments or modifications
to the microbiota with the aim of exerting a favorable effect
on the host. Indeed, several strategies have been utilized to
improve host health via microbiota modification, including
the use of probiotics, prebiotics, and fecal transplants, but how
these treatments impact the microbial community is not known
with any certainty. For these reasons, it is crucial to define
interactions [cooperation or mutualism (co-occurrence) and

competition (co-exclusion)] between microbial community
members to understand the community response to external
factors (diet, antibiotics and physical activity, among others
(Shade et al., 2012). The presence, abundance, and metabolism
of bacteria strongly depends on the complex interactions
between them; these interactions are positive in cases of
co-occurrence (cooperation or mutualism), negative in case
of competition, or null in cases of no impact. Mutualism
(positive relationship between bacterial abundances) can
be due to cross-feeding, co-aggregation in biofilms, co-
colonization, niche overlap or other reasons. Competition
(negative relationship between bacterial abundances) may
result from amensalism or a prey– predator relationship.
The study of microbial interactions provides additional
information to species abundance; network analysis represents
a promising perspective to study microbial community
stability (see review Faust and Raes, 2012). Of special interest
is the relationship between mutualism and competition
networks in different conditions; this factor determines
species coexistence.

The prevalence of physical inactivity has increased alarmingly,
and sedentary lifestyle has emerged as a risk factor for obesity and
several other disorders, such as cancer and cardiovascular disease
(Packey and Ciorba, 2010; Winzer et al., 2011; Chomistek et al.,
2013; Gonzalez-Gross and Melendez, 2013). Sedentary lifestyle
and lack of physical activity are also associated with a less healthy
dietary pattern (Loprinzi, 2016), and combination of these factors
potentiates the negative effect on health (Laxer et al., 2017).
Given these considerations, one can assume that individuals who
exhibit sedentary behavior, a low level of physical activity, and an
unhealthy diet, are more prone to disease.

The aim of this work was to study the mechanisms that
underlie the influence of lifestyle on microbial diversity from a
new network analysis perspective, with a focus on the interactions
among microbial taxa.

MATERIALS AND METHODS

Participants Characteristics
This observational, transversal study involved free-living
individuals. Volunteers were recruited using posters, social
networks, and magazines. The study was performed at
Universidad Europea de Madrid (Madrid, Spain). A total of
143 otherwise healthy non-smoking individuals were enrolled
in the study according to the following inclusion criteria: age
18–40 years and body mass index (BMI) of 20–30 kg/m2.
Exclusion criteria were any change in diet during the previous
year, any kind of pathology, previous gastrointestinal surgery,
antibiotic intake during the 3 months prior to the study,
smoking, prebiotics, probiotics, vegetarian or vegan dietary
pattern, nutritional or ergogenic complements (caffeine,
conjugated linoleic acid, hydroxymethylbutyrate, carnitine,
creatine, proteins, ginseng, glutamine, and ribose et cetera),
pregnancy, or lactation. In order to divide the sample into active
and sedentary individuals, volunteers were asked about their
exercise habits during the preceding year, prior to the start of
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the study. Criteria for physical activity were as follows: sedentary
individuals were those who did not perform the minimal physical
activity established as healthy by the World health organization
(WHO), that is, 3 days of exercise per week for 30 min at a
moderate intensity (bicycling at a regular pace, swimming or
other fitness activities; World Health Organization, 2010). Active
individuals were those who performed at least 3 h of physical
exercise per week. According to these criteria from the 143
volunteers, 109 were selected for the study, and 34 were excluded
because they did not have a clearly active or sedentary lifestyle
but alternated periods of physical activity with episodes when
they exercised less, or fulfilled one of the exclusion criteria. Of
the 109 individuals, 64 individuals were classified as active (ACT;
37 males/27 females) and 45 (28 males/17 females) as sedentary
(SED). All individuals were Caucasian. The Ethics Committee
for Clinical Research of the Ramón y Cajal Hospital CEIC 338-14
(Madrid, Spain) approved the study. All procedures were in
accordance with the 1964 Declaration of Helsinki and its later
amendments. All participants received written full disclosure
of the relevant project information, including the purpose of
the trial, the implications, and the possible benefits and risks
of participation. Written informed consent was obtained from
all participants.

Physical Activity and Sedentary Behavior
Determination
Accelerometry was used to objectively measure physical activity
and sedentary behavior. Accelerometers (Acti-Sleep V.3.4.2
accelerometer; Actigraph, Manufacturing Technology Inc.,
Shalimar, FL, United States) were worn on the dominant hand
and data were recorded over 7 days (5 weekdays and 2 weekend
days) except when water activities were performed. Energy
expenditure and physical activity (light, moderate to vigorous,
and vigorous activity) were calculated as previously described
(Bressa et al., 2017). Sedentary behavior was characterized by the
number of sedentary bouts (period of consecutive minutes where
the accelerometer registers < 100 counts/min) and sedentary
breaks (period of at least 1 min where the accelerometer
registers ≥ 100 counts/min following a sedentary bout) and the
total time spent in them (Byrom et al., 2016).

Dietary Data
Diet habits and food intake were registered using self-
reported food frequency questionnaire (FFQ). This questionnaire
comprises 93 items, collects the annual food consumption and
has been validated for the Spanish adult population (Vioque and
Gonzalez, 1991; Vioque López, 2006; Supplementary Material).
Data from the FFQ were analyzed using Dietsource software 3.0
(Novartis, Barcelona, Spain) to obtain the total energy ingested
(in kcal) of proteins, fat, carbohydrates, fiber, and ethanol.
Macronutrients data are expressed in grams (g) and as the
percentage of the energy that they provide to the diet. Single
foods were grouped in the following categories: fruits, vegetables,
legumes, cereals, nuts, dairy products, white meat, red meat,
processed meat, fish, eggs, pastries, and sugars.

Body Composition Measurement
Body weight and height were measured with a scale and a
stadiometer (Asimed T2, Barcelona, Spain). BMI was calculated
by dividing the weight by the square of the height. Body
composition was evaluated by dual-energy X ray absorptiometry
(DEXA; GE Healthcare, Madison, WI, United States). Full
DEXA scans were performed in supine decubitus position, and
provided the following variables: total body fat mass, estimated
visceral adipose tissue (VAT), total trunk fat mass, total body
lean mass, and fat and lean mass for lower and upper limbs.
The following indices were then calculated: adiposity index
(AI) = total fat/height2; muscular mass index (MMI) = total
muscle mass/height2 and appendicular muscular mass index
(AppMMI) = muscle mass in arms + legs/height2, fat-free mass
index (FFMI) = BMI – fat mass.

Stool Collection, DNA Extraction, and
Sequencing
Participants were provided with a Fe-Col R© (Alpha laboratories,
Hampshire, United Kingdom) fecal sample collection kit to
collect stool samples. Stool samples were collected once and
were transported on ice to the laboratory where they were
stored at −80◦C until analysis. DNA was extracted using the
commercial EZNA Stool DNA Kit (Omega Biotek, Madrid,
Spain), following the manufacturer’s instructions, with a bead-
beating homogenizer (Bullet BlenderStorm, Next Advance,
New York, NY, United States) using glass beads for 3 min at
speed 10 (following the manufacturer’s recommendations). The
elution volume was 100 µL. The DNA concentration and purity
of was measured using the Quant-iT PicoGreen dsDNA Assay
Kit (Thermo Fisher Scientific, Waltham, MA, United States).
Microbiota analyses were performed by amplifying the V3-V4
hypervariable regions of the bacterial 16S rRNA gene. The 459
base pair (bp) amplicon was visualized in a 0.8% agarose gel
stained with ethidium bromide. The bands were cut and cleaned
using the MinElute Gel extraction kit (Qiagen, Hilden, Germany).
DNA amplicons were sequenced on a MiSeq Illumina platform
(Illumina, San Diego, CA, United States). Raw data in fastq
format have been deposited and are publicly available with the
accession number PRJNA564612 the NCBI Biosample database1.

Bioinformatics and Statistical Analysis
The 16S rRNA 2 × 300 pair-end reads were assembled and
analyzed using the Quantitative Insights into Microbial Ecology
(QIIME) program, version 1.9.1, using QIIME default parameters
except for split library demultiplexing (phred quality threshold of
20 and better). The 16S rRNA pairend reads were assembled using
the script multiple_join_paired_ends.py, which joins forward
and reverse demultiplexed reads. High-quality sequences were
grouped into operational taxonomic units (OTUs) with a
sequence identity threshold of 97%; taxonomy was assigned by
interrogating the high-quality sequences with the Greengenes
database (13_8). The OTU table was rarefied to the minimum
sample count (26979 sequences) for calculation of alpha-diversity

1https://www.ncbi.nlm.nih.gov/bioproject/564612
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metrics [Chao1, Phylogenetic Diversity (PD) tree, Shannon’s
and Simpson’s indices] with the QIIME program. Beta-diversity
was evaluated by calculating Bray-Curtis distance metrics.
Principal component analyses (PCoA) of community structure
(β- diversity) using the Bray-Curtis metric was generated by
QIIME and analyzed by permutational multivariate analysis of
variance (PERMANOVA) using the script comparecategories.py.
The p values were corrected with the Bonferroni test.

Microbial Core and Interactions Network
Network analysis is based on the estimation of the statistical
relationship among bacteria abundances in order to infer
or mutualism (positive correlation) or competition (negative
correlation) per pair of bacteria. A network is composed by N
nodes (N bacteria) connected by NxN links, where the strength
refers to the weight of the correlation (R value) between pairwise
bacteria abundances in a group (for a review see Faust and Raes,
2012; Layeghifard et al., 2017). The steps followed to build the
network are presented below.

Data Preparation for Network Analysis
From the species classification level a core of bacteria was
selected in order to consider only those taxa that were present
in at least 75% of samples for each group (Faust et al.,
2012). This core selection method aims to ensure a robust
connectedness and avoid zero filling. In our dataset this core
selection resulted in 55 OTUs for the ACT group, 52 for the
SED group and 47 overlapping species in both groups (labels
for core bacteria in Table 1). This core threshold retained an
average of 95.41% of the identified species in each sample. The
differential bacterial taxa between the two cores are shown in
Supplementary Table S1. Raw OTU abundances were converted
to relative values by normalization, namely by dividing each
taxon abundance by the number of individuals in the community
(Herren and McMahon, 2017).

Pairwise Correlations
The data obtained for network estimation was an array of
“number of bacteria” in the core (47, obtained from the previous
step) per “number of individuals” (64 per ACT and 45 per SED),
per group. In this work, we had two arrays: 47 × 64 for ACT,
and 47 × 45 for SED. The network approach translates data into
an interactions space with interest in identifying the relationship
between individuals more than the individuals per se. In network
terminology, the bacteria (N = 47) are the nodes of the network
and the correlations between all of them are the symmetrical
links composing the graph [(N∗N-1)/2; 1081 in this case]. The
network structures were estimated using a Gaussian graphical
model (GGM; Lauritzen, 1996). Due to the ordinal nature of the
variables, a Spearman correlation matrix was used as input for the
GGM (for a recent tutorial, see Epskamp et al., 2017). Spearman’s
non-parametric rank coefficient estimates the linear correlation
between all pairs of bacteria, given a symmetrical network, which
can be either positive (co-occurrence) or negative (competition)
depending on the direction of the correlation.

TABLE 1 | Overlapping bacterial taxa between active and sedentary individuals.

1 Bifidobacterium longum 25 Unclassified Anaerostipes

2 Unclassified Coriobacteriaceae 26 Unclassified Blautia

3 Unclassified Bacteroides 27 Unclassified Coprococcus

4 Bacteroides caccae 28 Coprococcus eutactus

5 Bacteroides eggerthii 29 Unclassified Dorea

6 Bacteroides ovatus 30 Unclassified Lachnospira

7 Bacteroides plebeius 31 Unclassified Roseburia

8 Bacteroides uniformis 32 Roseburia faecis

9 Unclassified Parabacteroides 33 Ruminococcus gnavus

10 Parabacteroides distasonis 34 Ruminococcus torques

11 Unclassified Prevotella 35 Unclassified Ruminococcaceae

12 Unclassified Rikenellaceae 36 Unclassified 2 Ruminococcaceae

13 Unclassified 2 Rikenellaceae 37 Unclassified Anaerotruncus

14 Unclassified Barnesiellaceae 38 Faecalibacterium prausnitzii

15 Unclassified Butyricimonas 39 Unclassified Oscillospira

16 Unclassified Odoribacter 40 Unclassified Ruminococcus

17 Unclassified Streptococcus 41 Unclassified Mogibacteriaceae

18 Unclassified Clostridiales 42 Unclassified Erysipelotrichaceae

19 Unclassified 2 Clostridiales 43 Unclassified Holdemania

20 Unclassified 2 Christensenellaceae 44 Unclassified Sutterella

21 Unclassified Clostridiaceae 45 Unclassified Bilophila

22 Unclassified Clostridium 46 Unclassified Enterobacteriaceae

23 Unclassified Lachnospiraceae 47 Unclassified RF39

24 Unclassified 2 Lachnospiraceae

The numbered bacteria correspond to the numbers shown in the interaction
network figures.

Network Building
The NxN matrix produced from the previous step provides
the correlation between all pairs of bacteria. To convert the
matrix into a network, it should be transformed in a semi-
weighted matrix that is composed by positive (co-occurrence),
negative (competition), or no correlation. Only the correlations
that were statistically significant were used to construct the
network. Significance was established at a p-value of 0.00001
because data were corrected by the Bonferroni test for multiple
comparisons [number of connections in the network is 1081;
46∗(47/2)]. In order to individually study the role of each bacterial
taxon in the network, we measured the degree and strength of
nodes. Degree is the number of links connected to each node,
and the strength is the sum of the weights of links connected
to the node. These measurements can be used to identify the
hubs of the network. The hub core constitutes the top 10% of
the nodes. Topological measurements were estimated for both
mutualism and competition networks. Transitivity coefficient is
the frequency of loops of length three (clusters) in the network;
it provides a measurement of the propagation (how continuous a
network is). The Parcor R-package (Krämer et al., 2009) was used
to implement the adaptive approach.

Network Statistics
To ensure that the topological microbial structure was
not random, and can be compared between groups, we
normalized the ACT and SED networks with those built
from 1000 randomly reorganized networks that maintained

Frontiers in Microbiology | www.frontiersin.org 4 January 2020 | Volume 10 | Article 3142

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-03142 January 14, 2020 Time: 15:29 # 5

Castellanos et al. Sedentarism: Loss of Competition and Microbial Diversity

the links distribution. In order to compare ACT and SED
networks we followed a permutation test where 1000
networks are built from a subset of the original samples
and then statistically compared pairwise with a p value
threshold of 0.00001 (Bonferroni corrected). Additionally,
an isomorphism comparison test was used to compare SED
and ACT graphs. Two networks are isomorphic if there is
a permutation of the nodes in SED that results in the same
structure as in ACT.

Network Representation
Networks were visualized using the q-graph R-package
(Epskamp et al., 2012) and the Fruchterman-Reingold algorithm
(Fruchterman and Reingold, 1991). Plotting algorithms draw
close those nodes with stronger and/or more connections; nodes
with low centrality populate the periphery. Compared with
regular plotting where bacteria are drawn following the label
number, this algorithm allows a direct visualization of those
bacteria with a more relevant role in the network.

Network Stability
This factor measures how network interpretation remains stable
with less observations, in this case, a smaller number of
individuals in both experimental groups. To study the stability
of the networks, we followed the protocol of Costenbader and
Valente (2003). We first calculated the bridge strength degree
(BSD) (Payton, 2017) of the original network including the
whole dataset, to be compared with the BSD of the networks
constructed with several subsamples with percentages from 1 to
0.5 (half of the sample) for 25 iterations. The measure of the
stability is represented by the coefficient of central stability (CS).
We computed stability indices for both SED and ACT group
networks in order to ensure the stability of our results with
the dataset.

Cohesion
Cohesion metrics (Herren and McMahon, 2017), as individual
measures of community complexity, analyze microbial
community interconnectedness. Cohesion is the projection
of the network into OTU abundances, and it is estimated
by multiplying the semi-weighted matrix by the relative
abundances. Subsequently, the cohesion metric is split into
positive and negative values. Cohesion is thus an individual
measure of the network complexity per bacteria, and it can
be correlated with other parameters, including dietary data,
physical activity, or body-composition measurements. The term
complexity is defined in ecology to refer to the number and
strength of connections in a food chain (May, 1972; Schoener,
1974). A high cohesion value can indicate that the community
has many taxa that are responding simultaneously to external
forces. Therefore, cohesion is a good candidate for correlation
with physical activity and dietary habits. The bioinformatic
pipeline is available on GitHub.

Statistical Analysis
Statistical analyses were performed using SPSS software v.21
(SPSS, Chicago, IL, United States) and R. The normal

distribution of variables was confirmed by using the Shapiro
test. Student’s t-test was used to compare the variables that
fulfilled the assumption of normality (body composition, physical
activity and diet). Diversity indices were compared using
the Mann–Whitney U test. Significance was established at
p < 0.05. For multiple comparisons the Bonferroni multiple
correction was applied. PERMANOVA was used to test
differences in microbial community composition (β-diversity)
across groups based on pairwise Bray-Curtis distance matrix.
Differentially abundant bacterial taxa analysis was performed
using analysis of composition of microbiomes (ANCOM) via
the ANCOM 2.0 package in R 3.6.1, corrected for age and
sex variables; significance was defined as W > 0.7. If not
otherwise specified, the values shown are the mean and
standard deviation.

RESULTS

Characteristic and Lifestyle of the
Participants
A cohort of 109 individuals was enrolled in the present study:
64 in the ACT group and 45 in the SED group. The mean age
was 32.17 ± 7.40 years in the ACT group and 33.69 ± 7.96
in the SED group. There were no significant differences in
BMI between the groups (ACT = 24.01 ± 3.28 kg/m2 and
SED = 23.63 ± 2.91 kg/m2; p = 0.71). By contrast, there were
marked differences between the SED and ACT individuals in all
evaluated muscle and fat-related parameters (Table 2).

As expected, there were clear differences between SED and
ACT individuals regarding physical activity (Supplementary
Table S2). An active lifestyle was reflected in almost all the
determined parameters, except for light physical activity,
in which there were no differences between groups. Energy
expenditure was higher in the ACT compared to SED
individuals. Furthermore, there were significant differences
in the moderate and moderate-vigorous physical activity
parameters. The SED group was characterized by less
interruptions of sedentarism (sedentary breaks) and longer
sedentary bouts.

Dietary habits differed between ACT and SED individuals
(Supplementary Table S3). In terms of macronutrients, both

TABLE 2 | Body composition of ACT and SED individuals.

ACT (n = 64) SED (n = 45) p-value

BMI (kg/m2) 24.01 ± 3.28 23.63 ± 2.97 0.549

BFP (%) 22.71 ± 6.09 32.35 ± 6.04 <0.001

AI (kg/m2) 5.30 ± 1.76 7.53 ± 1.96 <0.001

VAT (g) 274.39 ± 150.05 417.66 ± 196.62 <0.001

MMI (kg/m2) 16.88 ± 1.93 14.66 ± 2.14 <0.001

AppMMI (kg/m2) 7.65 ± 1.14 6.36 ± 1.18 <0.001

BFM (kg/m2) 15.65 ± 5.71 21.33 ± 5.543 <0.001

BMI, body mass index; BFP, body fat percentage; VAT, estimated visceral fat;
AI, adiposity index; MMI, muscular mass index; BFM, body fat mass; AppMMI,
appendicular muscular mass index. Values are means ± standard deviation.
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diets were slightly imbalanced considering the appropriate
percentage of energy provided by macronutrients as follows:
10–15% for proteins, 50–60% for carbohydrates and 30–
35% for lipids (Martínez Álvarez et al., 2010). Further, lipid
and carbohydrate consumption were higher in the SED
group, whereas protein consumption was higher in the ACT
group. When dietary habits were compared in terms of
grams of macronutrients, there were no significant differences
were detected except for fiber consumption. ACT individuals
consumed higher amounts of fiber, a phenomenon explained by a
greater consumption of fruits and nuts, whereas SED individuals
consumed more processed meat and sugars.

Diversity and Microbial Composition
Analyses
Rarefaction curves based on observed species, Shannon’s index,
and phylogenetic distance measures were virtually saturated,
findings that indicate sufficient sequencing depth (data not
shown). The diversity of the two studied populations was
estimated using qualitative (PD tree, Chao1) and quantitative
(observed species, Equitability, and Shannon’s and Simpson’s
indices) measures. Both qualitative and quantitative species-
based measures were significant between groups with the
exception of the Simpson’s index (p = 0.097) and Equitability
(p = 0.086; Figure 1A). These data indicate that evenness
was similar between the groups. The beta-diversity analysis
showed both groups were significantly different (Figure 1B;
PERMANOVA p = 0.020; pseudo F = 2.12). This finding suggests
that microbiota samples from the same group were more similar
to each other than to the other group. ANCOM revealed that
SED individuals were characterized by a microbiota with a
predominance of Bacteroides (ACT = 25.39%; SED = 32.23%)
and Parabacteroides (ACT = 2.21%; SED = 2.88%) genera,
while in the ACT microbiota exhibited a predominance
of the Coprococcus (ACT = 3.49%;SED = 2.35%), Blautia
(ACT = 3.89%; SED = 2.41%), and Eubacterium (ACT = 0.42%;
SED = 0.29%) genera. Bacterial composition of the microbiota

of both groups at phylum, family and genus level is shown in
Supplementary Figure S1.

Microbial Interactions Network in Active
and Sedentary Lifestyle
Microbial networks were estimated for both ACT (N = 64)
and SED (N = 45) groups, which included both positive and
negative interactions, which could be distinguished based on the
polarity of the correlation coefficients between the bacterial taxa
core components. The graphical representation of the network
showed that network reorganization depended on the lifestyle
(Figures 2A,B). Both networks were topologically different
according to the isomorphism comparison test. The ACT
network had a modular behavior composed by one main bacterial
cluster, whereas the SED group network exhibited a lower
modularity and number of connections. To clearly differentiate
the contribution of mutualism and competition networks to the
microbial populations, we drew them separately (Figures 2C,F).
Note that due to the nature of drawing algorithm, the network
representation changes when mutualism and competition are
separated, allowing a direct visualization of the more connected
bacteria (drawn closer). When the competition ACT network
(Figure 2C) was compared with the competition SED network
(Figure 2E), there was a significant decrease in competitiveness,
measured as a loss of the number of negative or competitive
interactions (ACT = 1.97, SED = 1.54: average of interactions
per bacterial taxon, p < 0.0001, Bonferroni corrected). The
decrease in competitiveness in the SED group was based on the
loss of negative interactions in the following microbial taxa: an
unclassified species of Bacteroides genus, Bacteroides ovatus and
Bacteroides uniformis, and an increase of competitiveness in an
unclassified genus of the Christensenellaceae family.

Regarding mutualism (Figure 2D for ACT and 2F for SED),
we also observed a non-significant tendency for reduction in the
SED group (ACT = 4.66, SED = 3.40; average of interactions
per bacterial taxa, not significant after Bonferroni correction).
However, in this case, the reduction of positive connections was

FIGURE 1 | Differences in α-diversity (Chao, Shannon’s index, PD tree, and observed species) (A) and β-diversity (Bray-Curtis index) (B) between active (ACT) and
sedentary (SED) groups. α-Diversity boxplots reflect median (horizontal center line), 25th and 75th percentile values (bottom and top bounds of boxes), and ranges
(bottom and top of whiskers) for each category.
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FIGURE 2 | Network representations in (A) active (ACT) and (B) sedentary (SED) populations. This network is composed by nodes (circles representing the bacteria
abundances named in Table 1) and edges (lines representing the statistical correlation between nodes). Blue edges represent positive relationships, while red edges
represent negative relationships. The spatial position of the nodes was chosen by the Fruchterman-Reingold algorithm to draw close those nodes with stronger
and/or more connections while placing with low centrality at the perifery. The network is split into mutualism and competitiveness networks [(C,D) for ACT, and (E,F)
for SED, respectively].

not localized in hubs or centers of modularity (the reduction
of mutualism in the SED group was uniform when compared
with the ACT group). The mutualism SED network was more
spread than the ACT network, as measured by the increase in
the transitivity coefficient (SED = 0.78, ACT = 0.44; p < 0.0001,
Bonferroni corrected).

Analysis of the degree of the network (number of connections
per node; Figure 3), identifies the hub bacterial taxa (sets of nodes
with the highest degree). Regarding mutualism (Figure 3, top
panel), the hubs in ACT group were an unclassified species of
the Bacteroides, B. ovatus and B. uniformis. In the SED network,
the hubs were the same except without B. ovatus. The mutualism
topological analysis revealed a modular behavior, where the
highest degree was accumulated in a small subset of bacteria.
Regarding competition (Figure 3, bottom panel), the degree was
more homogeneous, and a subset of hubs could not be defined.

Network stability measures ensure that the datasets (number
of subjects) of the groups are sufficient to provide a robust
interpretation of the network. Thus, we computed stability
indices for both SED and ACT networks in order to ensure

the stability of our results with the dataset. Figure 4 shows
the stability of centrality index strength, where the mean of
the iterations (see section “Materials and Methods”), confidence
intervals (red area), and extreme edges are represented. Figure 4
showed high stability along the bootstrapped samples (i.e., drops
in stability were very small). The coefficient of CS indicated
that strength centrality was moderately stable for both groups.
One interpretation of the CS is that a subset composed by
the 75% of the participants in SED group provides a network
whose strength is 75% of the original network (composed by the
complete dataset). However, in the ACT group a subset composed
by the 75% of the subjects provides a network whose strength
is 82% of the original. This finding implies that the ACT group
was slightly more homogeneous compared to SED group. Both
groups showed a low tendency of decrease in the strength with
the reduction of the samples. Thus, we concluded that both were
stable groups to infer the networks.

In order to obtain a measure of the complexity of the network
and correlate it with diversity parameters, we computed the
cohesion (see section “Materials and Methods” for definition)
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FIGURE 3 | Topological characterization of ACT and SED networks measured by the number of connections (the higher the degree, the more connected the
network is) per node (x- axis; full name description in Table 1) for competitiveness (top panel) and mutualism (bottom panel) networks.

for both SED and ACT groups (Figures 5A,B). For the
individual cohesion measure (Figure 5A), there was a decrease
in competitiveness network complexity in the SED group
(ACT = −0.034 ± 0.012, SED = −0.031 ± 0.01 (std); p
[adjusted] = 0.00014; Figure 5B).Comparatively, the reduction
in mutualism was not significant (ACT = 0.0410 ± 0.0068
SED = 0.032 ± 0.01; p [adjusted] = 0.355; Figure 5B).
Interestingly, mutualism and competitive complexity were
statistically correlated in the SED group (R2 = 0.47, p
[adjusted] = 2.0 × 10−7), but not in the ACT group (R2 = 0.13,
p [adjusted] = 0.02; Figures 5A,B). This coupling between
mutualism and competitiveness in the SED group can be
interpreted as a reduction in the network complexity, as discussed
below. The mutualism-competitiveness complexity ratio (M-C
ratio) was significantly higher for the ACT group (1.36 ± 0.62)
compared to the SED group (1.19± 0.65).

Network Complexity and Diversity
When correlations were established to study the relationship
between the co-occurrence network – and microbial diversity, we
found that the M-C ratio positively correlated in the SED group
with PD tree (R = 0.67), Chao (R = 0.60), equitability (R = 0.53),
observed species (R = 0.62), Shannon’s index (R = 0.66) and
Simpson’s index (R = 0.45). In the ACT group, the M-C index
correlated with Chao (R = 0.27) and observed species (R = 0.36).
All correlations had p < 0.001 as a threshold.

DISCUSSION

Our results showed a decrease in the network complexity and
a lower grade of competitiveness in sedentary compared to

active individuals. These changes could, at least partly, represent
the origin of the decreased diversity observed in a sedentary
lifestyle. According with our results, previous studies described
that a Western lifestyle may drive gut microbiota diversity
depletion (De Filippo et al., 2010; Deehan and Walter, 2016;
Menni et al., 2017). Active individuals who comply with the
WHO recommendations for physical activity, and with a diet
characterized with a higher fiber intake and low content of
sugars and fats, presented a higher degree of competition
(negative correlations) in three species of the Bacteroides
genus: B. ovatus, B. uniformis and an unclassified species.
Bacteroides is one of the most dominant genera of the core
microbiota; it is considered to be a functional driver (Tito
et al., 2018). This genus is characterized by high versatility
for utilizing different glycan sources and its ability to adapt
its metabolic machinery to the food source (Wexler, 2007).
Moreover, B. uniformis produces short-chain fatty acids and
the neurotransmitter GABA, whose production increases with
complex glycans and could clearly affect the health of the
host (Benítez-Páez et al., 2017). Bacteroides species could be
a result of the top-down selection for functional redundancy
because their genome contains a large number of genes involved
in the acquisition, breakdown, or synthesis of carbohydrates
(Ley et al., 2006a). Conversely, the Christensenellaceae family
represents the bacterial taxon with a significantly greater
number of negative interactions in the SED group. A higher
abundance of this family has been associated with leanness,
a high frequency of bowel movements (Oki et al., 2016),
and a high capacity for running in ovariectomized rats
(Liu et al., 2015). Nevertheless, more studies are needed to
understand the implications of the negative interactions of the
Christensenellaceae taxon in the SED group (that has the same

Frontiers in Microbiology | www.frontiersin.org 8 January 2020 | Volume 10 | Article 3142

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-03142 January 14, 2020 Time: 15:29 # 9

Castellanos et al. Sedentarism: Loss of Competition and Microbial Diversity

FIGURE 4 | Stability as a measure of how network interpretation remains stable as the number of observations (sample size) decreases. The x-axis represents the
percentage of participants considered for the subsamples (ACT and SED), from 100% (whole dataset) to 50% (half of the sample). y-axis represents the stability
index measured by the strength of the network. The red area is the confident interval and the gray area is framed by the maximum and minimum values of the
stability of the interactions per subsample (extreme values).
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FIGURE 5 | (A) Mutualism-competition complexity network relationship in ACT and SED groups, that shows network coupling in SED individuals. (B) Bar diagrams
that compare mutualism and competition complexity averaged in both groups, where competitiveness was significantly different between SED and ACT individuals.

BMI as the ACT group but a higher body fat composition) and
their consequences.

Cooperation or competitiveness can usually be explained
through comparison of phylogenetic versus functional
similarities. Phylogenetically close taxa tend to positively
associate with each other, whereas distantly related taxa with
functional similarities tend to compete (Faust et al., 2012).
Indeed, our mutualism analyses showed that Bacteroides
species cooperate with each other as well as other species
of phylogenetically close taxa, including Parabacteroides and
Odoribacter. This cooperation is likely a result of functional
redundancy that confers stability to the microbiota network,
and slightly different preferences for substrates that result in
metabolic cooperation (Ley et al., 2006a). Microbial communities
with greater diversity have a greater number of positive and
negative interactions (Faust et al., 2012).

Notably, our topological measure was based on the complexity
of the network, also called cohesion (Herren and McMahon,
2017), and not simply the degree, strength, or number of
connections. We chose a topological measure to extend the
meaning of an intricate relationship. The decrease in the
network cohesion occurs by affecting selective species, not in
a uniform way but by decreasing the nested nature of the
competitive network. Natural networks are proposed to not
be random; but rather to display a nestedness or modular
structure (Bascompte et al., 2003, 2006; Fortuna et al., 2010)
that is related to the stability and dynamics of the ecosystem
(Gracia-Lázaro et al., 2018). The loss of modularity or nestedness
behavior generally entails a reduction in richness or topological
efficiency (Toroczkai, 2017), as well as effective interspecific
competition. These factors enhance the number of coexisting
species (Bastolla et al., 2009).

Our study demonstrated that the network complexity of
co-occurrence was higher than that for competition in both
groups. However, both relationships were coupled in sedentary
but not in active individuals. This coupling between networks
can be interpreted as a loss of global complexity because it
indicates dependence instead of coexistence or co-occurrence.
The decrease in populations of competitive bacteria in the SED
group would lead to a decrease and/or increase in other species,
so the variances would be coupled. For the ACT group, having

more competitive populations would be regulated by other
species, so the variances would be coupled. This coupling also
supposes that gut microbiome network reorganization is more
predictable in the sedentary population. This phenomenon has
important implications for treatment tests, because the variance
of a subset of bacteria can predict the behavior of others. In
the case, for example, of antibiotic intake, given the decrease of
some bacterial species due to the effect of the drug, one could
better predict what would happen to the other bacteria in the
sedentary population. If there is more diversity, as in active
population, there is a greater probability of finding more ways
to recover the allostatic balance. Therefore, the variance of the
species that are not affected by the drug will be less predictable.
With reduced diversity, the ecosystem has less regulatory capacity
because species can be controlled.

Our sedentary individual results are similar to another study,
that examined co-occurrence in the microbiota of different sites
of the human body, and detected a more balanced ratio of
microbial co-occurrence versus co-exclusion interactions (Faust
et al., 2012). Additionally, a positive correlation between the
number of co-occurrence partners and environmental diversity
has been previously observed (Freilich et al., 2010). The results
from our study suggests that sedentary lifestyle and diet are
associated with significantly reduced diversity and less dense
microbial network structure with lower density connections.
Furthermore, the level of competitive network interactions was
significantly higher in fecal samples from active individuals. We
postulate that a high M-C ratio is associated with a rich diversity
where both networks co-exist. To study the relevance of the
relationship between mutualism and competitiveness complexity,
we correlated the M-C ratio with diversity parameters. There was
a positive correlation with diversity parameters, including PD
tree, Chao index, equitability, observed species, and Shannon’s
and Simpson’s indices in both the ACT and SED groups. The
positive nature of these correlations highlights the importance of
a non-balanced ratio (>1), where mutualism is more abundant
than competition, but under an equilibrated coexistence. The
M-C ratio was less correlated with diversity measures in active
compared to sedentary individuals. This finding suggests that
other factors drive microbial diversity in active individuals.
These additional factors (not considered in this study) could
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include food timing or fasting which could impact on substrate
availability and therefore on the spatial conformation of the
population history of antibiotic use, growth rate, and motility
of the bacteria populations or bacteria communication (Quorum
sensing mechanisms) (Hibbing et al., 2009; Levy and Borenstein,
2013). A better understanding of the complex interplay between
mutualism and competitiveness may help guide clinical studies,
such as the establishment of the optimal value of the M-C ratio
that maximizes diversity or guarantees stability and resilience
against threats or antibiotics.
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