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SUMMARY

Type 2 diabetes mellitus (T2D) is a chronic age-related disorder characterized by hyperglycemia 

due to the failure of pancreatic beta cells to compensate for increased insulin demand. Despite 

decades of research, the pathogenic mechanisms underlying T2D remain poorly defined. Here, 

we use imaging mass cytometry (IMC) with a panel of 34 antibodies to simultaneously quantify 
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markers of pancreatic exocrine, islet, and immune cells and stromal components. We analyze 

over 2 million cells from 16 pancreata obtained from donors with T2D and 13 pancreata from 

age-similar non-diabetic controls. In the T2D pancreata, we observe significant alterations in 

islet architecture, endocrine cell composition, and immune cell constituents. Thus, both HLA-DR­

positive CD8 T cells and macrophages are enriched intra-islet in the T2D pancreas. These efforts 

demonstrate the utility of IMC for investigating complex events at the cellular level in order to 

provide insights into the pathophysiology of T2D.

In brief

Wu et al. use an advanced imaging technique to profile two million cells within the pancreas of 

healthy people and those with T2D. They identify changes in tissue architecture and immune cell 

infiltration in the diabetic pancreas that help our understanding of this major health problem.

Graphical Abstract

INTRODUCTION

The endocrine pancreas, although constituting only 1% to 2% of the organ’s mass, is highly 

effective at regulating blood glucose in a narrow physiological range (Atkinson et al., 2020; 

In’t Veld and Marichal, 2010). The insulin-producing beta cells, which comprise 20% to 

60% of islet cells in the normal human pancreas (Wang et al., 2019), are able to adapt 

extensively to metabolic demand. However, this capacity is not without limits, with type 2 
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diabetes (T2D) ensuing when insulin secretion becomes insufficient (DeFronzo et al., 2015). 

A seminal study by Deng and colleagues analyzed pancreatic islet structure and function in 

a large cohort of T2D cases (Deng et al., 2004); they noted that islet mass from the T2D 

pancreas was reduced (i.e., 50% of that of controls) and also reported that these islets were 

smaller and enriched for glucagon-producing alpha cells. Importantly, insulin secretion was 

impaired not only in terms of maximal output but also in glucose threshold, which shifted 

from 7 to 12 mM glucose (Deng et al., 2004).

Two potential mechanisms are frequently invoked to account for the beta cell failure 

observed with T2D, namely, beta cell “exhaustion” due to prolonged elevated insulin 

production and the associated endoplasmic reticulum (ER) stress (Bilekova et al., 

2020; Kataoka and Noguchi, 2013) or a loss of beta cell mass through apoptosis 

following long-term exposure to high glucose/high lipid levels through a process termed 

“glucolipotoxicity.” The latter mechanism is proposed to involve the Tolllike receptor 

(TLR)-mediated sensing of palmitate in beta cells, followed by chemokine production 

and recruitment of macrophages to the islet (Eguchi and Nagai, 2017). Indeed, islet 

inflammation has increasingly been proposed as the key player in beta cell dysfunction 

in T2D (reviewed in Eguchi and Nagai, 2017). Experimental support for this model derives 

from rodent studies (Eguchi et al., 2012; Masters et al., 2010; Westwell-Roper et al., 2014) 

as well as analyses of human pancreatic samples (Ehses et al., 2007; Kamata et al., 2014; 

Richardson et al., 2009). For example, an increased frequency of islet-resident macrophages 

was observed in leptin-deficient mice that become diabetic as a consequence of extreme 

hyperphagia (Ehses et al., 2007). Importantly, there was a shift from a predominantly M1 to 

M2 macrophage phenotype in this animal model (Cucak et al., 2014). Similarly, an elevated 

abundance of macrophages was also observed in human islets obtained from donors with 

T2D, both with and without amyloid deposition (Ehses et al., 2007; Richardson et al., 

2009). The relevance of this observation to T2D pathogenesis in humans has been supported 

by clinical studies using interleukin-1 beta (IL-1β) receptor antagonists or neutralizing 

antibodies to IL-1β (Cavelti-Weder et al., 2012; Larsen et al., 2007). However, from these 

studies, it cannot be excluded that the observed improvements in glycemia and insulin 

secretion were the result of drug effects on peripheral tissues such as skeletal muscle, 

liver, or adipose tissue. Perhaps most importantly, these studies, although provocative and 

hypothesis generating in terms of their ability to address why T2D develops, were limited 

due to constraints in terms of complex data analysis and the technologies required to 

generate such information.

Indeed, determining the pathogenic events that occur in the T2D pancreas is critical not only 

for an improved understanding of the disorder’s pathogenesis but also for the development 

of novel therapeutic approaches. However, the histopathological analysis of the human 

pancreas has been severely hampered by the fact that the pancreas cannot be easily or safely 

biopsied (Atkinson, 2014; Mueller et al., 1988). Thus, the vast majority of investigations 

have focused on rodent models such as the aforementioned leptin-deficient mouse or 

animals fed with various high fat/high sucrose diets in order to induce obesity and/or insulin 

resistance. Although the rodent models have the advantage of accessibility and ease of 

genetic manipulation, it is likely that they do not capture all aspects of islet failure in human 

T2D. In response to this issue, high-quality human pancreata, obtained from deceased organ 
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donors, are increasingly being procured in limited numbers through organizations such as 

the Network for Pancreatic Organ donors with Diabetes (nPOD) (Campbell-Thompson et al., 

2012) and, more recently, the NIH-supported Human Pancreas Analysis Program (HPAP; 

(Kaestner et al., 2019). Additionally, important data are being collected from metabolically 

phenotyped pancreatectomized patients as living donors (Wigger et al., 2021).

With these recent increases in tissue availability, opportunities exist to obtain information 

regarding islet cell subtyping, architectural frameworks, immune cell composition, and 

the identification of cell-cell interactions, as well as other cellular phenotypes that might 

contribute to the pathogenesis of T2D. Recent advances in combinatorial immunolabeling 

and multiplexed protein detection in situ have allowed for proteomic information that is 

not simply additive, but rather offers crucial insights into the cellular states and complex 

biological functions executed by different cell types within the islet environment. Here, in 

order to obtain such a multiplexed view of all critical cell types and states in the T2D 

pancreas, we used imaging mass cytometry (IMC) technology, which we have previously 

used successfully to analyze the pathogenesis of type 1 diabetes (T1D) (Wang et al., 2019). 

IMC applies metal-conjugated antibodies to label tissue sections that are subsequently 

ablated by a UV laser spot by spot. The resulting particle plumes are then transferred 

to a mass spectrometer for signal detection and quantification (Giesen et al., 2014). The 

precise laser registration in the sample ablation step allows for signal detection at a 1-μm 

resolution. More importantly, the discrete time-of-flight measurement of isotope mass in 

the mass spectrometry instrument facilitates multiplexing. In the following study, we used 

a panel of 34 antibodies to analyze pancreata from both control and patients with T2D and 

document striking changes in islet composition, immune cell infiltration, and cell-to-cell 

contacts within the islet microenvironment.

RESULTS AND DISCUSSION

Study overview

We used IMC for the co-registered determination of relative protein levels for 34 antigens 

relevant to human pancreas biology, including markers of all endocrine cell types (C-peptide 

of insulin, glucagon, somatostatin, PP, and ghrelin), and those specific for pancreatic 

ductal and acinar cells (Pan-Keratin, CD44, PDX1, Carbonic anhydrase II, and pS6), 

endothelial and stromal cells (CD31 and Nestin), extracellular matrix (Collagen Type 1), key 

transcription factors (PDX1 and NKX6.1), immune cells of the myeloid, lymphoid lineages 

(CD45, CD20, CD3, CD4, CD8, CD45RO, CD68, CD14, CD11b, HLA-DR, CD56, CD57, 

and Granzyme B [GnzB]), and major histocompatibility complex (MHC) class I and II 

proteins (HLA-ABC and HLA-DR) (see Table S1). After validation of our staining protocol 

using HPAP tissue samples, we selected our experimental cohorts from the nPOD archive 

to include 13 non-diabetic (ND) and 16 T2D cases (Table S2). Importantly, the two cohorts 

did not differ by sex distribution, age, or BMI (Table S2). Because of regional differences 

in islet composition and, possibly, disease presentation, we analyzed sections from the head, 

body, and tail of the pancreas separately, wherever available (Figure 1A). Figures 1B and 

1C present three representative multi-color overlays each for a ND and a T2D pancreas 

obtained from the same IMC experiment. The selected images illustrate some of the major 
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observations we quantitate below, namely, the relative loss of beta and gain of alpha cells, 

the increase in type 1 collagen deposition, and changes in the immune cell compartment in 

the T2D pancreas.

Image data processing and cell type profiling

To allow for quantitative analyses, we performed image processing to produce a table of 

cells with expression levels for the 34 antigens plus the 2 DNA channels in each region 

of interest (ROI) imaged, while retaining the location information for each cell (see STAR 

Methods). We then performed cell type calling to annotate the identity of each single 

cell. As the first step of image processing, we performed pixel-level processing to remove 

machine-induced artifacts such as streaks of extreme intensities and single “hot pixels.” 

We then segmented each raw image into islets and individual cells, based on the strong pan­

endocrine CD99 staining and DNA plus membrane staining, respectively. The expression 

of each protein was summarized by the mean pixel intensity across the segmented cell 

mask, turning the segmented cell images into a cell-protein expression table. We then 

performed cell-level compensation to mitigate any low-level spillovers observed between 

a given heavy metal isotope detection channel, its neighboring channels, and the channels 

containing potential oxidation products. Finally, the cells were annotated through two rounds 

of clustering, with the first round separating cells into the three major cell types endocrine, 

immune, and “other,” while the second round assigned specific cell subtypes (see STAR 

Methods).

Overall cell type composition of the human pancreas

Through our IMC analysis of pancreatic tissue sections from 29 donors, we were able 

to assign cell types to 2,092,830 cells while retaining their positional information and 

relative protein expression levels. The heatmap in Figure 1D illustrates the results from 

cell type annotation. For example, cells with high levels of C-peptide, NKX6.1, PDX1, and 

CD99 were identified as beta cells, whereas cells expressing both Nestin and CD31 were 

defined as endothelial cells. For macrophages, CD8 T cells, and pancreatic ductal cells, we 

noted two subpopulations differing in their expression levels of HLA-DR, an MHC class II 

molecule (Figure 1D); we therefore considered them as two distinct cell states throughout 

the analyses.

Our approach of selecting ROIs based on the presence of at least one islet imparts a relative 

bias toward the endocrine compartment in our analysis, which reached approximately 10% 

of total cells analyzed (alpha, beta, delta, epsilon, and PP cells combined). Considering this 

information, we found that the overall composition of the pancreas was not dramatically 

different between the control and T2D groups, with 78.6% ± 8.7% of the ROIs comprised of 

exocrine (ductal and acinar) cells (Figures 1E and 1F). However, a subsequent, more detailed 

analysis of the alpha and beta cell density demonstrated that the frequency of beta cells 

was significantly decreased in the T2D pancreas (Figures 2A and 2C), with the strongest 

effect seen within the body of the organ (Figure 2A; p < 0.01), with the head and tail of 

the pancreas affected to a lesser extent (Figure 2A). The tissue density of alpha cells was 

reciprocally increased in the T2D pancreas, again with the strongest effect in the body of 

the organ (Figure 2B). Next, we analyzed the alpha-to-beta cell ratio, which we found to be 
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significantly increased in the diabetic state (Figure 2C). Endocrine cell proportions by donor 

and region are quantified in Figure S1.

Changes in the T2D pancreas have been reported to be related to the duration of the disease 

(Chen et al., 2017); therefore, we analyzed our data to assess this possibility. Indeed, we 

observed a significant positive correlation between alpha cell density and T2D duration in 

the entire organ as well as in the body of the pancreas, along with a significant reduction 

in beta cell density that was notably associated with disease duration in the pancreas body 

(Figure S2).

Although the replication rates of human endocrine cells in adulthood are exceedingly low, 

they are higher in alpha cells than in beta or delta cells throughout life (Wang et al., 2019). 

To assess whether altered proliferation rates contribute to the shift in alpha and beta cell 

densities in T2D, we assessed for Ki67 status. In the ND pancreas, we observed the expected 

linear decrease in replication rates between 14 and 65 years of age, with an approximate 

3-fold higher rate for alpha cells (Figure S3). In contrast, in the T2D tissues, proliferation 

rates of both alpha and beta cells were low even in younger individuals (Figure S3).

As noted earlier, we observed an increase in type I collagen deposition in the extracellular 

matrix of the T2D pancreas (Figures 1B and 1C). Therefore, we asked whether type 1 

collagen deposition, a classical sign of fibrosis, is related to beta cell abundance. Although 

there was no correlation between the two parameters in the ND pancreas (data not shown), 

collagen density was significantly anti-correlated with beta cell density in T2D individuals 

(Figure 2D), suggesting a link between the fibrotic process and remaining beta cell mass.

Macrophages expressing intra-islet HLA class II are increased in T2D

Next, we turned our attention to the immune cell compartment within the pancreas. 

CD68+ macrophages are present at the highest density within the exocrine pancreas 

and demonstrated an abundance of approximately 400 cells per mm2, which did not 

differ overall between the T2D and ND samples, except in the head region (Figure 2F). 

However, when probing the positional information retained by IMC to quantify intra-islet 

macrophages, we observed a highly significant, nearly 2-fold increase in their abundance in 

tissues from T2D individuals, which was present in all three regions of the organ analyzed 

(Figure 2F). As mentioned previously, macrophages in the human pancreas can be divided 

into HLA class II high and low cells based on levels of HLA-DR. Although the HLA-DRhigh 

cells constituted between 15% and 65% of the total macrophage population in the pancreas 

(depending on donor and area), their relative abundance was increased throughout the organ 

in the T2D pancreas, with the greatest increase of approximately 2.1-fold intra-islet (Figure 

2G).

CD8 T cells are increased in the T2D pancreas

Although the primary cause of T1D is autoimmunity, this is not the case for T2D. 

Nevertheless, islet inflammation has long been proposed to contribute to beta cell 

impairment in T2D (Ehses et al., 2007), but this proposal has sparse descriptions within 

the literature. Therefore, we analyzed the abundance and spatial distribution of CD8 T cells 

in the head, body, and tail of the pancreas in detail (Figure 3). We observed that the density 
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of CD8 T cells was increased in the exocrine pancreas of donors with T2D, with trends in 

all three regions of the organ, which were statistically significant in the body (Figure 3B). 

This increase in CD8 T cell abundance was confirmed using standard immunofluorescence 

staining (Figure S5). Notably, the fold-change difference in CD8 T cell abundance between 

control and T2D was highest when we considered the intra- and peri-islet regions of the 

tissue. We also detected a small subset of CD8 T cells that stained positive for HLA-DR. 

Expression of MHC class II molecules on CD8 T cells is commonly used as a marker of 

activation (Ndhlovu et al., 2015). Interestingly, we observed that HLA-DRhigh CD8 T cells 

were increased significantly in the T2D pancreas and elevated up to 2.9-fold in the intraislet 

region (Figure 3C).

Neighborhood analysis of IMC data

The retention of spatial information following segmentation and cell type identification 

in IMC enabled neighborhood analyses for the more than 2 million cells captured in our 

study. Figure 4A illustrates the accuracy of our cell type annotation pipeline. On the left 

of this figure, we show an overlay of an ROI with seven markers that are expressed in 

the major epithelial cells of the pancreas, and the image on the right displays the 14 

cell types identified after our cell type profiling. Having established the high degree of 

similarity between the actual image and post-segmentation rendering, we proceeded to 

perform HistoCAT neighborhood analysis to examine the frequencies of specific cell-cell 

interactions (Schapiro et al., 2017) as schematized in Figure 4B and Figure S4. Each cell 

type was considered as the “query cell,” and the frequency of every other cell type being 

in its neighborhood was recorded. Next, we compared the frequency with a null distribution 

and calculated an enrichment score representing the deviation from the null (see STAR 

Methods). Following this step, we compared the neighborhood enrichment between ND 

and T2D, as summarized in the heatmap in Figure 4C. Shown on the left are the labels of 

the query cells (row labels), and shown on the bottom are the labels of the neighborhood 

cell types. Plotted are the differences in specific cell-cell interactions. The shading of each 

square indicates whether this interaction is enriched in the pancreas from control or patients 

with T2D, and black boxes highlight those demonstrating statistical significance. Through 

this analysis, we determined that CD8 T cells and CD68+ macrophages are more likely to be 

in contact with islet beta cells, whereas macrophages are less likely to be near acinar cells in 

T2D.

In summary, we have demonstrated the power of IMC for the analysis of the 

histopathological changes in human T2D and, with these data, brought insights regarding 

the pancreas in T2D, which are efforts that provide important clues into the disorder’s 

pathogenesis. We have confirmed the relative loss of beta cells and increase in alpha 

cells in T2D, a facet of the disease phenotype that is dependent on disease duration. 

We discovered that the aging-dependent decline in islet endocrine cell proliferation is 

accelerated in individuals with T2D (Figure S3). These findings suggest that the relative 

increase in alpha cell number in T2D is not driven by higher proliferation rates, which leaves 

trans-differentiation from another cell type or de novo generation from adult endocrine 

progenitor cells yet to be defined as the remaining likely options. Finally, our efforts also 

noted a negative correlation between islet collagen area and beta cell density, providing 
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further evidence that fibrosis might play a contributing role in beta cell loss in T2D. An 

increased abundance of islet-resident macrophages was first reported by the Donath group in 

2007, with in vitro experiments suggesting that islets incubated with very high glucose and 

palmitate concentrations could secrete pro-inflammatory cytokines and chemokines, which 

could in turn stimulate monocyte/macrophage recruitment (Ehses et al., 2007). Here, we 

confirmed and extended these findings by demonstrating not only that intraislet macrophage 

density is increased in T2D but also that a subset of these expressed high levels of HLA-DR, 

the significance of which awaits further analysis. The presence of CD8 T cells in the T2D 

pancreas has also been reported previously, but with the conclusion that CD8 T cells are 

increased only in the exocrine pancreas but not in islets (Rodriguez-Calvo et al., 2014). In 

addition, when using fluorescence-activated cell sorting (FACS) analysis on isolated islets, 

Butcher and colleagues found no change in CD3 T cell abundance in T2D (Butcher et 

al., 2014), although it is possible that this approach missed leukocytes that migrated out 

of the islet during isolation. In contrast, we observed an increased density of CD8 T cells 

within islets, and this relative shift of CD8 T cells from the exocrine pancreas to the islet 

in T2D was confirmed by our neighborhood analysis (Figure 4B). Interestingly a subset of 

islet-resident CD8 T cells were positive for HLA-DR, a common marker of T cell activation 

(Ndhlovu et al., 2015), and the density of these islet-resident CD8+HLA-DR+ cells was also 

increased in T2D. These findings suggest that activated CD8 T cells could contribute to islet 

inflammation in human T2D.

Limitations of study

We note that there are several potential limitations to our study. Although we were able to 

analyze a sufficient number of cases to define statistically significant differences between 

ND and T2D pancreata in terms of islet composition, immune cell infiltration, and cellular 

neighborhoods, our efforts were unfortunately underpowered to analyze heterogeneity 

among the patients with T2D. Disease heterogeneity among the clinical presentation of 

patients with T2D is increasing recognized, with several classification systems recently 

proposed (Ahlqvist et al., 2020). Future studies should include organ donors typed for future 

consensus subclassifications of T2D to study this issue further.

Beyond this issue, there were additional limitations related to the IMC platform. Although 

this technology enables the simultaneous detection of several dozen antigens and is not 

plagued by issues of tissue auto-fluorescence often seen in immunofluorescence approaches, 

IMC can result in low sensitivity for some proteins because “exposure time” cannot be 

increased, as can be performed for fluorescence-based imaging platforms. In addition, 

subcellular location analysis is limited because each pixel has 1-mm squared dimensions. 

Finally, IMC destroys the tissue in the laser ablation process, and therefore, additional 

orthogonal experiments cannot be performed.

Wu et al. Page 8

Cell Rep. Author manuscript; available in PMC 2021 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



STAR⋆METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents 

should be directed to and will be fulfilled by the lead contact, Klaus Kaestner 

(kaestner@pennmedicine.upenn.edu).

Materials availability—Metal-conjugated antibodies generated in this study will be made 

available on request, but we may require a payment and/or a completed Materials Transfer 

Agreement if there is potential for commercial application.

Data and code availability—Raw image data have been deposited at nPOD website 

(https://www.jdrfnpod.org) and are publicly available as of the date of publication. All 

original code has been deposited at https://github.com/Kaestner-Lab/T2D_IMC and is 

publicly available as of the date of publication. The DOI is listed in the key resources 

table. Any additional information required to reanalyze the data reported in this paper is 

available from the lead contact upon request

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The pancreas tissue samples were obtained from the Network for Pancreatic Organ Donors 

with Diabetes (nPOD, https://www.jdrfnpod.org/) under IRB approval by the University of 

Florida. Donor clinical information was obtained from nPOD and T2D diagnosis followed 

ADA guidelines. Please refer to Table S2 in this section for information on donor age/ 

gender.

METHOD DETAILS

Antibody Panel and labeling—20 of 34 conjugated antibodies were purchased 

from FluidigmR (https://www.fluidigm.com). The other 14 unconjugated antibodies were 

obtained from different vendors (Table S1) and conjugated to lanthanide metals using the 

MaxPar X8 Multimetal Labeling Kit (Fluidigm) according to the manufacturer’s protocol. 

Antibodies were diluted with 0.5% BSA in PBS.

Tissue staining and image acquisition—Five to eight mm formalin-fixed paraffin­

embedded pancreas sections were stained with a cocktail of 34 antibodies (Table S1). 

Tissues were de-paraffined with xylene for 30 minutes and rehydrated in the sequential 

ethanol from 100% to 70% with changes every 5 minutes. After transfer to ddH2O for 5 

minutes, we performed epitope retrieval in a decloaking chamber with HIER buffer (10mM 

Tris, 1mM EDTA, pH9.2) for 30 minutes at 95C. Tissue sections were allowed to cool to 

room temperature in HIER buffer and then transferred to PBS for 20 minutes. After blocking 

in 3% BSA for 1 hour, the tissues were stained with the antibody cocktail at 4C overnight. 

The next day, the tissues were labeled by 1:400 dilution of Ir-intercalator solution (Fluidigm 

201192B) in PBS for 30 minutes to label nuclei. Slides were washed in PBS two times for 5 

minutes, dipped 2 minutes in ddH2O and airdried before IMC acquisition.
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Following Fluidigm’s operation instruction and daily tuning we acquired the IMC images 

at a laser frequency of 200 Hz using Fluidigm’s Hyperion instrument. 1,000 μm × 1,000 

μm regions around islets were selected based on analysis of adjacent H/E stained sections. 

Finally, we converted the mcd files to tiff images using Fluidigm’s MCD viewer.

Image processing—We captured a total of 260 images (regions of interest of 1,000 

μm × 1,000 μm) from our cohort of 16 T2D and 13 non-diabetic donors. Prior to 

signal quantification, streaks of pixels with extreme intensity were detected based on two 

background channels (Iridium 113 and Iridium 115) and were removed using an approach 

adopted from Wang et al. (2019). Specifically, a 5×5 grid was used to search for pixels with 

intensity among the 2% of the whole image and greater than 2× median intensity of the 

grid (the median was calculated excluding the center row). A list of pixels fulfilling this 

requirement in the first two background channels were tested again in the following protein 

channels and pixels with value greater than 5x the median intensity of the 5×5 grid, were 

replaced with the median intensity. Lastly, single “hot pixels” with intensity greater than 50 

(intensity units) of the maximum value in its 3×3 neighborhood were replaced with the local 

maximum, using a CellProfiler plugin (Zanotelli et al., 2020).

Cell segmentation—Cells masks were generated following a published pipeline 

(Zanotelli and Bodenmiller, 2017). First, CD99 was used to detect cell membranes of 

endocrine and exocrine cells. Due to the large difference in CD99 intensity between the 

two cell populations, the ‘Enhance Local Contrast (CLAHE)’ function in Fiji (Schindelin et 

al., 2012) was applied to CD99 channel (blocksize = 39, histogram = 256, maximum = 40, 

mask = ‘none’). Second, four channels were selected for cell segmentation: CD45, CD68, 

enhanced CD99, Iridium 193 (the Iridium DNA intercalator labels nuclei). Images were 

enlarged by 2-fold and converted to the h5 format. H5 files were then imported into Ilastik 

v1.3.3 (Berg et al., 2019) for pixel classification training. Specifically, a Random Forest 

model was trained using the 37 default features to classify pixels into one of three classes: 

nuclei, membrane, or background. Four images were labeled manually for training, then the 

classifier was applied onto the rest of images. The outputs of Ilastik were three probability 

maps, one for each class. The nuclei probability map was used to detect primary object 

(nuclei) in CellProfiler (Carpenter et al., 2006) with the minimum cross entropy method. 

Primary objects with an area of less than 5 pixels were filtered out. Secondary objects were 

identified using the Distance – B method. Specifically, primary objects recognized in the 

previous step were expanded with guidance of the cell membrane probability map, with 

maximum expansion constrained as 10 pixels. Resulting cell masks were resized by 0.5-fold 

to the original scale and cells with area less than 25 pixels were removed. Lastly, the cell 

masks were used to measure mean protein expression for each channel and each cell in the 

original IMC images post pre-processing steps. The x and y coordinate of all cells in the 

image were also recorded.

Spillover compensation—Signal crosstalk between channels were compensated using 

the functions from CATALYST R package (v.1.12.2) (Chevrier et al., 2018) based on the 

isotope purity matrix provided by Fluidigm.
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Islet segmentation and measurement—We employed a similar workflow for islet 

segmentation. Specifically, a separate model was trained to generate islet probability maps 

based on the CD99 channel. The probability maps were segmented into the islet masks 

using CellProfiler using a similar process as described for cell masks. Islets masks were 

expected to have a diameter greater than 10 μm and size greater than 50 μm2. We determined 

islet related measurements with CellProfiler as well. Peri-islet regions were identified as 30 

μm-wide region extending from the boundary of islet mask, while the rest of the images (not 

intra-islet or peri-islet) were labeled as exocrine. For islet collagen percentage, we expanded 

the islet mask by 50mm, segmented collagen positive regions, and quantified the percentage 

of expanded islet area positive for collagen signal.

Immunofluorescence (IF) staining—Twenty-three slides from the body of the pancreas 

were analyzed for CD99 and CD8 expression using immunofluorescent staining. Five 

to eight μm formalin-fixed and paraffin embedded (FFPE) pancreas tissue sections were 

deparaffinized in xylene and rehydrated through a series of ethanol washes, followed by 

antigen retrieval for 30 minutes in Tris/EDTA buffer (pH 9.0). Sections were blocked 

using 10% FBS/1X PBS, and primary antibodies were diluted in 10% FBS/1X PBS and 

applied overnight at 4C. The next day, sections were washed in PBS and incubated with the 

appropriate secondary antibodies diluted in 10% FBS/1X PBS for 2-h at RT. Primary and 

secondary antisera information is provided in Tables S1 and S2, respectively. Hoechst 33342 

(Thermo #H3570) was used to counterstain nuclei. Staining was scanned using a Keyence 

BZ-X800 fluorescence microscope. Fluorescence staining of CD8 and DAPI were used to 

segment CD8 T cells, and CD99 was used to identify islets. Two regions of interests were 

captured from each slide, resulting in a total of 46 images.

CD8 T cell and islet segmentation for immunofluorescence images—Ilastik 

v1.3.3 (Berg et al., 2019) was used to identify CD8 T cells. Specifically, a 500-pixel × 

500-pixel region was cropped randomly from each image and nuclei surrounded by CD8 

expression were labeled as CD8 T cell signal. After labeling, a probability map for every 

pixel was generated and pixels with greater than 0.5 for CD8 T cell signal were connected, 

resulted in segmented CD8 T cells. Cells with less than 5 pixels in area were filtered out. 

Islet masks were generated using a similar approach as the CD8 T cells, except 20 full-size 

images were used for training. Segmented islet masks generated by Ilastik were then filtered 

using CellProfiler to remove islets with a size less than 50 μm2 and a radius less than 5 

μm. The FillObject module was also used in CellProfiler to fill holes in segmented islet 

mask. Annotation of peri-islet and exocrine region were performed similarly as described in 

“Islet segmentation and measurement.” The resolution of IF is different from that of IMC. 

Thus, each pixel in our IF images had a size of 0.77 μm × 0.77 μm, therefore, the distance 

measurements were scaled accordingly.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data transformation and normalization—We normalized mean pixel intensity of each 

target channel for each cell as described below before downstream quantitative analyses. 

First, we transformed the raw mean pixel intensity data by log2 (mean intensity+1). For most 

antibody targets, the most common cell signal value corresponds to cells that do not express 
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the target. Thus, for each image, we identify the most frequent signal value mode, S0, using 

the highest peak in a smoothed estimate of the distribution of the log transformed signal 

values (S) for each channel (R function density [S, n = 2^16]). Subsequently, we calculated 

the normalized value Sn = S − S0 and set Sn < 0 to 0. Lastly, Sn is pooled across all images 

and clipped to the 99.99th percentile value for each channel to remove any outliers.

Clustering and meta clustering—We performed clustering following the FlowSOM 

workflow (Van Gassen et al., 2015). Cells with normalized protein mean expression were 

clustered in two steps. First, we grouped all cells into 225 clusters using a self-organizing 

map. Markers used for clustering in this stage were selected based on a high signal-to-noise 

ratio and their information content for cell type calling as follows: C-peptide, Glucagon, 

Somatostatin, PP, PDX.1, NKX6.1, Ghrelin, CD99, Carbonic Anhydrase 2, NF-κb, CD44, 

Nestin, CD31, CD56, CD57, HLA.DR, β-Actin, HLA.ABC, phospho-S6(pS6), Foxp3, 

p16, CD8, CD3, CD45RO, CD4, CD45, Granzyme B, CD68, CD14, CD20. Next, we 

combined the 225 groups into 40 clusters using the ‘MetaClustering_consensus’ function 

in the FlowSOM package. Next, the 40 clusters were grouped manually into 3 major cell 

types: ‘endocrine’, ‘immune’, and ‘other’ based on the mean and distribution of the marker 

proteins. In the second step, each cell type was reclustered using the same workflow as in 

the first step. Cell were divided into 225 groups with a self-organizing map and recombined 

into 50 clusters. Markers used were the same with the first stage except that we excluded 

CD99 for endocrine clusters. The resulting 150 clusters, 50 for each major cell type were 

annotated based on the distribution and mean of protein expression. For ambiguous clusters, 

images were inspected to determine the most appropriate cell type on the basis of cell 

location and morphology.

Neighborhood analysis—We adopted the HistoCAT neighborhood analysis to examine 

cell-cell interaction difference between conditions (Schapiro et al., 2017). We used the 

R implementation available on Github, “BodenmillerGroup/neighbouRhood.” Cells were 

considered as neighbors if their centers were less than 20 pixels apart. For each ROI, we 

calculated an interaction score between two cell types, with one cell type (A) being the 

query cell and the other cell type (B) being the neighboring cell. Specifically, IAB is the 

average number of cell type B (neighboring cell) in the neighborhood of cell type A (center 

cell). Then, a permutation was employed by shuffling cell labels and thus resulted in a null 

distribution, assuming that all cells interacted randomly. We used 100 rounds of permutation 

and calculated a mean for each type of interaction. We then calculated an enrichment score, 

the difference between observed interaction and expected interaction under the null model. 

Lastly, we used permutation tests with 5,000 iterations to compare the enrichment score 

between T2D and ND, and Benjamini-Hochberg adjustment for multiple testing was applied 

to the resulting p values. An interaction was accepted as significantly enriched in one 

condition if the adjusted p value < 0.05. In all the images, the boundary cells were excluded 

from the neighborhood calculation because they do not represent a true neighborhood due to 

image cutoff.

Statistical methods—For Figures 2A–2C, 2F, 2G, 3B, 3C, and S5, Mann-Whitney test 

with p % 0.05 was used for statistical testing. For data associated with Figures 2D, S2A, 
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S2B, S3A, and S3B, statistical analyses were performed with linear regression t test. For 

Figure 4B, Benjamini-Hochberg adjustment for multiple testing was applied. For Table S2, 

the chi-square test was used to compare the sex distribution, the unpaired t test was used 

to compare the age and BMI. P value < 0.05 is statistically significant. P values were 

represented as follows: *p < 0.05; **, p < 0.01; ***, p < 0.001, **** p < 0.0001.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Imaging mass cytometry profiles of the T2D pancreas with 34 antibodies

• There of is a relative loss beta and gain of alpha cells in the T2D pancreas

• Advanced neighborhood analysis finds increased macrophage/beta cell 

contacts in T2D

• Activated HLA-DR-positive CD8 T cells are enriched in the T2D islet
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Figure 1. Overview of the imaging mass cytometry study of the human pancreas
(A) Imaging mass cytometry workflow.

(B and C) Representative multiple-channel image overlays of non-diabetic (ND) (B) and 

type 2 diabetic (T2D) (C) pancreas. From left to right, displayed channels are as follows: 

on the left image, C-peptide (green), glucagon (red), somatostatin (blue), PP (white), and 

Ghrelin (cyan); in the middle image, collagen (green), CD31 (red) and CD99 (blue); on the 

right image, CD68 (green), CD3 (red), and CD99 (blue).
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(D) Heatmap of mean expression values of each protein in each cell type. Input data are 

mean level of each protein in each cell type. Color indicates Z- score. The x-axis labels are 

the proteins, and the yaxis label are the cell types.

(E and F) The proportion of each cell type in ND (E) and T2D (F).

See also Tables S1 and S2 and Figure S1.
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Figure 2. Altered alpha and beta cell as well as macrophage distribution in the T2D pancreas
(A) Boxplots showing the density of beta cells in the human pancreas, either for the whole 

organ or separately for the head, body, or tail. Each dot represents the mean density of 

each donor. The black line inside of the boxplot indicates the median density, and the 

whisker shows ±1.53 interquartile range. ND, n = 13; T2D, n = 16. *p < 0.05, **p < 0.01. 

Mann-Whitney U test.

(B) Boxplots showing the density of alpha cells in the human pancreas, analogous to (A) *p 

< 0.05, **p < 0.01. Mann-Whitney U test.
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(C) Boxplots of the alpha cell/beta cell ratio in the ND and T2D pancreas, either for the 

whole organ or separately for the head, body, or tail. Each dot represents the mean ratio of 

each donor. The black line inside of the boxplot indicates the median ratio, and the whisker 

shows ±1.53 interquartile range. ND, n = 13; T2D, n = 16. **p < 0.05, **p < 0.01, ***p < 

0.001. Mann-Whitney U test.

(D) Beta cell density is inversely proportional to type 1 collagen deposition in the T2D 

pancreas (n = 16). Islet collagen is measured by the percentage of expanded islet area 

(islet region + within 50 mm from islet boundary) with positive collagen signal. Statistical 

significance was tested by linear regression t test. Each dot demonstrates one donor.

(E) Representative image of CD68+ macrophages with or without HLA-DR expression in 

the pancreas from ND (above) and T2D (below) organ donor. Islets outlined by CD99 (blue).

(F) Boxplots showing the total macrophage density intra-islet, peri-islet, or in the exocrine 

pancreas. Data are presented for the whole pancreas and separately for head, body, and tail 

of the organ. Each dot represents the mean density of each donor. The black line inside of 

the boxplot indicates the median density, and the whisker shows ±1.53× interquartile range. 

ND, n = 13; T2D, n = 16. *p < 0.05, **p < 0.01. Mann-Whitney U test.

(G) Boxplots showing HLA-DRhigh macrophage density intra-islet, peri-islet, or in the 

exocrine pancreas. Data are presented for the whole pancreas and separately for head, body, 

and tail of the organ. Each dot represents the mean density of each donor. The black line 

inside of the boxplot indicates the median density, and the whisker shows ±1.53 interquartile 

range. ND, n = 13; T2D, n = 16. **p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 

Mann-Whitney U test.

Figures S2 and S3.
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Figure 3. Intra-islet CD8 T and CD8/HLA-DRhigh T cell density are increased in T2D
(A) CD8 T cell and HLA class II expression in the pancreas of ND (left) and T2D 

(right) organ donors. CD68 (green), HLA-DR (red), collagen (blue), and CD99 (white). 

The zoomed-in image is 1.5-fold of the original image.

(B) Boxplots showing total CD8 T cell density intra-islet, peri-islet, or in the exocrine 

pancreas. Data are presented for the whole pancreas and separately for head,body, and tail of 

the organ. Each dot represents the mean density of each donor. The black line inside of the 
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boxplot indicates the median density, and the whisker shows ±1.5× interquartile range. ND, 

n = 13; T2D, n = 16. *p < 0.05. Mann-Whitney U test.

(C) Boxplots showing CD8/HLA-DRhigh CD8 T cell density intra-islet, peri-islet, or in 

the exocrine pancreas. Data are presented for the whole pancreas and separately for head, 

body, and tail of the organ. Each dot represents the mean density of each donor. The black 

line inside of the boxplot indicates the median density, and the whisker shows ± 1.5× 

interquartile range. ND, n = 13; T2D, n = 16. *p < 0.05, **p < 0.01. Mann-Whitney U test.

See also Figure S5.
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Figure 4. Neighborhood analysis
(A) Cell type annotation of the 14 major cell types determined after image segmentation 

was projected back to assemble the tissue map shown on the right. Note the close match to 

the original IMC image shown on the left, confirming the cell type annotation pipeline. The 

zoomed-in image is 2-fold of the original image.

(B) Principle of neighborhood analysis. For any cell “A,” termed query cell, the cell types 

of the adjacent cells (neighboring cells, “B”) were counted and summarized as a frequency 

matrix. Enrichment scores were calculated by comparing the observed frequency to the 
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expected frequency obtained from randomizing cell labels for 100 rounds. Enrichment 

scores were then compared for statistical significance between control (n = 13) and T2D (n = 

16) by permutation test.

(C) Heatmap displaying cell-cell interaction frequencies between control and donors with 

T2D. Statically significant results with Benjamini-Hochberg adjusted a p value of <0.05, and 

differences in enrichment scores of >0.1 are outlined by black boxes. Teal color indicates 

interactions that are more frequent in ND, and red indicates those that are more abundant in 

the patients with T2D. The red box highlights the finding that the presence of CD8 T cells 

near beta cells is more likely in the T2D pancreas, whereas the blue box emphasizes the 

point that macrophage/beta cell interactions are more likely in T2D than in the ND pancreas.

See also Figure S4.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

141Pr-HLA-ABC (Clone EMR8–5) BD Biosciences Cat#565292

142Nd-CD57 (Clone HCD57) Fluidigm Cat#3142007B

143Nd-CD31 (Clone C31.3+C31.7+C31.10) LifeSpan BioSciences Cat#LS-C390863–100

144Nd-CD14 (Clone EPR3653) Fluidigm Cat#3144025D

145Nd-C-peptide (Clone 3A1) Thermo Cat#MA1–22710; RRID: AB_558517

146Nd-Nestin (Clone 196908) Fluidigm Cat#3146015B

147Sm-Glucagon (Clone C-11) Santa Cruz Cat#sc-514592; RRID: AB_2629431

148Nd-Pan-Keratin (Clone C11) Fluidigm Cat#3148020D

149Sm-CD11b (Clone EPR1344) Fluidigm Cat#3149028D

150Nd-CD44 (Clone IM7) Fluidigm Cat#3150018B

151Eu-PDX1 R&D systems Cat#AF2419; RRID: AB_355257

152Sm-CD45 (Clone 2B11) Fluidigm Cat#3152016D

153Eu-CD56 Proteintech Cat#14255–1-AP; RRID: AB_2149421

154Sm-Beta-actin (Clone 2F1–1) Fluidigm Cat#3154021D

155Gd-FoxP3 (Clone 236A/E7) Fluidigm Cat#3155016D

156Gd-CD4 (Clone EPR6855) Fluidigm Cat#3156033D

158Gd-NKX6.1 Sigma Cat#HPA036774; RRID: 
AB_10673664

159Tb-CD68 (Clone KP1) Fluidigm Cat#3159035D

160Gd-Somatostatin (G-10) Santa Cruz Cat#sc-13099; RRID: AB_2195930

161Dy-CD20 (Clone H1) Fluidigm Cat#3161029D

162Dy-CD8 (Clone C8/144B) Fluidigm Cat#3162034D

164Dy-CD99 R&D systems Cat#AF3968; RRID: AB_2076301

165Ho-CA2 Rockland Cat#200–401-136S; RRID: 
AB_2612117

166Er-NF-κB (Clone K10895.12.50) Fluidigm Cat#3166006A

167Er-Granzyme B (Clone EPR20129–217) Fluidigm Cat#3167021D

168Er-Ki67 (Clone B56) Fluidigm Cat#3168022D

169Tm-Collagen Type 1 Fluidigm Cat#3169023D

170Er-CD3 Fluidigm Cat#3170019D

171Yb-p16 (Clone 2D9A12) Abcam Cat#ab54210

172Yb-pS6 (Clone N7–548) Fluidigm Cat#3172008A

173Yb-CD45RO (UCHL1) Fluidigm Cat#3173016D

174Yb-HLA-DR (Clone TAL 1B5) Abcam Cat#ab20181; RRID: AB_445401

175Lu-Pancreatic Polypeptide Abcam Cat#ab77192; RRID: AB_1524152

176Yb-Ghrelin Santa Cruz Cat#sc-10368; RRID: AB_2232479

Biological samples

organ donor pancreas tissue blocks The Human Pancreas Analysis 
Program, https://hpap.pmacs.upenn.edu/

RRID:SCR_016202
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REAGENT or RESOURCE SOURCE IDENTIFIER

organ donor pancreas tissue blocks nPOD; https://www.jdrfnpod.org/ RRID:SCR_014641

Software and algorithms

MCD Viewer 1.0.560.6 Fluidigm https://www.fluidigm.com/software

R version 4.0.2 (2020–02–29) http://www.R-project.org/

Fiji Schindelin et al., 2012 https://imagej.net/software/fiji

Ilastik 1.3.3 Berg et al., 2019 https://www.ilastik.org

Cellprofiler 3.1.9 Carpenter et al., 2006 https://cellprofiler.org

Custom CellProfiler plugins Zanotelli et al., 2020 https://github.com/BodenmillerGroup/
ImcPluginsCP

EBImage 4.30.0 Pau et al., 2010 https://github.com/aoles/EBImage

CATALYST 1.12.2 Chevrier et al., 2018 https://github.com/HelenaLC/
CATALYST

FlowSOM Van Gassen et al., 2015 https://github.com/SofieVG/FlowSOM

neighborhood Version 0.3.0 Schapiro et al., 2017 https://github.com/BodenmillerGroup/
neighbouRhood

Other

Image data This paper N/A

Analyses released on https://github.com/Kaestner-Lab/
T2D_IMC

This paper https://doi.org/10.5281/
zenodo.5557120
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