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Metabolomics is the sophisticated and high-throughput technology based on the entire set of metabolites which is known as the
connector between genotypes and phenotypes. For any phenotypic changes, potential metabolite (biomarker) identification is
very important because it provides diagnostic as well as prognostic markers and can help to develop new biomolecular therapy.
Biomarker identification from metabolomics data analysis is hampered by the use of high-throughput technology that provides
high dimensional data matrix which contains missing values as well as outliers. However, missing value imputation and outliers
handling techniques play important role in identifying biomarker correctly. Although several missing value imputation techniques
are available, outliers deteriorate the accuracy of imputation as well as the accuracy of biomarker identification. Therefore, in this
paperwe have proposed a newbiomarker identification technique combining the groupwise robust singular value decomposition, 𝑡-
test, and fold-change approach that can identify biomarkers more correctly frommetabolomics dataset.We have also compared the
performance of the proposed techniquewith those of other traditional techniques for biomarker identification using both simulated
and real data analysis in absence and presence of outliers. Using our proposed method in hepatocellular carcinoma (HCC) dataset,
we have also identified the four upregulated and two downregulated metabolites as potential metabolomic biomarkers for HCC
disease.

1. Introduction

Biomarker discovery is comparatively new and one of the
most dominating fields of biological research. Different dis-
ciplines are involved with the study of biomarkers: clinical
and environmental chemistry, molecular biology, toxicology,
food research, plant and animal biology, and so on. In general,
biomarkers identification research is needed whenever a
whole set/pool set of features are differentiated into two
or more groups of samples. In the area of metabolomics,
biomarkers are small molecules (metabolites) that can be
used for earlywarning indicators of disease, observing disease
progression, and predicting receptivity to treatment. Thus,
biomarkers may be categorized into three most important

groups: diagnostic, prognostic, and predictive markers [1].
Diagnostic markers are required for early and/or accurate
diagnosis of disease to allow best possible treatment choices.
On the other hand, prognostic markers give information
about future route of a disease that would influence the
treatment choices. Predictivemarkers provide sagacity on the
potential responses of an individual to the different treatment
options.Therefore, biomarker discovery is very important for
the development of predictive, preventive, and personalized
medicine [2].

For every disease or phenotypic changes, some metabo-
lites are upregulated and/or some are downregulated from
standard within a cell.Themetabolites which are upregulated
or downregulated between disease and control groups are
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known as differentially expressed (DE) metabolites. The
classic approach to identify differentially expressed metabo-
lites is Student’s 𝑡-test (for two classes of samples). If the
pooled variance of two groups is small, then Student’s 𝑡-
test often increases the false discovery (FDR) for metabolic
biomarker identification. However, biological fold-change
(FC) approach is used to control the FDR [3]. Recently,
volcano plot [4] is using to identify differentially expressed
metabolites based on both 𝑝 values from 𝑡-test and fold-
change (FC) values [5]. In most of the cases, we get a large
number of DE metabolites; therefore, we need to identify
the most influential feature/metabolites from the set of DE
metabolites. The conventional approaches for ranking the
influential metabolites are 𝑝 value and fold-change approach.
However, Gevrey et al. in 2003 [6] computed the contribution
of features using artificial neural network model and also
Rakotomamonjy (2003) [7] and Ishak and Ghattas (2005)
[8] suggested a new method for variable/feature selection on
ranking score derived from support vector machine (SVM).
Thus, in this paper, we have used the state of the art supervised
learning technique SVM for ranking the most influential
metabolites (biomarkers) according to the importance. How-
ever, the performance of true biomarker discovery is very
much influenced by missing value imputation techniques [9]
as well as outliers handling [10]. It is well known that mass
spectrometry (MS) based metabolomics dataset frequently
contains missing values [11–13] and often contains outliers
[14] due to several reasons, like experimental, analytical, com-
putational, and biological hazard. Although several missing
imputation techniques are available for metabolomics data
analysis like Zero imputation [11], mean imputation [11],
median imputation [11], kNN imputation [15], RF imputation
[16], missing value replaced by half of the minimum value
found in each metabolite [17], replacing missing values by
probabilistic principal component analysis (PPCA) [18],
Bayesian PCA (BPCA) [9, 19], multiple imputation with
expectation maximization (EM) algorithm, andMonte Carlo
Markov chain (MCMC)method [20], and so on, all the above
methods can only solve the missing imputation problem.
However, these missing imputation techniques are sensitive
to outliers and cannot handle the outliers problem simultane-
ously because these methods did not implement any robust
function or outliers detection and replacement algorithms
directly. Moreover, the published outliers handling method
does not deal with missing values.

Therefore, in this paper we have developed a new robust
technique for biomarker identification using the groupwise
RSVD [21], 𝑡-test, FC analysis, and SVM based feature
selection approaches that can identify biomarker correctly
by imputing missing values and solving outliers problem
simultaneously.

To compare the performance of the proposed biomarker
identification technique with those of the conventional tech-
niques, we considered three well known traditional and
recently used biomarker identification techniques (missing
imputation techniques with 𝑡-test and FC values): Zero impu-
tationwith 𝑡-test and FC (Zero+𝑡+FC), kNN imputationwith
with 𝑡-test and FC (kNN + 𝑡 + FC), and RF imputation with𝑡-test and FC (RF + 𝑡 + FC).

2. Materials and Methods

In this paper, we have proposed a robust technique to identify
metabolomic biomarker that can handle missing values as
well as outliers problem at the same time. To investigate the
performance of the proposedmethod, we considered existing
three popular missing value imputation techniques, Zero
imputation, kNN imputation, and RF imputation, and also
used 𝑡-test and fold-change approach for biomarker identifi-
cation. In Zero imputation, all the missing values of a dataset
were replaced by Zero. In kNN imputation [15], missing
value was computed by averaging of nonmissing values of
its first 𝑘 number of nearest neighbours. In R platform kNN
imputation method can be found from the library “impute.”
Missing imputation algorithm through random forest [16] is a
tree based regression and classification technique which
is suitable for both parametric and nonparametric dataset
[22]. In R-language this method can be found from the
library “missForest.” The short description of the proposed
biomarker identification technique is given below.

2.1. Biomarker Identification Technique in Presence of Out-
liers and Missing Values (Proposed). Let us consider a
metabolomics data matrix 𝑋 = (𝑥𝑖𝑗), 𝑖 = 1, 2, . . . , 𝑝 and𝑗 = 1, 2, . . . , 𝑛, with 𝑝 metabolites and 𝑛 samples that
contains missing values and outliers, where the rows of𝑋 represent the different metabolites and the columns of 𝑋
represent the different samples. In metabolomics data anal-
ysis, we can talk about biomarker identification whenever a
metabolite or a set of metabolites are differentially expressed
between two groups (disease and control) of samples in a
metabolomics dataset. In that case, the metabolomics dataset
can be partitioned according to the groups of samples as𝑋

=
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where 𝑔1 is the number of subjects of group-1 and (𝑛 − 𝑔1) is
the number of subjects of group-2.

In this paper, we have proposed a new RSVD based
metabolomic biomarker identification technique in presence
of missing values and outliers. The RSVD of a data matrix𝑋 can be written as 𝑋 = 𝑈Λ𝑉𝑇, where 𝑈 is a column
orthonormal matrix,𝑉 is a row orthogonal matrix, andΛ is a
diagonal matrix that contains the singular values. 𝑈 and 𝑉
contain the eigen vectors of𝑋𝑋𝑇 and𝑋𝑇𝑋, respectively. If we
want to approximate 𝑋 by 𝑋̃ using rank 𝑟 then we can write𝑋̃ as 𝑋̃ = 𝜆1𝑢1V𝑇1 + 𝜆2𝑢2V𝑇2 + ⋅ ⋅ ⋅ + 𝜆𝑟𝑢𝑟V𝑇𝑟 . The number of 𝑟 is
selected in such a way that first 𝑟 number of 𝜆’s can explain at
least (1 − 𝛼)100% of total variation of data, where the value
of 𝛼 depends on user interest. The steps of the metabolomic
biomarker identification algorithm are given below.
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Step 1. Partition the 𝑋 matrix as 𝑋 = (𝑋1𝑋2) according to
disease and control group of samples, where

𝑋1 =(
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Step 2. Apply the RSVD for each partitioned matrix 𝑋1, 𝑋2
and approximate those as 𝑋̃1, 𝑋̃2 by rank 𝑟, where 𝑟 is
selected in such a way that first r number of 𝜆’s can explain
at least (1 − 𝛼)100% of total variation of data, where the
value of 𝛼 depends on user interest; in our case we choose𝛼 = 0.05.
Step 3. Reconstruct each partitioned datamatrix as 𝑋̂1, 𝑋̂2 by
replacing themissing values and outlying cells of𝑋1, 𝑋2 using
the corresponding values of the approximated data matrices𝑋̃1, 𝑋̃2, respectively, where outlier is detected by using outlier
detection rules like interquartile range (IQR) rule [23].

Step 4. Reconstruct the metabolomics data matrix 𝑋 as 𝑋̂ =(𝑋̂1𝑋̂2).
Step 5. Compute the differentially expressedmetabolite from
the reconstructed metabolomics data matrix 𝑋̂ using 𝑝 value
and FC value. The 𝑝 value can be calculated using 𝑡-test. To
declare the metabolite as differentially expressed, choose the
threshold 𝑝 value using Bonferroni correction and absolute
fold-change (FC) cut-offs of >2.
Step 6. Rank the differentially expressed metabolites accord-
ing to their influence or importance using support vector
machine (SVM) [24].

Step 7. List the first few top upregulated and downregulated
metabolites from Step 6 that classify the samples with higher
accuracy and declare those metabolites as biomarker. Upreg-
ulated and downregulated metabolites can be identified by
the sign of fold-change values.

The R-code of the proposed method can be found in the
following URL: http://www.statru.org/wp-content/uploads/
2010/12/MetabBio.zip

2.2. Dataset Description. Both simulated and real metabo-
lomics datasets have been used to demonstrate the perfor-
mance of the proposed method in a comparison of the other
methods.

2.2.1. Simulated Dataset. We have simulated metabolomics
datasets using the one-way ANOVAmodel, defined by 𝑦𝑖𝑗𝑘 =𝜇𝑖 + 𝑔𝑖𝑗 + ∈𝑖𝑗𝑘, where 𝑦𝑖𝑗𝑘 is the intensity of 𝑖th metabolite,𝑗th group, and 𝑘th sample; 𝜇𝑖 denote the average intensity of
metabolite 𝑖; 𝑔𝑖𝑗 is the 𝑗th group effect for 𝑖th metabolite and∈𝑖𝑗𝑘 is the random error term. In this linear model, we have
taken 𝜇𝑖∼uniform (4, 8) and ∈𝑖𝑗𝑘∼𝑁(0, 1). We have also
taken two types of metabolites: (i) differentially expressed
(DE) metabolites and (ii) equally expressed (EE) metabolites.
DE metabolites are divided into two groups: upregulated
metabolites and downregulated metabolites. Disease and
control group effects for upregulated metabolites are 𝑔𝑖𝑗 =𝑁(2, 1) and 𝑔𝑖𝑗 = 𝑁(0, 1); for downregulated metabolites
disease and control group effects are 𝑔𝑖𝑗 = 𝑁(0, 1) and𝑔𝑖𝑗 = 𝑁(2, 1) and in case of equally expressed metabolites
the group effect for both cases is 𝑔𝑖𝑗 = 𝑁(0, 1). To make a
simulated metabolomics dataset, we have taken 500 metabo-
lites (30 DE metabolites and 470 EE metabolites) and 80
samples (45 control and 35 disease). From 500 metabolites,
the first 15 metabolites have been included as upregulated
metabolites and 121 to 135metabolites have been incorporated
as downregulated metabolites for disease samples. We have
also included different rates of missing values (10%, 15%,
and 20%) in this dataset, where 50% missing were given at
random and the rest of the missing were given for lower
values. To measure the performance of the proposed method
in different condition, we have incorporated different rates
(3%, 5%, 7%, 10%, and 15%) of outliers in simulated dataset.
The outliers in the 𝑖th metabolite were taken from normal
distribution with mean = 5 ∗ 𝜇𝑖 and variance = 𝜎2𝑖 , where𝜇𝑖 and 𝜎2𝑖 are the mean and variance of the 𝑖th metabolite.
We have distributed the outliers randomly by different rates
(3%, 5%, 7%, 10%, and 15%) in the data matrix cell; therefore,
outliers may fall anywhere in the data matrix. We simulated
100 datasets using the above conditions and alsomeasured the
performance of the proposed method using these simulated
dataset.

2.2.2. Real Metabolomics Dataset. In this paper, we have used
a publicly available real metabolomics dataset on the
metabolomic effect of hepatocellular carcinoma (HCC) that
contains the abundance level measurements of metabolites
from different subjects. This dataset was originally produced
by Patterson et al. [25]. To extract the metabolomic profile
from the sample, ultra-performance liquid chromatography
coupled with electrospray ionization/quadrupole-time-of-
flight mass spectrometry (UPLC-ESI-Q-TOF-MS) was used
and this dataset was normalized by Pareto scaling. This data
matrix contains 1388 rows and 57 columns. Each row is a
metabolite detected by the retention time (rt) and mass to
charge (𝑚/𝑧) ratio that were included in first column and the
second column, respectively.The remaining 55 columns were
different subjects that came from two groups. 20 subjects
were from the hepatocellular carcinoma (HCC) group and
35 subjects were from the control group. There were 26.52%
missing values/cells in this dataset. More details about the
data can be found in the article of Patterson et al. [25].
To measure the performance of the proposed method, we

http://www.statru.org/wp-content/uploads/2010/12/MetabBio.zip
http://www.statru.org/wp-content/uploads/2010/12/MetabBio.zip
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Table 1: Performance measurement of different methods using average RMSE between original and reconstructed data matrix for different
percentage of missing values in absence and presence of outliers using simulated datasets.

Methods with different conditions Without outliers 3% outliers 5% outliers 7% outliers 10% outliers 15% outliers

For 10% missing values

Zero 1.56 1.92 2.10 2.35 2.48 2.69
kNN 0.77 1.42 1.71 2.05 2.23 2.43
RF 0.82 1.45 1.73 2.07 2.24 2.45

Proposed 0.77 1.15 1.19 1.24 1.37 1.48

For 15% missing values

Zero 2.19 2.42 2.56 2.72 2.91 3.22
kNN 0.91 1.47 1.77 2.05 2.36 2.51
RF 0.97 1.51 1.80 2.08 2.39 2.52

Proposed 0.92 1.24 1.28 1.34 1.50 1.64

For 20% missing values

Zero 2.51 2.71 2.88 2.96 3.14 3.37
kNN 1.00 1.58 1.94 2.12 2.45 2.69
RF 1.07 1.63 1.98 2.15 2.48 2.75

Proposed 1.01 1.29 1.34 1.41 1.59 1.71

calculated the error between original and reconstructed data
that we can understand how well the proposed method
reconstructs the data. We also modified the real dataset by
replacing 5% existing values as missing and changing 5%,
10%, and 15% real values by 𝑁(5 ∗ 𝜇𝑖, 𝜎2𝑖 ), where 𝜇𝑖 and 𝜎2𝑖
are the mean and variance of the 𝑖th metabolite in the HCC
data matrix.

2.3. Performance Measurement Criteria. To investigate the
performance of the proposed method, we calculated the
root mean square error (RMSE) between the original dataset
and reconstructed dataset that we can easily identify better
method to reconstruct the data. The formula of RMSE is
RMSE = √(1/𝑛𝑝)∑𝑝𝑖=1∑𝑛𝑗=1(𝑥𝑖𝑗 − 𝑥̂𝑖𝑗)2, where 𝑥𝑖𝑗 and 𝑥̂𝑖𝑗 are
the original and reconstructed value of the 𝑖th row and 𝑗th
column of the data matrix, respectively.

For simulated dataset, we also assess the performance of
the proposed biomarker identification technique compared
to the other techniques where we consider three performance
indices: (i) ROC curve, (ii) area under the ROC curve (AUC),
and (iii) misclassification error rate (MER). To calculate the
above measures, first we identify the DE metabolites using
four different techniques including the proposed technique.
Using the above results, we draw ROC curve using true
positive rate (TPR) and false positive rate (FPR). In a
binary classification system if a positive instance is correctly
classified as positive, it is called true positive (TP); however, if
it is wrongly classified as negative then it is called false
negative (FN). If a negative instance is correctly classified as
negative, it is called true negative (TN); otherwise, it is called
false positive (FP). The TPR and FPR are calculated by

TPR = number of correctly classified as positive
Total number of positives

= 𝑛 (TP)𝑛 (TP) + 𝑛 (FN)

FPR = number of wrongly classified as positive
Total number of negatives= 𝑛 (FP)𝑛 (TN) + 𝑛 (FP) .

(3)

ROC curve plots contain the TPR in𝑦-axis and FPR in𝑥-axis.
In real metabolomics dataset, we do not know the class

of metabolites; therefore, we measure the performance of the
proposed biomarker identification method in a comparison
of the other considering methods by sample classification
using SVM classifier on the basis of the computed DE
metabolites. Using the sample classification results, we cal-
culate the performance indices: ROC curve, accuracy, sensi-
tivity, specificity, positive predicted value, negative predicted
value, and balanced accuracy.

A better method would produce smaller values for FPR
and MER and larger values for TPR and area under the ROC
curve (AUC) by any DE metabolite detector.

3. Results and Discussion

We have evaluated the performance of the proposed method
using both simulated and real data (hepatocellular carci-
noma) analysis results. The detailed description of the sim-
ulated and real data analysis results is discussed in Sections
3.1 and 3.2.

3.1. Simulated Data Analysis Results. To investigate the per-
formance of the proposed method for imputing missing
values, we calculated the average RMSE between original
and reconstructed data matrix using 100 simulated datasets
with different rates (10%, 15%, and 20%) of missing values
in both absence and presence of outliers. The average RMSE
for different methods in both different rates (10%, 15%, and
20%) of missing values and presence of different rates (0%,
3%, 5%, 7%, 10%, and 15%) of outliers have been given in
Table 1. Table 1 showed that in absence of outliers all the
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(d) In presence of 10%missing values and 15% outliers

Figure 1: Performance investigation of different techniques using ROC curve for simulated data in both presence of 10% missing values and
different rates of outliers (0% (a), 5% (b), 10% (c), and 15% (d)).

methods except Zero imputation produce similar as well as
smaller average RMSE between original and reconstructed
data matrices; however, in presence of outliers, the proposed
method gave the smaller average RMSE between original and
reconstructed data matrices compared to other (Zero, kNN,
and Zero imputation) techniques. Therefore, we could say
that the proposed method reconstructs the simulated data
very closely in presence of both different rates (0%, 3%, 7%,
10%, and 15%) of outliers and different rates (10%, 15%, and
20%) of missing values.

We also performed simulation studies to measure the
performance of the four different techniques including our
proposed technique for identifying DE and EE metabolites.
To measure the performance, first we identified the DE
and EE metabolites from the simulated dataset using four
different techniques (Zero + 𝑡 + FC, kNN + 𝑡 + FC, RF +𝑡 + FC, and Proposed) in both presence of 10%, 15%, and
20% missing values and different rates (0%, 5%, 10%, and
15%) of outliers. In case of simulated dataset the metabolites
classes were known; therefore, using the given metabolites
classes and predicted metabolites classes, we calculated the

three different performance indices, ROC curve, AUC values,
and MER, for each biomarker identification technique. We
repeated the above computations for 100 simulated datasets
and calculated the average of each performance measure
and also presented them in Figures 1, 2, and 3 and Table 2.
From Figures 1, 2, and 3, it is seen that the proposed
biomarker identification technique produced larger average
TPR regarding any point of average FPR compared to the
other techniques. Also from Table 2, we can observe that
the proposed biomarker identification technique gave larger
average AUC values and smaller average MER compared
to other (Zero + 𝑡 + FC, kNN + 𝑡 + FC, and RF + 𝑡 +
FC) techniques in both absence and presence of outliers for
different percentage (10%, 15%, and 20%) of missing datasets.
Therefore, we could conclude that the proposed biomarker
identification technique is better among the four techniques
in both presence of missing values and different rates of
outliers.

3.2. Real HCC Data Analysis Results. To measure the perfor-
mance of the proposed method in a comparison of the other
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Table 2: Performance measurement of different methods using average AUC values and MER (in parentheses) for different percentage of
missing values in absence and presence of outliers.

Different conditions Proposed Zero + 𝑡 + FC kNN + 𝑡 + FC RF + 𝑡 + FC
10% missing values and absence of outlier 99.14 (0.86) 95.72 (4.28) 97.82 (2.18) 98.58 (1.42)
10% missing values and 5% outliers 96.86 (3.14) 71.19 (28.81) 85.53 (14.47) 86.25 (13.75)
10% missing values and 10% outliers 94.25 (5.75) 65.69 (34.31) 79.08 (20.92) 80.10 (19.9)
10% missing values and 15% outliers 91.75 (8.25) 57.69 (42.31) 73.14 (26.86) 74.33 (25.67)
15% missing values and absence of outlier 98.93 (1.07) 95.07 (4.93) 97.72 (2.28) 97.98 (2.02)
15% missing values and 5% outliers 95.46 (4.54) 63.29 (36.71) 84.10 (15.9) 85.14 (14.86)
15% missing values and 10% outliers 92.67 (7.33) 59.24 (40.76) 78.07 (21.93) 79.89 (20.11)
15% missing values and 15% outliers 87.49 (12.51) 56.16 (43.84) 70.13 (29.87) 72.46 (27.54)
20% missing values and absence of outlier 98.84 (1.16) 94.44 (5.56) 97.44 (2.56) 97.47 (2.53)
20% missing values and 5% outliers 94.89 (5.11) 54.27 (45.73) 82.46 (17.54) 84.81 (15.19)
20% missing values and 10% outliers 90.44 (9.56) 53.71 (46.29) 77.07 (22.93) 79.48 (20.52)
20% missing values and 15% outliers 83.47 (16.53) 54.11 (45.89) 67.69 (32.31) 70.70 (29.30)
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Figure 2: Performance investigation of different techniques using ROC curve for simulated data in both presence of 15% missing values and
different rates of outliers (0% (a), 5% (b), 10% (c), and 15% (d)).
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Figure 3: Performance investigation of different techniques using ROC curve for simulated data in both presence of 20%missing values and
different rates of outliers (0% (a), 5% (b), 10% (c), and 15% (d)).

methods for imputing missing values in presence of outliers,
we modified 100 real datasets by replacing 5% existing cell
as missing and changing 5%, 10%, and 15% existing cell by(5 ∗ 𝜇𝑖, 𝜎2𝑖 ), where 𝜇𝑖 and 𝜎2𝑖 are the mean and variance of the𝑖th metabolite in the HCC data matrix and also calculated
the average RMSE between real dataset and reconstructed
datasets. The average RMSE for different missing imputation
techniques including our proposed one have been given in
Table 3. We can observe from Table 3 that the proposed
technique has produced smaller average RMSE in all the
cases; that is, the proposed technique could reconstruct the
real data more closely compared to the other methods in
presence of different rates of outliers.

To identify the robust method for biomarker identifica-
tion technique using real dataset, we also computed the dif-
ferent performance indices, ROC curve, accuracy, sensitivity,
specificity, positive predicted value, negative predicted value,
and balanced accuracy for sample classification using the
set of DE metabolites. To compute the performance indices,

Table 3: Performance measurement of different methods using
average RMSE between original and reconstructed data matrix for
real dataset by additionally imputing 5%missing values and different
rates (5%, 10%, and 15%) of outliers.

Methods 5% outliers 10% outliers 15% outliers
Zero 22.76 29.98 41.48
kNN 19.38 27.47 37.81
RF 17.15 26.05 35.29
Proposed 8.41 12.35 17.93

we identified the set of DE metabolites by four different
biomarker identification techniques including the proposed
one and using the identified DE metabolites, we classified
the sample by SVM classifier. We used the fivefold cross
validation to compute the performance indices whose results
have been given in Figure 4 and Table 4.
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Table 4: Performance investigation of different techniques by sample classification using DE metabolites.

Different
techniques Accuracy (%) Sensitivity (%) Specificity (%)

Positive
predicted value

(%)

Negative
predicted value

(%)

Balanced
accuracy (%)

Zero + 𝑡 + FC 94.55 97.14 90.00 94.44 94.74 93.57
kNN + 𝑡 + FC 92.73 97.14 85.00 91.89 94.44 91.07
RF + 𝑡 + FC 89.09 88.57 90.00 93.94 81.82 89.29
Proposed 98.18 100.00 95.00 97.22 100.00 97.50
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Figure 4: Performance investigation of different techniques using ROC curve for real HCC dataset.

All performance indices of Figure 4 and Table 4 showed
that the proposed biomarker identification technique is
better among the four techniques. Therefore, we identi-
fied the differentially expressed metabolites using the pro-
posed biomarker identification technique and categorized the
upregulated and downregulated metabolites using the value
of the FC as well asmining theDEmetabolites using heatmap
plot and hierarchical clustering technique in Figure 5. We
also ranked the 43 DE metabolites using SVM technique
according to their importance. The ranked upregulated and
downregulated metabolites have been showed in Figure 6(a).
From Figure 5, it was clear that the identified 43 DE
metabolites can correctly and clearly cluster the samples into
two groups: control group and HCC group. We could also
observe that, from the 43 DE metabolites, 21 metabolites
were downregulated and the remaining 22 metabolites were
upregulated in HCC patients. In Figure 6(a) red circles
indicated upregulated metabolites and blue circles indicated
downregulated metabolites. From Figure 6(a), we could say
that the metabolite with 𝑚/𝑧 = 288.2899, rt = 3.7607 is
the most influential upregulated metabolite for HCC disease.
We got 7 upregulated and 3 downregulated metabolites from

the top ten ranked DE metabolites and we also drew the
correlation network of the top ten rankedDEmetabolites (see
Figure 6(b)). Thus on the basis of Figure 6, we could take
the top four upregulated metabolites (“𝑚/𝑧 = 288.2899, rt =3.7607,” “𝑚/𝑧 = 272.2947, rt = 4.1998,” “𝑚/𝑧 = 332.3161,
rt = 4.2309,” and “𝑚/𝑧 = 360.3472, rt = 4.2449”) and
the top two downregulated metabolites (“𝑚/𝑧 = 544.3426,
rt = 4.5071” and “𝑚/𝑧 = 590.3222, rt = 4.4899”) as a set
of biomarkers for HCC disease. We also observed that, for
sample classification, this set of biomarkers (six metabolites)
gave 100% classification accuracy in fivefold cross validation.
However, for taking a final decision to declare as a set of
biomarkers, further wet laboratory experimental validation
is required.

4. Conclusion

We have shown that missing values and outliers play impor-
tant role in different biomarker identification techniques to
identify biomarkers from GC-MS metabolomics data. We
have also shown that performance of existing traditional
biomarker identification procedure is very much influenced
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Figure 5: Mining 43 differentially expressed (DE) metabolites identified by the proposed method.

by outlying observations and missing values. Therefore, in
this paper, we have proposed a new biomarker identification
procedure using groupwise robust singular value decompo-
sition, 𝑡-test, and FC approach. We investigated the perfor-
mance of the proposedmethod in a comparison of traditional
methods using both simulated and real data analysis. On the
basis of our computational findings, we could conclude that
the proposed method is better performer than the traditional
techniques in both absence and presence of outliers. There-
fore, our suggestion is to use the proposed biomarker identi-
fication procedure for metabolomic biomarker identification
inGC-MSmetabolomics data. Using the proposed biomarker
identification technique, we have got four upregulated and
two downregulated metabolites for hepatocellular carcinoma

disease and further research can be the wet laboratory
experimental validation to take a final decision.
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Figure 6: Ranking the 43 differentially expressed (DE) metabolites according to their importance (a) and correlation network of top ten
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