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ABSTRACT

Genetic ancestry is a critical co-factor to study phenotype-genotype associations using cohorts of human subjects.

Most publicly available molecular datasets are, however, missing this information or only share self-reported race

and ethnicity, representing a limitation to identify and repurpose datasets to investigate the contribution of ances-

try to diseases and traits. We propose an analytical framework to enrich the metadata from publicly available

cohorts with genetic ancestry information and a resulting diversity score at continental resolution, calculated directly

from the data. We illustrate this framework using The Cancer Genome Atlas datasets searched through the

DataMed Data Discovery Index. Data repositories and contributors can use this framework to provide genetic diver-

sity measurements for controlled access datasets, minimizing the work involved in requesting a dataset that may

ultimately prove inadequate for a researcher’s purpose. With the increasing global scale of human genetics research,

studies on disease risk and susceptibility would benefit greatly from the adequate estimation and sharing of genetic

diversity in publicly available datasets following a framework such as the one presented.
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INTRODUCTION

To facilitate the identification and reuse of publicly available biomedi-

cal datasets, we have developed the DataMed (https://datamed.org), a

search engine for indexed biomedical datasets.1 A large number of the

datasets indexed and retrievable in DataMed are derived from human

specimens (blood, cell lines, or tissues) and contain broad genetic in-

formation (genotypes, exome, genome or transcript sequences). Using

established analysis frameworks, one can extract from the raw data

useful metadata that is not necessarily collected or known from the

investigators. These can include human leukocyte antigen haplotypes,

telomere length, genetic admixture, tumor viral load or purity, or cell-

line identity. We present here the framework to efficiently measure ge-

netic diversity and global ancestry of DataMed-indexed cohorts and

summarize and index the results through a diversity score (DS).

The role of race and ethnicity in disease etiology has been widely

debated,2 but there are clear missed opportunities that continue to get

ignored in the era of precision medicine.3,4 When accounting for race

and ethnicity, studies generally rely on self-reporting. Self-reporting

lacks accuracy to distinguish East Asian from South Asian,5 or when

subjects have strong levels of genetic admixture (ie, they are related to

2 or more reference populations).6,7 The 1000 Genomes Project has

identified variants in 26 reference populations that can be grouped

into 5 continental superpopulations (European [EUR], African [AFR],

East Asian [EAS], South Asian [SAS], and Admixed American

[AMR]).8 From this reference dataset, one can estimate the level of ad-

mixture of any given individual using genotypes genome-wide, or

preselected ancestry-informative markers.9,10 Admixture can then be

used as a covariate in genetic studies, to account for population struc-

ture,11 or to identify signals specific to certain reference populations.12
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The availability of a uniform, genetically-based ancestry estima-

tion for all eligible human datasets indexed in DataMed would in-

crease their usability, allowing the selection of diverse cohorts,

preparing population specific meta-analyses, or simply monitoring

diversity to identify understudied ancestry groups or, in contrast,

highlight original cohorts of genetically diverse subjects. The DS can

facilitate the identification and assembly of ancestry specific cohorts,

and enable the monitoring of diversity in biomedical research data-

sets. Here, we present an analytical framework that uses continental

admixture level estimates to calculate a cohort-wide genetic DS, ap-

ply it to 33 cohorts from the Cancer Genome Atlas (TCGA) dataset

and benchmark its accuracy across diverse sources of genotypes

such as genotyping arrays, exome, or transcriptome sequences.

MATERIALS AND METHODS

Data
We selected the TCGA13 cohort to implement the DS into DataMed.

Indeed this cohort is large (N¼10 878), one of the most accessed

cohorts in the database of Genotypes and Phenotypes (dbGAP) and

contains self-reported race and ethnicity. In addition, the cohort can

be split into 33 subcohorts corresponding to each cancer type, provid-

ing an opportunity to contrast the various collections. Finally, the vast

majority of samples have multiple data types (genotypes, exomes, and

transcriptomes) on which we can compare admixture estimation.

A total of 10 878 TCGA subjects (individuals) have been geno-

typed at �106 single nucleotide polymorphisms (SNPs). We called

admixture from the 5 continental reference populations: EUR, AFR,

EAS, SAS, and AMR. The data aggregated by cancer type can be

used to query DataMed (Genomic Data Commons repository only)

and is available online.14

Data access and preprocessing
The data specified below were retrieved through the National Can-

cer Institute Genomic Data Commons using the gdc-client

application programming interface. We obtained the genotyping ar-

ray data (germline blood DNA) in the birdseed format (the result of

genotype calling by birdSuite),15 which were converted to the

PLINK16 format (MAP and PED text files). To ensure the proper

alleles were reported during the conversion, we established a rela-

tional database to decode the numeric genotype into alleles using in-

formation from the Affymetrix SNP Array 6.0 probe design and the

corresponding dbSNP (v150) rsid. The RNA sequencing (RNA-Seq)

reads (BAM files) from the patient tumors were used to call variants

using the following steps: (1) duplicate reads removal (PICARD

MarkDuplicates), (2) splitting of intron-spanning reads (GATK v3.8),

and (3) variant calling (GATK v3.8 HaplotypeCaller). We called var-

iants from the whole exome sequence (BAM files) from the blood us-

ing FreeBayes (v1.1.0).17 For both RNA-Seq and exome sequencing

analysis, we restricted the variant calling to known SNP (dbSNP

v150) located in the exons and coding sequence (CDS) regions of Gen-

code-v25,18 respectively. The variants were filtered (DP>10 and

GQ>15), and then converted to PLINK format using vcftools. The

analysis workflow is summarized in Supplementary Figure S1.

Admixture analysis
For each individual, the admixture fraction for the reference popula-

tion was estimated using the iAdmix tool.10 In contrast to other su-

pervised admixture estimation tools,9 which use individual

genotypes for the reference populations, iAdmix uses allele frequen-

cies to calculate, for each tested individual, the maximum likelihood

estimates from each reference population. Relying directly on

genome-wide allelic frequencies as reference dataset prevents the

need for genotype imputation, increases the speed of the analysis

and allows more flexibility by directly inferred from sequencing

reads. The input data were individual genotypes (MAP and PED flat

files in PLINK format), and the allele frequencies from the 1000

Genomes Project reference populations.8 The 1000 Genomes Project

reference VCF file was based on the GRCh37 human genome build

and contained allelic fractions calculated from 2504 individuals di-

vided into 5 superpopulations: EUR, AFR, EAS, SAS, and AMR. To

accommodate genotypes from different versions of the human ge-

nome reference, the SNP coordinates were converted to GRCh38 us-

ing liftOver (https://genome-store.ucsc.edu/). Notably, the reference

SNPs from the 1000 Genomes Project reference population were not

pruned for linkage disequilibrium to allow the use of the same refer-

ence across multiple assays with variable coverage breadth (genotyp-

ing arrays, exome, RNA-Seq). The output of iAdmix was a list of 5

admixture fractions, each with values ranging between 0 and 1, add-

ing up to 1. These estimates correspond to maximum likelihood esti-

mations through Broyden-Fletcher-Goldfarb and Shanno, a widely

used, quasi-Newton optimization method.

Cumulative admixture fraction
The cumulative admixture fraction (CAF) was calculated as the overall

fraction of admixture from the 5 reference populations after summing

up individual admixture fractions across a given set of individuals:

Ci ¼
PN

j¼1 Aði; jÞ
P5

k¼1

PN
j¼1 Aðk; jÞ

where A(i, j) is the proportion of admixture from the reference pop-

ulation i for individual j and N the number of individuals in the co-

hort. Hence, the CAF reflects, at the cohort level, the fraction of

total DNA from each reference population, rather than the fraction

of individuals from a given dominant ancestry.

Diversity score
To calculate the DS of each cancer-specific cohort, we calculated the

cumulative fraction of each reference population across all individu-

als in the cohort. We then computed the normalized entropy from

the resulting 5-dimensional vector using R package entropy,19 as the

empirical entropy divided by the maximal entropy for 5 dimensions.

DS ¼
�
P5

i¼1

Ci: lnðCiÞ

�Hmax

where Ci is CAF for reference population i and

Hmax¼5*(0.2.ln(0.2))¼�1.609438.

Data and code availability
The benchmarking study comparing admixture determination using

genotyping vs exome vs transcriptome was conducted on 100 sub-

jects specifically selected to have a sample that maximized diversity

in self-reported race and ethnicity (Supplementary Table S1). The

computational methods used to calculate admixture and DS can be

found online.20 The cumulative admixture fraction and DS of each

TCGA cancer type is available on figshare.14 The iAdmix tool is

published10 and has been wrapped in a docker container, together

with scripts to derive cohort-wide values.20
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RESULTS

The dominant ancestry—representing more than 80% of admixture

from one reference population—of each TCGA subject matched

well the self-reported race and ethnicity: 76% White non-Hispanic

were EUR dominant, 82% of Black were AFR dominant, and 89%

of Asian were either SAS or EAS dominant. Similarly, 53% of sub-

jects reported as Hispanic or Latino had at least 20% of AMR an-

cestry. We then determined the CAF for each cancer-specific cohort

(Materials and Methods). While all cancer cohorts are predomi-

nantly EUR (Figure 1A) (46%-93%), the fraction of non-EUR var-

ied: kidney renal cell carcinoma was the cohort with the highest

AFR CAF (21%), while liver hepatocellular carcinoma had the high-

est EAS CAF (41%). While these differences may reflect the epide-

miology of the disease, it is important to note that the TCGA cohort

had significant ascertainment bias, including enrollment sites,

tumors sizes, purity, and availability requirements. Finally, to sum-

marize the overall diversity of each cohort, we used the CAF to com-

pute a normalized DS: 0 for 1 reference population only, 1 for an

even fraction of all 5 reference populations. Importantly, a maxi-

mum DS of 1 would reflect a perfectly diverse cohort in which all 5

continental ancestry contribute equally to its genetic background.

The TCGA cohorts were ranked by decreasing diversity, revealing

that the hepatocellular carcinoma dataset was the most diverse

(DS¼0.7) and uveal melanoma the least diverse (DS¼0.22,

Figure 1A). Both the DS and the minimal admixture estimate of a

given reference population for each cohort are publicly available14

and can be used to query the DataMed index (Genomic Data Com-

mon repository only).

A subset of the subjects (n¼100) (Supplementary Table S1) rep-

resenting diverse self-reported ancestry were further selected to eval-

uate the reproducibility of the approach using alternate sources of

genotypes such as exome (germline DNA) or transcriptome (tumor

RNA) sequencing. After variant calling and filtering (Materials and

Methods), we identified a median of 21 327 and 838 usable variants

in the exome and transcriptome of each subject, respectively. The

populations corresponding to the maximum admixture level were

consistent across for all 3 methods for 82 of 100 subjects

(Figure 1B). The subjects with inconsistent results had higher admix-

ture levels based on the genotyping array results (maximum admix-

ture 0.89 6 0.16 vs 0.72 6 0.22). As a result, the CAF estimated

from the exome or transcriptome variants were consistent with

those of genotyping array (r¼0.97 for both) (Figure 1C) and all 3

DSs were similar: 0.93, 0.92, and 0.90 for genotyping, exome, and

transcriptome, respectively.

DISCUSSION

A number of studies suggest important differences between genetic

ancestry results and self-reported race and ethnicity.21–23 Such stud-

ies require investigators to determine admixture at the individual

level, perhaps at ethnic or subcontinental resolution and to date, it is

not possible to get such an accurate estimate before looking inside

the dataset (ie, looking at the individual-level data) and calling ge-

netic ancestry. The proposed DS is a low-resolution, cohort-wide

summary of genetic ancestry according to the 5 super-populations.

While DS may not be readily usable in an analysis, it represents a

Figure 1. Cumulative admixture in The Cancer Genome Atlas. (A) Cumulative admixture fraction of 33 cancer-specific cohorts, inferred from the 5 reference

superpopulations. The cohorts are ranked by decreasing diversity score (white label). The number of samples in each cohort is indicated in parentheses. (B) Heat-

map of the level of admixture estimated in 100 patients (rows) for 5 reference populations using genotypes derived from 3 sources (columns, genotyping array,

transcriptome [RNA] or exome [WXS]). For each sample, concordance of the reference population with maximal admixture level is indicated using array derived

admixture levels as reference. Self-reported race and ethnicity are indicated for each row. (C) Cumulative admixture fraction of a selected set of 100 diverse Can-

cer Genome Atlas subjects using genotypes from genotyping array, transcriptome (RNA), or exome (WXS). ACC: adrenocortical carcinoma; AFR: African; AMR:

Admixed American; BLCA: bladder urothelial carcinoma; LGG: brain lower grade glioma; BRCA: breast invasive carcinoma; CESC: cervical squamous cell carci-

noma and endocervical adenocarcinoma; CHOL: cholangiocarcinoma; COAD: colon adenocarcinoma; DLBC: lymphoid neoplasm diffuse large B-cell lymphoma;

EAS: East Asian; ESCA: esophageal carcinoma; EUR: European; GBM: glioblastoma multiforme; HNSC: head and neck squamous cell carcinoma; KICH: kidney

chromophobe; KIRC: kidney renal clear cell carcinoma; KIRP: kidney renal papillary cell carcinoma; LAML: acute myeloid leukemia; LIHC: liver hepatocellular car-

cinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; MESO: mesothelioma; OV: ovarian serous cystadenocarcinoma; PAAD: pancreatic

adenocarcinoma; PCPG: pheochromocytoma and paraganglioma; PRAD: prostate adenocarcinoma; READ: rectum adenocarcinoma; SARC: sarcoma; SAS: South

Asian; SKCM: skin cutaneous melanoma; STAD: stomach adenocarcinoma; TGCT: testicular germ cell tumors; THYM: thymoma; THCA: thyroid carcinoma;

UCEC: uterine corpus endometrial carcinoma; UCS: uterine carcinosarcoma; UVM: uveal melanoma.
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convenient and efficient metric to query and filter the growing num-

ber of biomedical datasets on the basis of their genetic diversity. Al-

ternatively, more usable metrics could be derived from the

distribution of continental admixture for each individuals such as

the one presented in Figure 1B. Such information is however difficult

to summarize, requiring an arbitrary threshold to establish the dom-

inant ancestry or introducing an ambiguous “admixed” category

not reflecting the ancestral populations. As such, the DS is a faithful

summary of a cohort diversity, which can be used to efficiently sort

and query a large number of biomedical datasets.

The choice of the reference populations can influence the accu-

racy of the admixture estimate and strategies exist to identify the op-

timal ancestral populations to use for a given cohort.24 The 5

superpopulations selected here are part of the 1000 Genomes

Project, which guarantees their availability as a universal reference.

Due to the history of human evolution and migration, it is theoreti-

cally impossible to identify a true reference population and the 5

superpopulations selected are expected to provide a reasonable ap-

proximation of continental ancestry that can be used to compare

continental admixture between cohorts. However, it is important to

acknowledge that they represent themselves different ancestries and

admixtures levels (Spanish and Finnish in EUR, Puerto Rican and

Peruvian in AMR).

To calculate the DS, the raw data access request had to be ap-

proved for ancestry analysis, a step that may not be permitted for

certain cohorts or that is not necessarily scalable. However, the DS

does not have to be generated by the DataMed curators, but could

instead be computed by the data owners and shared as an additional

piece of metadata that could be used downstream for cohort selec-

tion.

The admixture and DS generated are well applicable on a variety

of broad molecular datasets. We demonstrated their validity from

exome and transcriptome. To date, 176 � 103 and 201 � 103 hu-

man transcriptome (RNA-Seq) and exome datasets, respectively, are

hosted by the National Center for Biotechnology Information Se-

quence Read Archive. Among those, 82% of transcriptomes and

12% of exomes are available without restriction, and likely none of

them have associated genetic ancestry information. Beyond tran-

scriptome or exomes, ancestry can also be called from chromatin im-

munoprecipitation sequencing datasets from human samples—

more than 31 � 103 currently available in the National Center for

Biotechnology Information Sequence Read Archive. A typical chro-

matin immunoprecipitation sequencing dataset may cover 106 bp

from the human genome, harboring 1000 SNPs, the majority of

which have been genotyped in the 1000 Genomes Project reference

populations, representing a sufficient number to determine genetic

admixture.

The same way the Gene Expression Omnibus has the ability to

search and rank datasets based on differential expression of a spe-

cific gene, one can hope that future, innovative data sharing strate-

gies will include as many of such data-derived features, like genetic

admixture, generated in an automated, standardized way at the time

of the deposition. The relative simplicity of calling admixture on

molecular datasets may encourage more careful analytical design.

While we know that germline variants may play a role in disease eti-

ology or phenotypic differences, they are rarely considered in

preclinical or clinical studies. Using admixture from known conti-

nental ancestry as a first-order surrogate for germline genetic differ-

ences, one could account for this important covariate and relate it to

a population trait. In the past, preclinical studies based on a small

number of cell lines or samples could not reasonably account for

inherited genetic variation. Nowadays, preclinical studies are be-

coming larger and more systematic, such as the Cancer Cell Line En-

cyclopedia25 (N¼750 cell lines), but to our knowledge they still do

not account for genetic ancestry. More recently, genetically diverse

sets of lymphoblastoid cell lines26 or induced pluripotent stem

cells27 have been made available for research, documenting the in-

creasing interest in performing preclinical research in large sets of

genetically diverse samples and cell lines. Similarly, while the

individual-level data from clinical trials may not readily shared by

the sponsors, the summary data related to demographics and ances-

try, like the one we propose, could certainly pique the curiosity of

researchers interested in health disparities associated with ancestry

who may then want to collaborate with the investigators. The avail-

ability of genetic ancestry and diversity as a piece of metadata in the

public datasets would therefore increase their visibility for inclusion

in studies aimed at understanding the contribution of genetic ances-

try to disease phenotypes. The DS featured in the DataMed index

provides an optimal way for researchers to select the adequate data-

sets for this task, without the need to disclose individual-level data.
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