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Abstract: Inertial measurement unit sensors (IMU; i.e., accelerometer, gyroscope and magnetometer
combinations) are frequently fitted to animals to better understand their activity patterns and energy
expenditure. Capable of recording hundreds of data points a second, these sensors can quickly
produce large datasets that require methods to automate behavioral classification. Here, we describe
behaviors derived from a custom-built multi-sensor bio-logging tag attached to Atlantic Goliath
grouper (Epinephelus itajara) within a simulated ecosystem. We then compared the performance of
two commonly applied machine learning approaches (random forest and support vector machine) to
a deep learning approach (convolutional neural network, or CNN) for classifying IMU data from
this tag. CNNs are frequently used to recognize activities from IMU data obtained from humans
but are less commonly considered for other animals. Thirteen behavioral classes were identified
during ethogram development, nine of which were classified. For the conventional machine learning
approaches, 187 summary statistics were extracted from the data, including time and frequency
domain features. The CNN was fed absolute values obtained from fast Fourier transformations of the
raw tri-axial accelerometer, gyroscope and magnetometer channels, with a frequency resolution of
512 data points. Five metrics were used to assess classifier performance; the deep learning approach
performed better across all metrics (Sensitivity = 0.962; Specificity = 0.996; F1-score = 0.962; Matthew’s
Correlation Coefficient = 0.959; Cohen’s Kappa = 0.833) than both conventional machine learning
approaches. Generally, the random forest performed better than the support vector machine. In
some instances, a conventional learning approach yielded a higher performance metric for particular
classes (e.g., the random forest had a F1-score of 0.971 for backward swimming compared to 0.955 for
the CNN). Deep learning approaches could potentially improve behavioral classification from IMU
data, beyond that obtained from conventional machine learning methods.

Keywords: accelerometer; magnetometer; gyroscope; classification; random forest; support vector
machine; deep-learning; bio-logging

1. Introduction

The past few decades have seen the development, miniaturization and cost reduc-
tion of a variety of sensors that can be attached to animals to monitor their behavior,
physiology and environment [1]. Data (archival) loggers are particularly appealing if the
device can be retrieved due to their capacity to store large datasets, allowing for high
sampling frequencies and thus fine-scale monitoring [2]. Often, sensors are used in tandem
to better identify and contextualize behavior. For example, a tri-axial accelerometer can
be used to measure body motion and posture in the three orthogonal planes, through
dynamic and gravitational forces, respectively. In turn, distinct behaviors corresponding
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to these waveform signatures can be identified (through direct-observation, i.e., “ground-
truthing”) or inferred, which has made them a popular choice for scientists aiming to
understand the activity of an animal in the wild. When used in conjunction with sensors
that provide information on the body’s angular velocity and rotation—through a gyroscope
and magnetometer, respectively—the ability to reconstruct and differentiate behaviors
can be improved [3–5]. However, with each sensor potentially yielding millions of data
points, manually deciphering behaviors from these inertial measurement unit (IMU) data
sets is impractical. As such, numerous machine learning (ML) methods have been em-
ployed to automate the process of classifying animal-borne sensor output into behavioral
classes [6–9].

Murphy [10] defines ML as “a set of methods that can automatically detect patterns
in data, and then use the uncovered patterns to predict future data, or to perform other
kinds of decision making under uncertainty”. ML is typically divided into two main types,
supervised and unsupervised learning, each with advantages and disadvantages [8]. In su-
pervised learning, a training data set is required whereby the input vector(s) x (e.g., sensor
channel features) and associated outcome measure/label in vector y (e.g., behavior) are
known. Once the input vectors can be appropriately mapped to the outcome, the algorithm
can be used to make predictions from new input data [11]. This is termed supervised learn-
ing, as the outcome label is provided by an “instructor” who tells the ML algorithm what
to do. If an animal cannot be housed in captivity for direct observation, or simultaneously
fitted with the sensor(s) and a video camera while in situ, building a detailed training
set may not be possible. In such instances, unsupervised learning can be implemented.
Pre-defined classes are not provided by an instructor (hence “unsupervised learning”), but
rather the algorithm finds structure in the data, grouping it based on inherent similarities
between input variables [11]. While the terms supervised and unsupervised learning help
to categorize some of the methods available, the two concepts are not mutually exclusive
and can be used in tandem when labeled data is available for only a portion of the dataset
(e.g., semi-supervised, multi-instance learning).

Recently, deep learning approaches have become popular for modeling high-level
data in areas such as image classification [12], text classification [13], medical data classi-
fication [14] and acoustic sound classification [15]. Unlike supervised machine learning
approaches, deep learning is a form of ML that does not require a manual extraction of
features for training the model but instead can be fed raw data (Figure 1). Its development
was driven by the challenges faced by conventional ML algorithms including the inability
to generalize well to new data, particularly when working with high-dimensional data and
the computational power required to do so.

Various deep learning approaches have been applied to accelerometer data for human
activity classification including convolutional neural networks (CNNs), long short-term
memory (LSTM) and a combination of the two [16–24]. Aviléz-Cruz et al. [19] proposed a
deep learning model that achieved 100% accuracy across six activities, compared with 98%
and 96% for the two most competitive conventional ML approaches (Hidden Markov Model
and support vector machine, SVM, respectively). The model had three CNNs working in
parallel, all receiving the same input signal from a tri-axial accelerometer and gyroscope.
The feature maps of the three CNNs were flattened and concatenated before being passed
into a fully connected layer and finally an output layer with a Softmax activation (a function
that converts the numbers/logits generated by the last fully connected layer, into a proba-
bility that an observation belongs to each potential class [25]). Other studies demonstrate
the relevance of using LSTM networks for human activity recognition [17,20–23]. Lastly,
a few studies have suggested augmenting CNNs with LSTM layers [26]. For example,
Karim et al. [26] proposed a model architecture in which a three-layer CNN and an LSTM
layer extract features from sensor data in parallel. The resulting feature vectors are then
concatenated and passed into a Softmax classification layer. Although deep learning can
yield improved classifier performance over conventional ML methods, it has been sparsely
applied for animal behavior detection from IMU data [8].
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Within the realm of marine fishes, IMU sensors have been widely applied to highly
mobile species including sharks [27–29], Atlantic bluefin tuna (Thunnus thynnus) [30],
dolphin fish (Coryphaena hippurus) [31] and amberjack (Seriola lalandi) [32], providing insight
into biomechanics, activity patterns, energy expenditure, diving and spawning behavior.
However, application of IMUs to more sedentary species that persist predominantly over
highly complex structures, such as natural and artificial reefs, are rarer. These species, for
example grouper, can be expected to engage in different behaviors to that of highly mobile
species and present a different activity budget.

Groupers (family Epinephelidae) are comprised of more than 160 species of commer-
cially and recreationally important fishes that inhabit coastal areas of the tropics and
subtropics [33]. This family of long-lived fishes shares life history traits that make them
particularly vulnerable to overfishing, including: late sexual maturity, protogyny, and the
formation of spawning aggregations [34–37]. The Atlantic Goliath Grouper (Epinephelus
itajara Lichtenstein 1822; hereafter referred to as Goliath grouper) is one of the largest
grouper species, capable of attaining lengths of 2.5 m and exceeding 400 kg [38]. The
species ranges from North Carolina to Brazil and throughout the Gulf of Mexico [39]. Much
of our understanding of Goliath grouper behavior has been learned from divers, from
underwater video footage, and observing animals in captivity (e.g., feeding kinematics [40],
abundance [41]). Passive acoustic monitoring of sound production (e.g., associated with
spawning behavior) [42,43] and modest acoustic telemetry work has provided some insight
into site fidelity and coarse horizontal and vertical movement [44]. To date, no studies
have documented the fine-scale behavior of this species. IMUs provide the opportunity
to learn about fine-scale Goliath grouper activity patterns over a range of temporal scales,
and the energetic implications. Additionally, IMUs can yield insight into, inter alia, mating
behavior, habitat selection and responses to environmental variables [45,46].

Accelerometer transmitters have been used to determine activity levels (active ver-
sus inactive) [47] and feeding behavior [48] of captive red-spotted groupers (Epinephelus
akaara). An accelerometer-gyroscope data logger was used to identify feeding and escape
response behavior of captive White-streaked grouper (Epinephelus ongus) [3]. In both stud-
ies, behaviors were validated using underwater video cameras situated in the tank. To our
knowledge, no studies have used IMU sensors to elucidate the behavior of grouper species
at liberty. However, as one of the largest grouper species, Goliath grouper can be equipped
with multi-sensor tags that include a video camera for validation of IMU data obtained
from individuals in the wild.

The goals of this study were to: (a) obtain ground-truthed body movement data
from a custom-made tag fitted to Goliath grouper, which could be used to develop a
behavioral classifier; (b) develop two conventional ML approaches, using handcrafted
features, to classify behavior from the tag data; (c) design a deep learning approach using
CNN and frequency representations of IMU data; and (d) compare the performance of the
conventional ML approaches to the deep learning approach to determine the preferred
method for identifying and studying behaviors from animals at liberty. Knowledge of the
fine-scale activity of these animals can help us understand the ecology of this species, a key
research need highlighted by the International Union for the Conservation of Nature [39].
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Figure 1. Simplified schematic showing the workflow of conventional machine learning ap-
proaches versus deep learning approaches. IMU = inertial measurement unit, ODBA = overall dy-
namic body acceleration, SVM = support vector machine, RF = random forest, CNN = Convolu-
tional Neural Network. 

2. Materials and Methods 
2.1. Study Site and Capture 

Goliath groupers were captured at the St. Lucie nuclear power plant facility located 
on south Hutchinson Island, Florida (27.20° N, 80.14° W). The power plant draws in sea-
water from approximately 365 m offshore in the Northwest Atlantic Ocean to help cool 
the nuclear reactors. Water is drawn in at a rate of ~one million gallons per minute, 
through three large diameter pipes (3.7–4.9 m), and exits into a 1500 m intake canal [49,50]. 
Permanent mesh barriers span the width of the canal to prevent marine organisms that 
have travelled through the pipes from entering the plant. The first barrier is situated ~160 
m from the pipes, creating an entrainment area ~160 m long x 80 m wide, max depth ~5 m 
(Figure 2). This entrainment provides a semi-natural environment for animals, including 
Goliath grouper, to inhabit. 

In the entrainment, Goliath grouper were caught using a hand-reel with 250 lb. mon-
ofilament and a 16/0 circle hook with the barb filed back. Bait was primarily thawed 
striped mullet (Mugil cephalus). Once reeled in, the individual was brought onboard a low 
gunnel 14’ skiff and transported the short distance to a ramp adjacent to the pipes, where 
it was placed in a sling and a hose was inserted into the buccal cavity to actively pump 
water over the gills during handling. Prior to fitting the bio-logging tag, morphometric 
measurements including total length and girth were recorded and the animal was fitted 
with a plastic tipped dart tag at the base of the dorsal spines for future identification (Table 
1). All efforts were made to minimize animal pain and suffering during collection and all 
activities followed approved animal use protocols (FAU AUP #A18-28; ACURO #DARPA-
7374.02). 

Figure 1. Simplified schematic showing the workflow of conventional machine learning approaches
versus deep learning approaches. IMU = inertial measurement unit, ODBA = overall dynamic body
acceleration, SVM = support vector machine, RF = random forest, CNN = Convolutional Neural
Network.

2. Materials and Methods
2.1. Study Site and Capture

Goliath groupers were captured at the St. Lucie nuclear power plant facility located
on south Hutchinson Island, Florida (27.20◦ N, 80.14◦ W). The power plant draws in
seawater from approximately 365 m offshore in the Northwest Atlantic Ocean to help
cool the nuclear reactors. Water is drawn in at a rate of ~one million gallons per minute,
through three large diameter pipes (3.7–4.9 m), and exits into a 1500 m intake canal [49,50].
Permanent mesh barriers span the width of the canal to prevent marine organisms that
have travelled through the pipes from entering the plant. The first barrier is situated ~160
m from the pipes, creating an entrainment area ~160 m long x 80 m wide, max depth ~5 m
(Figure 2). This entrainment provides a semi-natural environment for animals, including
Goliath grouper, to inhabit.

In the entrainment, Goliath grouper were caught using a hand-reel with 250 lb.
monofilament and a 16/0 circle hook with the barb filed back. Bait was primarily thawed
striped mullet (Mugil cephalus). Once reeled in, the individual was brought onboard a low
gunnel 14’ skiff and transported the short distance to a ramp adjacent to the pipes, where
it was placed in a sling and a hose was inserted into the buccal cavity to actively pump
water over the gills during handling. Prior to fitting the bio-logging tag, morphometric
measurements including total length and girth were recorded and the animal was fitted
with a plastic tipped dart tag at the base of the dorsal spines for future identification
(Table 1). All efforts were made to minimize animal pain and suffering during collection
and all activities followed approved animal use protocols (FAU AUP #A18-28; ACURO
#DARPA-7374.02).
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(model C6) was positioned parallel to the outside edge of one arm with 80 lb. microfila-
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Figure 2. The study site: the entrainment canal at St. Lucie nuclear power plant facility located on
south Hutchinson Island, Florida. Permanent mesh barriers are located underneath each bridge,
keeping marine fauna in the entrainment at the forefront of the photograph. Photo credit: Serge
Aucoin.

Table 1. Summary data for goliath grouper deployments at the St. Lucie nuclear power plant facility.

Deployment Tagging
Date

Fish
Total

Length
(cm)

Fish
Girth
(cm)

Video
Duration
(hh:mm)

Accelerometer
Sampling
Frequency

(Hz) 1

Approximate Tag
Retention Duration

(h)

Fish 1 30/03/2020 135.5 99.2 10:08 50 68.00
Fish 2 10/06/2020 189.0 130.5 09:58 50 70.50
Fish 3 30/06/2020 161.0 107.8 02:49 50 70.25
Fish 4 10/07/2020 139.0 94.8 10:30 200 76.00
Fish 5 17/07/2020 140.0 99.2 10:30 200 70.50
Fish 6 29/07/2020 189.0 124.4 10:00 200 56.00

1 The sampling frequency for the magnetometer and gyroscope was 50 Hz for all deployments.
2.2. Tag Attachment

We designed a custom multi-sensor tag with Customized Animal Tracking Solu-
tions for use on Goliath grouper, measuring 24.5(L) × 9(W) × 5(D) cm (Figure 3). The
tag comprised a tri-axial accelerometer, gyroscope and magnetometer (hereinafter col-
lectively referred to as IMU), a temperature, pressure and light sensor, video camera
(1920 × 1080 resolution) and hydrophone (HTI-96-Min Series with a sensitivity of −201 dB
re 1 µPa), all mounted in the anterior portion of the tag. Hydrophone data were not used in
this case given our interest in classifying behavior from kinematic variables. The posterior
end of the tag consisted of two positively buoyant “arms” that facilitate tag ascent to the
surface once it released from the fish. This portion also housed a VHF transmitter and
satellite transmitter to aid in relocating the device so the IMU and video data could be
downloaded. The custom tags were programmed to record acceleration data at either
50 or 200 Hz, gyroscope and magnetometer data at 50 Hz, and pressure and temp at 1 Hz.
Tags were programmed to commence recording IMU and video data at either 7 or 8 a.m.
(depending on sunrise time) the morning after the fish was released. The delay in video
recording allowed for post-release recovery (17.0–22.5 h depending on capture time), in-
creasing the chances of capturing normal behavior as the tag was limited to recording ~10 h
of video footage.

The tag was positioned atop the fish with the camera facing anteriorly and arms
situated around the dorsal spines (Figure 3b). A three-day tropical galvanic timed release
(model C6) was positioned parallel to the outside edge of one arm with 80 lb. microfilament
braided line (~30 cm long) placed in either end of the barrel and held in place with the
galvanic timed release eyelets. Two holes were drilled through each arm of the tag, one
on either side of the galvanic timed release barrel, so that the working end of each length
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of braid could pass through both arms. A small hole (1/32” = 0.79 mm) was also drilled
through the first and third dorsal spines so that the working ends of the braid could each
pass through a spine in between the arms. On the opposite side of the tag to the galvanic
timed release barrel, the working ends were wrapped clockwise around a screw embedded
into the float material. The screw was then tightened to pull the braid taut and secure the
tag to the fish (Figure 3c). The tag released from the fish after the galvanic timed release
corroded and the ends of the braid embedded in the barrel became free to pull through the
spines as the tag floated to the surface. Tags were retrieved from the entrainment canal by
on site personnel and the data downloaded using CATS-Diary software (version 6.1.35).

1 
 

 
(c) 

Figure 3. Custom-designed bio-logging tag used on Goliath grouper: (a) the components of the tag;
(b) attachment location of the tag; (c) the tag attachment process GTR = galvanic timed release.

2.3. Data Analysis
2.3.1. Ethogram and Feature Extraction

An ethogram of behaviors (Table 2) was developed using video footage from the tag
across six deployments (Table 1) where the water visibility was sufficient to yield clear
recordings (See Video S1 in Supplementary Materials). As individuals were able to conduct
multiple behaviors simultaneously (e.g., hovering and booming or swimming and turning),
a labeling hierarchy was developed for assigning data to a single class in those instances
(Figure 4).

Feature data were calculated from the IMU data over 1 s intervals and each second
of data was assigned a behavioral class. A total of 187 features were calculated for each
deployment including summary statistics from each orthogonal plane of the accelerometer,
magnetometer and gyroscope sensors. The summary statistics included time and frequency
domain features. Time domain summary statistics included average, standard deviation,
minimum, maximum, median, skewness, kurtosis, median absolute deviation, inverse
covariance, and interquartile range. Summary statistics were also calculated for overall dy-
namic body acceleration (ODBA) [6–8,51,52]. The accelerometer records total acceleration
which comprises the gravitational component of acceleration (which reflects tag orientation,
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and thus animal posture, in relation to the earth’s gravitational pull) and dynamic accelera-
tion caused by the animals’ body movement. The gravitational component of acceleration
was calculated by applying a 3 s running mean to the total acceleration and subtracting
it to leave dynamic acceleration. ODBA was then calculated as the sum of the absolute
dynamic axes values [53]. Additional time domain variables included signal magnitude
area (sum of the absolute raw acceleration axes), q (calculated for each IMU sensor as the
square-root of the sum-of-squares of the three axes), the circular variances of the inclination
and azimuth of each q, pairwise correlations between the accelerometer axes [6,52] and
vertical velocity. All time domain features were calculated in R Core Team (2020) [54].
Frequency domain features included power, mean, standard deviation, median, minimum,
maximum, entropy and energy calculated from the spectrum for each orthogonal plane of
the accelerometer, magnetometer and gyroscope sensors [55]. Frequency domain features
were calculated in MATLAB 2019a.

Table 2. Description of behavioral classes used to label the inertial measurement unit data. See
Supplementary Materials Video S1 for examples of each behavior.

Behavior Description

Backward Swimming Reversing motion that occurs by undulating the pectoral fins.
Boom Low-frequency single-pulse sound.

Gulping Quick mouth movement that does not produce sound.
Burst Swimming Fast forward movement, usually in response to a stimulus.

Feeding Consumption of a prey item.

Forward Swimming Forward movement that results in side-to-side swaying of the tag,
reflecting the gait and tail-beat of the animal.

Gliding Forward movement that does not result in swaying of the tag.

Hovering
Occurs when the animal appears largely motionless in the water

column (rather than resting on substrate). May include small
movements/adjustments.

Turning A change in direction.

Listing Less exaggerated than rolling. Animal rotates on its longitudinal axis
to an angle <45◦.

Resting Animal appears to sit motionless on the substrate.

Rolling
Animal rotates on its longitudinal axis to an angle greater than 45◦.
This behavior may involve the individual full inverting its body so

the dorsal surface makes contact with the substrate.

Shaking Vigorous side-to-side movement. Often accompanies a boom or
occurs during interactions with conspecifics.
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2.3.2. Conventional Machine Learning Models

Two supervised ML algorithms—a random forest (RF) and a SVM—were built using
MATLAB 2019a. Both algorithms have been commonly employed to recognize behavior
from acceleration data obtained from numerous species [6,7,56–58]. Ensemble classifiers,
such as RFs, combine predictions from multiple base estimators to make a more robust
model. In the case of RF, many independent, un-pruned classification trees are produced
with each tree predicting a class for the given event. To minimize overfitting, two levels
of randomness are incorporated: (1) a random subsample of data (62.3%) are used to
generate every tree and (2) at each tree node, a random subset of predictor variables (m)
is selected to encourage tree diversity. The final prediction is usually selected as the class
with the majority vote from all the trees [59]. As a random subsample of the full dataset
is used to build each tree (a process known as bootstrap aggregation or “bagging”), RFs
are considered bagging ensemble classifiers. SVM, a supervised machine learning method,
aims to design an optimal hyperplane that separates the input features into two classes
for binary classification. The input data to SVM is mapped into high-dimensional feature
space by using a kernel function. In this study, the RF was built using 200 trees and the
SVM was constructed using a Gaussian radial kernel function.

2.3.3. Deep Learning Approach

For the deep learning approach, we developed a CNN to work with the 1-dimensional
spectrum of each of the three accelerometer, magnetometer and gyroscope axes. The CNN
comprised three convolutional layers—with one-dimensional kernel size (3 × 1)—with each
layer followed by a maxpooling layer to reduce the dimensionality of the convolutional
layer and control overfitting. These convolutional and maxpooling layers extract high-level
features from the data which are then used as the input into the fully connected layers for
classification. The final maxpooling layer was followed by a fully connected layer with
500 nodes, a dropout layer with 0.25 probability and a fully connected layer with Softmax
activation that ensures the output predictions across all classes sum to one (Figure 5). The
input to the model consists of nine channels of frequency representations, one for each
IMU axis. Each channel was converted to Fourier transform with NFFT = 512, and the
absolute value computed. The input size of the network was 256 × 9 with each column
representing the frequency transformation of each axis. To find the relationship between
input data X, and output class Z, we have to find:

Z = F(X/λ) (1)

where F is a non-linear function which maps the input matrix X to output vector z, and λk
is a collection of weights Wk and biases Bk at layer k, and is the collection of all weights and
biases in the network. We can express this relationship as:

z = F(X/λ) = fl( . . . f2(f1(X/λ1)/λ2)) (2)

where each small function f l(./λl) is referred to as a layer of the CNN. For this neural
network, we used l = 9. Layers one, three and five are convolutional layers, expressed as:

Outl = fl(Xl/λl) = h(Wl∗Xl + Bl), λl = [Wl, Bl] (3)

where Xl is the input to the last layer of the network, h is an activation function (in our case
we used a Rectified Linear Unit (ReLU) as the activation function).
The proposed CNN architecture is parameterized as follows:

l1: 32 kernels of size (3 × 1) which work on each frequency transformation of the input
data, this is followed by maxpooling of pool size [2, 1] with stride two.
l3: 64 kernels of size (3 × 1) which work on each frequency transformation of the input
data, this is followed by maxpooling of pool size [2, 1] with stride two.
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l5: 128 kernels of size (3 × 1) which work on each frequency transformation of the input
data, this is followed by maxpooling of pool size [2, 1] with stride two.
l7: a fully connected layer with 500 nodes followed by drop out layer with probability
0.25.
l9: a fully connected layer with 9 nodes followed by Softmax activation layer.
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2.3.4. Data Augmentation

Behavioral classification is predisposed to unequal class sizes because animals do not
partition their time equally between activities. Data augmentation can be used to increase
the number of events in minority classes [60] and can be viewed as an injection of prior
knowledge about the invariant properties of the IMU data against certain transformations.
Augmented data can also cover unexplored input space, prevent overfitting, and improve
the generalization ability of a deep learning model, with many data augmentation methods
available (e.g., GAN network, scaling, rotation and data oversampling) [61]. In this study,
we applied three data augmentation techniques that are commonly applied to acceleration
data [60,62,63]:

Jittering: One of the most effective data augmentation methods. Jittering adds normally
distributed noise to the IMU data. Jittering can be defined as:

x = x1 + e1, x2 + e2, . . . , xN + eN (4)

where x = [x1, x2, . . . , xN]T is the vector of the actual data points and e = [e1, e2, . . . , eN]T is
the vector of the added points. e is the normal distribution noise added to the data points
and ei ∼ N(0, σ2), where σ is a hyper-parameter of range [0.01, 0.2].

Magnitude scaling: Magnitude scaling changes the global magnitude of the IMU data
by a randomly selected scalar value. Scaling is a multiplication of the entire dataset as
follows:

X = [γx1,γx2, . . . ,γxN]T (5)

The scaling parameter γ can be determined by normal distribution γ ∼ N(1, σ2),
where σ is a hyper-parameter.

Magnitude warping: Magnitude warping warps a signal’s magnitude by a smoothed
curve as follows:

X = β1 x1,β2 x2, . . . ,βN xN (6)

where β1, β2, . . . , βN is a sequence interpolated from cubic spline S(k) with k = k1, k2, . . . , kl.
Each knot ki is given a distribution γ ∼ N(1, σ2), where the number of knots and the
standard deviation σ are hyper-parameters. The idea behind magnitude warping is that
small fluctuations in the data can be added by increasing or decreasing random regions in
the IMU data.

2.3.5. Performance Measures

To evaluate the classifiers, we retained 20% of the ground-truthed data for testing
via five-fold validation. We adopted five performance measures including: sensitivity
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(recall), specificity, F1-score, Matthews Correlation Coefficient (MCC) [64] and Kappa.
These metrics were calculated for each class and for the classifier overall. Sensitivity
determines the proportion of events that were correctly classified; specificity indicates the
proportion of events that are correctly identified as not belonging to a class. To compute
these measurements, the true positive (TP), true negative (TN), false positive (FP), and false
negative (FN) were extracted for each class from the confusion matrices. Sensitivity can be
computed using the following formula:

Sensitivity =
TP

TP + FN
. (7)

Specificity or true negative rate is calculated as:

Specificity =
TN

TN + FP
. (8)

F1-score is the harmonic mean of precision and sensitivity. Precision represents the
fraction of correctly identified classes (i.e., sensitivity) against all predicted classes and is
calculated as:

Precision =
TP

TP + FP
. (9)

Thus, the F1-score is calculated as:

F1 =
2TP

(2TP + FN + FP)
. (10)

Sensitivity, specificity and the F1-score are presented as a value between 0 and 1, where
a value closer to 1 indicates good classification performance.

The MCC can be calculated by the following equation:

MCC =
TP x TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (11)

The Kappa statistic provides a quantitative measure of how well the classifier agrees
with the ground-truth data while accounting for agreement that would be expected to
occur by chance [65] (i.e., than a classifier that guesses the class based on class frequency).
Kappa is capable of handling both multi-class and imbalanced class problems [66] and can
be defined as:

K =
Po − Pe

1 − Pe
(12)

where Po is the observed agreement and Pe is the expected agreement. The value of K
between 0.4 and 0.6 is considered as moderate, between 0.61 and 0.80 as substantial and
between 0.81 and 1 as almost perfect agreement [65].

For each metric (except Kappa), overall performance was calculated as the mean of
the metric values determined for each class. Overall Kappa performance was calculated
using Equations (13)–(15) as follows:

Pex =
(P∗

x (TPx + FPx)) + (N∗
x (FNx + TNx))

(TPx + TNx + FPx + FNx)
2 (13)

where Px is the sum of all positive classifications, TPx is the sum of all TPs, FPx is the sum
of all FPs, Nx is the sum of all negative classifications, TNx is the sum of all TNs and FNx is
the sum of all FNs.

kappa =

([
(Pox − Pex)

1 − Pex
,

Pex − Pox

1 − Pex

])
(14)
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where Pox is the sum of accuracy values for all classes. Finally:

Overall Kappa Performance = max(kappa) (15)

3. Results

For this study, data were collected from six fish. Using a three-day galvanic timed
release, the average tag retention time was 68.5 h (SD = 6.7 h; Table 1). This allowed
ample time for the tag battery to fully deplete prior to releasing from the animal and
thus maximized the amount of IMU data that could be obtained from each deployment.
The video footage revealed that tagged individuals regularly interacted with non-tagged
animals within the entrainment and appeared to exhibit similar behavior.

3.1. Ethogram Development

Each second of IMU data was assigned one of 13 behavioral classes identified from
the animal-borne video footage; 52.98 h of IMU data were labeled. The time each fish
engaged in a behavior varied and not all individuals exhibited every behavior (Table 3).
The most common behaviors were hovering, forward swimming and resting. Four of the
13 identified classes were omitted from the classifier because we were unable to gather
enough data to create a robust training dataset for that class (i.e., feeding and rolling)
and/or the behaviors were not performed by most individuals (i.e., burst swimming and
gliding). Three animals exhibited burst swimming, yielding a combined total of 337 s of
data for this class. Gliding usually occurred after a burst swim and was exhibited only by
two of the three animals that burst swam. Only one animal fed while the tag was fitted
and recording video, yielding 58 s of feeding behavior. Rolling was documented for five of
the six animals, but these events were infrequent and brief, so not allowing for sufficient
data accumulation to develop this class.

Table 3. Number of observations contributed to each behavior class by each fish, and overall. Not all
classes were included in the classifiers.

Behavior Fish 1 Fish 2 Fish 3 Fish 4 Fish 5 Fish 6 Total

Backward
Swimming 1344 312 25 393 - 57 2131

Boom 26 136 11 10 101 31 315
Gulping 45 26 16 136 33 3 259

Burst Swimming * 107 3 - - 227 - 337
Feeding * - - - 58 - - 58

Forward Swimming 5501 5631 1577 6716 26,277 2313 48,015
Gliding * 339 6 - - - - 345
Hovering 20,325 6750 7722 29,869 7846 32,663 105,175
Turning 176 285 183 22 2026 - 2692
Listing 58 72 6 53 157 37 383
Resting 6368 21,648 365 5 473 82 28,941

Rolling * 3 8 - 9 39 11 70
Shaking 190 589 121 542 155 415 2012

* Indicates classes omitted from classification.

3.2. Classifier Performance

The deep learning approach produced the highest overall values across each perfor-
mance metric while the SVM produced the lowest (Figure 6). The CNN was the only
method to attain a kappa value >0.81, indicating almost perfect agreement between the
classifier and the labeled data (Table 4). Conversely, the SVM obtained κ = 0.21, suggest-
ing poor agreement between the classifier and labeled data (Table 4). The RF achieved
κ = 0.60, indicating moderate agreement (Table 4). All models obtained an overall speci-
ficity ≥0.97, with models performing better in terms of specificity than sensitivity (0.70–0.96;
Tables 5 and 6; Figure 6).
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However, the CNN classification did not rank best for all behaviors. For example, the
RF obtained a higher specificity, F1-score and MCC for backward swimming than the CNN
(Tables 6–8). The RF also obtained a higher specificity for turning (1.0 versus 0.99 for CNN;
Table 6). Kappa was the only performance metric that indicated more variable performance
between methods on a class-by-class basis (Table 4). The CNN performed better than either
conventional ML approach for four of the nine classes (forward and backward swimming,
listing and gulping) but scored lowest on three of the classes (booming = 0.86, i.e., almost
perfect agreement; shaking = 0.75, i.e., substantial agreement; turning = 0.45, i.e., moderate
agreement).

Of the conventional ML algorithms, RF performed better overall than the SVM for
each performance metric (Tables 4–8, Figure 6). However, the SVM achieved higher
sensitivity than the RF for the forward swim class (0.83 and 0.76 respectively) and higher
kappa values for resting, hovering, booming and turning than either of the other methods
(Tables 4 and 5).

Table 4. Kappa results for the conventional machine learning approaches: support vector machine
(SVM) and random forest (RF), and the deep learning approach: convolutional neural network
(CNN). Overall Performance for Kappa was calculated using Equations (13)–(15).

Kappa

Behavior SVM RF CNN

Resting 0.8555 0.8414 0.8450
Hovering 0.8030 0.7927 0.7938

Forward Swimming 0.7889 0.8032 0.8121
Backward Swimming 0.8022 0.7971 0.8587

Boom 0.9114 0.8798 0.8014
Shaking 0.8566 0.8645 0.7508
Listing 0.7580 0.7589 0.8693
Turning 0.8450 0.8317 0.4480
Gulping 0.4512 0.4511 0.8293

Overall Performance 0.2097 0.5996 0.8331

Table 5. Sensitivity results for the conventional machine learning approaches: support vector
machine (SVM) and random forest (RF), and the deep learning approach: convolutional neural
network (CNN).

Sensitivity

Behavior SVM RF CNN

Resting 0.6733 0.8640 0.9262
Hovering 0.8673 0.9078 0.9443

Forward Swimming 0.8251 0.7631 0.8007
Backward Swimming 0.6905 0.9785 0.9945

Boom 0.3282 0.8733 1.0000
Shaking 0.6355 0.8472 1.0000
Listing 0.7494 0.9822 0.9922
Turning 0.6032 0.9668 1.0000
Gulping 0.8961 0.9682 1.0000

Overall Performance 0.6965 0.9057 0.9620
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Table 6. Specificity results for the conventional machine learning approaches: support vector machine
(SVM) and random forest (RF), and the deep learning approach: convolutional neural network (CNN).

Specificity

Behavior SVM RF CNN

Resting 0.9929 0.9947 0.9985
Hovering 0.9884 0.9873 0.9895

Forward Swimming 0.9633 0.9772 0.9941
Backward Swimming 0.9619 0.9958 0.9936

Boom 0.9961 0.9917 0.9993
Shaking 0.9579 0.9857 0.9989
Listing 0.9581 0.9946 0.9980
Turning 0.9699 0.9967 0.9906
Gulping 0.9194 0.9865 0.9996

Overall Performance 0.9675 0.9900 0.9958

Table 7. F1-score results for the conventional machine learning approaches: support vector machine
(SVM) and random forest (RF), and the deep learning approach: convolutional neural network
(CNN).

F1-Score

Behavior SVM RF CNN

Resting 0.7689 0.8988 0.9531
Hovering 0.8802 0.9002 0.9273

Forward Swimming 0.7666 0.7779 0.8644
Backward Swimming 0.6805 0.9708 0.9550

Boom 0.4743 0.8722 0.9967
Shaking 0.5708 0.8280 0.9960
Listing 0.7314 0.9717 0.9815
Turning 0.6228 0.9656 0.9877
Gulping 0.8504 0.9665 0.9976

Overall Performance 0.7051 0.9057 0.9621

Table 8. Matthews Correlation Coefficient results for the conventional machine learning approaches:
support vector machine (SVM) and random forest (RF), and the deep learning approach: convolu-
tional neural network (CNN).

Matthews Correlation Coefficient

Behavior SVM RF CNN

Resting 0.7600 0.8909 0.9497
Hovering 0.8671 0.8885 0.9191

Forward Swimming 0.7407 0.7532 0.8535
Backward Swimming 0.6441 0.9676 0.9524

Boom 0.5127 0.8639 0.9963
Shaking 0.5401 0.8155 0.9954
Listing 0.6931 0.9679 0.9803
Turning 0.5904 0.9624 0.9831
Gulping 0.7913 0.9537 0.9974

Overall Performance 0.6821 0.8959 0.9586
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Figure 6. A comparison of the overall performance metrics for each approach: random forest (RF),
support vector machine (SVM) and convolutional neural network (CNN). MCC is the Matthew’s
Correlation Coefficient.

The importance of each feature provided to a RF can be determined by assessing the
node risk (i.e., change in node impurity weighted by the node probability) associated with
splitting the data using each feature. The top five most important features were Shannon
entropy for Y-axis acceleration, with weight = 1.7 × 10−3, followed by minimum energy
(1.47 × 10−3) for Y-axis gyroscope, the median from the X-axis gyroscope (1.44 × 10−3),
median energy from ODBA (1.3 × 10−3) and mean energy from the X-axis gyroscope
(0.6 × 10−3; Figure 7).
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4. Discussion

The aim of this study was to develop and assess the performance of two conventional
machine learning methods and a deep learning method for classifying IMU data obtained
from Goliath grouper into behavioral classes. Prerequisites to achieving this were the
development of a retrievable custom-made tag that recorded IMU data and video concur-
rently (for ground-truthing) and establishing a robust attachment method. We chose our
dorsal spine attachment method as it conferred the following benefits: it was minimally
invasive (compared to other tag attachment methods, e.g., drilling through the dorsal
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musculature [3]), no attachment materials were left in/on the individual when the tag
detached, and it resulted in good tag stability on fish > ~1.3 m total length. Tag stability is
imperative to the IMU recording data reflective of body movement and ensuring behaviors
are discernable from the data between deployments. Smaller fish tended to have narrower
spines that did not sufficiently fill the gap between the arms of the tag, resulting in a
less stable attachment. A similar tag design and attachment technique to that used here
should be applicable to other morphologically similar species such as the Pacific analogs,
Epinephelus tukula. As sensors, cameras and batteries continue to miniaturize there may
be potential for a reduction in overall tag size, perhaps making it applicable for use with
smaller species with conservation concerns (e.g., Nassau Grouper, Epinephelus striatus).

The tag captured a variety of behaviors, but the activity budget was dominated by
hovering and/or resting for all but one individual (Fish 5) that spent 70% of its time
swimming. These activity budget patterns may periodically shift to include more activity
for individuals at liberty, particularly as Goliath grouper are thought to move to site-
specific aggregations during the spawning season [43,67,68]. With low-movement (and
thus low-energy) behaviors dominating the activity budget in this study, and the tag only
recording video during daylight hours, it is perhaps not surprising that feeding events were
infrequent and/or not seen. Goliath grouper are considered opportunistic predators, but
feeding was only captured once during the study when fish four consumed a black margate
(Anisotremus surinamensis). Consequently, we did not obtain enough data to develop a
feeding class. Moreover, a study by Collins and Motta (2017) described how Goliath
grouper modulate their feeding behavior depending on prey type [40], and thus feeding
would likely warrant two classes: suction and ram feeding. When targeting slow-moving
or benthic prey, which comprise most Goliath grouper prey items, they employ suction
feeding. This involves a slow approach, potentially stopping in front of the prey before
it is rapidly sucked into the mouth. When targeting more mobile prey, Goliath grouper
typically employ ram feeding, which is characterized by faster capture that includes quicker
approaches and wider gapes [40]. Thus, to appropriately classify feeding behavior from
IMU data for this species, more data must be collected in future studies. This could be
achieved using IMUs that record for longer and are fitted to captive Goliath grouper that
can be directly observed/videoed, or from continued deployment of these custom tags to
wild individuals.

Using the three learning approaches, we classified nine of the 13 behaviors identified as
part of ethogram development. The CNN performed better overall than either conventional
ML method according to each of the five metrics calculated. This may be attributable to both
the number of features and type of data used as the input to the CNN. The CNN had 36,864
feature maps used as input to the fully connected layer versus 187-handcraft features—
spanning the time-series and frequency domain—for the conventional ML approaches.
The CNN was developed solely from frequency domain data for each tri-axial IMU sensor
and is designed to identify and extract the features (which often have no meaningful
interpretation outside of their application) most useful to the classification task. The
feature importance plot obtained from the RF indicated four of the five most important
features were from the frequency domain (Shannon entropy, minimum, median and mean
energy; Figure 7). Therefore, the CNN not only had more features to train from but may
have detected important features from the frequency domain that were not extracted as
handcraft features for the conventional ML approaches.

Both RF and SVMs are commonly employed to classify IMU data into behaviors. In
a study investigating the performance of eight conventional machine learning methods
classifying acceleration data into behavioral classes for Port Jackson sharks (Heterodontus
portusjacksoni), the SVM and RF performed best, using 2 s epochs for labeling the data.
The two methods obtained equal overall accuracy (89%) but the SVM achieved superior
performance for fine-scale behaviors such as chewing [7]. Conversely, RFs performed better
than SVMs for classifying acceleration data obtained from Griffon vultures (Gyps fulvus)
into seven behaviors [6]. In our study, the RF performed better overall and achieved higher
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F1-scores for each class than the SVM. This indicates the importance of model comparison
when determining which classifier to use to make predictions from a dataset. No single
conventional machine learning algorithm consistently performs best for classifying IMU
data into behavioral classes and will be dependent upon factors such as training dataset
size, linearity of the data, number of classes and the extent of kinematic similarities between
classes (e.g., resting and hovering).

An important consideration when selecting a classifier is whether the researcher is
more concerned with identifying a particular behavior or determining overall activity
patterns. A need to identify each instance of a particular behavior would require high
sensitivity (preferably coupled with good specificity) for that class, which in turn may
influence the choice of classifier. The SVM had a marginally higher sensitivity for forward
swimming (0.8251) than that obtained by the CNN and RF (0.8007 and 0.7631 respectively).
However, it obtained much lower sensitivity values for all other behaviors, including
booming (SVM = 0.3282, RF = 0.8733, CNN = 1.000). Goliath grouper produce sound
(i.e., “booming”) as part of courtship, spawning and agonistic behavior and is therefore
a behavior of particular interest [42]. Passive acoustics can be used to remotely monitor
these booms and have been used to determine the relative abundance of soniferous fishes
at spawning aggregation sites [42,69]. However, a limitation of using passive acoustics is
the inability to approximate how many fish are contributing to sound production. The
CNN method developed here robustly classified “booming” behavior from the IMU data
and provides a means to determine sound production at the individual level; as such, it
may serve as a complementary method to passive acoustic monitoring.

The CNN developed in this study has numerous practical applications for under-
standing the behavioral ecology of Goliath grouper. IMU sensors are capable of recording
data over ever-increasing durations. These tools, coupled with the CNN classifier devel-
oped here, present the opportunity to quantify how the activity budget of wild Goliath
grouper may differ: temporally (e.g., diel and seasonal patterns), between habitat types
(e.g., artificial versus natural reefs) and between pristine habitats and those that are heavily
impacted by anthropogenic activity (e.g., fishing, diving, boat traffic). For example, a
study that applied accelerometers to red snapper (Lutjanus campechanus) found them to be
more active over artificial structures (i.e., shipwrecks and submerged oil platform jackets)
than on natural reefs, suggesting there may be differences in the functional role of these
habitats for red snapper [70]. The same study also documented higher activity levels at
night and during the summer. However, without video footage or a behavioral classifier to
interpret the acceleration data, the reasons for these differences remain unclear [70]. Other
acceleration-based studies have documented impacts of anthropogenic activities on fish
behavior, such as impacts of provisioning sites on activity levels of whitetip reef sharks
(Triaenodon obesus) [71] and dam construction on Chinese sturgeon (Acipenser sinensis)
swimming behavior [72]. Furthermore, Goliath grouper are targeted for catch-and-release
fishing and caught as incidental bycatch by fishermen targeting other reef fishes [73], but
little is known about their post-release recovery. The CNN developed herein provides a
means to determine if and how the activity budget changes after capture, and how long it
may take for an individual to resume normal behavior [74,75].

Custom-made tags such as the one presented here provide an opportunity to document
interactions with humans. Stakeholder interactions with Goliath grouper can directly
influence their stance on whether Florida should re-open the fishery [73]. Spear fishers
claim increased negative encounters with Goliath grouper, while commercial fishermen
argue Goliath grouper are impacting their ability to land valuable snapper/grouper species
as they presumably depredate their catch [73,76]. Conversely, many recreational dive
companies and divers oppose the fishery, with out-of-state divers willing to pay ~336 USD
to dive at a Goliath grouper spawning aggregation site [77]. These customized tags can
thus help quantify the frequency of these interactions and help make more informed
management decisions. Additionally, while not used in this study given the focus on body
movement classification, the hydrophone component of the tag could be used to track boat
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traffic within the vicinity of the fish, as others have done recently with monitoring fishing
activity on artificial reef sites [78].

Behavioral classification from animal-borne IMU tags is typically completed once the
tag is recovered and the raw data can be downloaded. However, real-time behavioral
monitoring requires data transmission from the tag to a nearby receiver. In this case, either
the raw data must be transmitted from the tag and be classified onboard the receiver, or
the classification occurs onboard the tag and the class prediction is transmitted. A study
by le Roux et al. [79] indicated that behavioral classification onboard the tag (using linear
discriminant analysis) and transmission reduced the tag’s battery consumption 27-fold
compared to transmitting the raw data. This can lead to a substantial increase in the
time a tag functions while on the animal, providing obvious benefits (e.g., reducing how
often an animal needs to be recaptured if continuous monitoring is required, increased
ability to capture rare events, etc.). Alternatively, on-animal classification and storage of
the behavior, in favor of storing all the raw data, led to a 469-fold reduction in memory
use and a 1.3% increase in power consumption [79]. However, the primary limitation of
deep learning is the computational power required, which may prove problematic for
on-animal classification where a larger battery, and thus bigger tag would be required. In
such instances, a conventional machine learning approach may be more practical.

Overall, our study describes a novel multi-sensor tag with a reliable attachment
method to a large reef fish that can be applied to analogous species around the world.
Furthermore, analyses of behaviors revealed from the tag indicates better performance of
a deep learning approach at classifying IMU data into behaviors compared to two com-
monly employed conventional ML approaches. The authors recommend that researchers
looking to optimize classification of animal-borne IMU data into behavioral classes more
regularly consider deep learning approaches alongside conventional ML approaches when
developing and selecting a classifier.
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