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Abstract

In experimental and theoretical neuroscience, synaptic plasticity has dominated the area of neural plasticity for a very long
time. Recently, neuronal intrinsic plasticity (IP) has become a hot topic in this area. IP is sometimes thought to be an
information-maximization mechanism. However, it is still unclear how IP affects the performance of artificial neural networks
in supervised learning applications. From an information-theoretical perspective, the error-entropy minimization (MEE)
algorithm has newly been proposed as an efficient training method. In this study, we propose a synergistic learning
algorithm combining the MEE algorithm as the synaptic plasticity rule and an information-maximization algorithm as the
intrinsic plasticity rule. We consider both feedforward and recurrent neural networks and study the interactions between
intrinsic and synaptic plasticity. Simulations indicate that the intrinsic plasticity rule can improve the performance of artificial
neural networks trained by the MEE algorithm.
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Introduction

Artificial neural networks with nonlinear processing elements

are designed to deal with the troublesome problem of nonlinear

and nonstationary signal processing. In a supervised learning

problem, we are provided with a training data set containing the

input, x, and the desired output (target), d, and we aim at finding

the input-output mapping that models the complicated relation-

ship between x and d. To solve such a problem, we can employ an

artificial neural network trained by an appropriate learning

algorithm to infer the mapping implied by the training data.

Most current learning algorithms for artificial neural networks in

applications rely on updating the connection weights w among

neurons. This is often done with the aim of minimizing the mean

square error (MSE) between the network output y and the desired

output d over all input-target pairs, where the error is defined as

e~Ed{yE. However, the MSE criterion takes into account only

the first two moments of the error distribution, making it ill-suited

to non-linear applications in which the errors are not normally

distributed. The error entropy criterion (EEC) has been proposed

on information-theoretic grounds by Principe et al. as an

alternative cost function that takes into account the full

distribution of errors [1]. This is the form of synaptic plasticity

we consider in this article.

So far, experimental and theoretical studies on neural plasticity

have mostly focused on synaptic plasticity, which is in accordance

with Hebb’s idea that memories are stored in the synaptic weights

and learning is the process that changes those synaptic weights.

Interestingly, recent experimental results have revealed that

neurons are also capable of changing their intrinsic excitability

to match the dramatic change of the level of received synaptic

input [2–9]. This novel neural mechanism is referred to as intrinsic

plasticity (IP). IP is hypothesized to maximize the information

capacity while maintaining an individual neuron’s homeostasis of

its mean firing rate level [10–12]. To better understand the role IP

might play in learning and memory, several IP rules [10,11,13,14]

were proposed that bring the firing rate distribution into a desired

one with a relatively low activity level as observed in visual cortical

neurons [15]. Actually, upon neglecting the energy constraint,

these IP rules [10,11,13,14] are closely related to the single-neuron

case of Bell and Sejnowski’s information-maximization algorithm

[16]. When the input-output mutual information is maximized by

this learning algorithm, a neuron uses all of its possible response

levels equally and uses the steep parts of the activation function to

respond to the high density parts of the input probability density

function (PDF); therefore, this information-maximization algo-

rithm enhances the discriminative ability of the neuron.

The two plasticity mechanisms, intrinsic plasticity and synaptic

plasticity, have been studied mostly separately. We are wondering

how these two plasticity mechanisms would cooperate in artificial

neural networks to learn complex mappings. To this end, we

combine Bell and Sejnowski’s information-maximization algo-

rithm [16] for intrinsic plasticity and the error-entropy minimi-

zation (MEE) algorithm [17] for synaptic plasticity, which we refer

to as synergistic information-theoretic learning. We use the resulting

synergistic procedure for training feedforward neural networks

(FNN) and recurrent neural networks (RNN) and test them on two

benchmark applications. For simplicity and clarity, we focus on the

prediction problem in the presentation, but the learning algorithm

can also be used for solving problems of regression, classification
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and so on. Simulations indicate that Bell and Sejnowski’s

algorithm is appropriate for the proposed synergistic learning

scheme and that the MEE algorithm combined with IP

outperforms the MEE algorithm considered in isolation.

Materials and Methods

Information-maximization Algorithm as an Intrinsic
Plasticity Rule

Studying the effects of intrinsic plasticity on various neural

functions and dynamics relies on modelling intrinsic plasticity. In

[10,11,13,14], several intrinsic plasticity rules were proposed,

which bring the firing rate distribution into a desired one with a

relatively low activity level as observed in visual cortical neurons

[15]. In all these IP rules, the energy consumption of a biological

neuron is considered as an important constraint. Keeping a low

average output is critical for biological organisms due to energy

expenditure, but it seems unnecessary for artificial neural networks

such as the FNN and the RNN. In terms of choosing the IP rule in

this situation, we prefer to emphasize the character of maximizing

the information capacity. Neglecting the energy constraint in this

study, we apply the information-maximization learning algorithm

proposed by Bell and Sejnowski [16] as the intrinsic plasticity rule

for individual neurons of artificial neural networks. This learning

algorithm adjusts the slope and the bias of the activation function

to maximize the mutual information between the input and the

output of each neuron. As a result of this learning procedure, the

activation function is adapted to match the input distribution, i.e.,

sensitive parts of the activation function respond to high density

parts of the input probability density function. The sensitivity is

characterized by the slope of the response curve and steep parts

are more sensitive than flat parts. For the tanh activation function

of the kth neuron Qk(:),

yk~Qk(vk; ak,bk) ~tanh(akvkzbk)

~
exp(akvkzbk){exp({akvk{bk)

exp(akvkzbk)zexp({akvk{bk)
,
ð1Þ

where vk is the input of the kth neuron, yk is the output of the kth

neuron, ak represents the sensitivity of the activation function and

bk is the bias. The corresponding information-maximization

learning algorithm can be obtained as follows

ak~akzgIP(
1

ak

{2E vkyk½ �),

bk~bkzgIP({2E yk½ �),
ð2Þ

where gIP is the learning rate of intrinsic plasticity. For a training

set including n0 samples, the input-output pairs of the kth neuron,

½vk(1), . . . ,vk(n0)�T and ½yk(1), . . . ,yk(n0)�T, are used to estimate

the expected values E vkyk½ � and E yk½ �. This batch version of the

information-maximization rule can be derived directly from the

objective of entropy maximization (‘‘online’’ equivalent). Note that

this learning rule neglects the recurrent interactions that may exist

in the network, such that the entropy of the output of the kth unit

is assumed to depend only on ak and bk, but not on any other a
k
0

and b
k
0 for k=k

0
.

We apply this information-maximization rule as the intrinsic

plasticity rule for artificial neural networks in this paper. Note that

the original information-maximization rule in [16] is an online

weight update rule for ICA. For simplicity, in all of the following

presentations and simulations, the tanh function is chosen as the

activation function and the corresponding intrinsic plasticity rule is

applied unless stated otherwise.

MEE Algorithm as a Synaptic Plasticity Rule
As mentioned above, the MSE criterion considers only the first

two moments of the error distribution, thus it is ill-suited to non-

linear applications in which the errors are not normally

distributed. Recently, the error entropy (EEC) criterion based on

ideas from information theory has been proposed as an alternative

cost function for learning [1]. EEC aims at removing as much

uncertainty as possible from the error signal, and this can be

accomplished by calculating the entropy of the error and

minimizing it with respect to the connection weights. In the ideal

case, all the uncertainty in the error is removed and the error

probability density function is a delta function. This method is

called Minimization of the Error Entropy (MEE) [17].

In applications, Renyi’s quadratic entropy, H2, is often applied

instead of Shannon’s entropy [1]. We can easily use Renyi’s

quadratic entropy to derive a learning rule. For a probability

density function p(X ) where X is a continuous random variable,

the formula for Renyi’s quadratic entropy is given by

H2(p)~{log
Ð

p2(X )dX : ð3Þ

One can then define a quadratic potential V2(p), such that

H2(p)~{logV2(p), ð4Þ

where

V2(p)~

ð
p2(X )dX : ð5Þ

Thus, the minimization of Renyi’s quadratic entropy in Eq. (3) is

equivalent to the maximization of the information potential in Eq.

(5). Importantly, Eq. (5) may be interpreted as an expectation of

the function p(X ) under itself, that is, V2~E½p(X )�X~pp(X ). This

means that, provided one can estimate p(x) for any sample x, one

may subsequently estimate V2 through simple Monte-Carlo

averaging of p(x) over many independent samples from p(x) (i.e.

the data set). Here, we use Gaussian kernel density estimation with

bandwidth s, p̂p(x)~
1

n0

Xn0

i~1
Gs(x{x(i)), where

x(i),i~1,2, . . . ,n0 are n0 samples from the true underlying

distribution p(X ), G denotes the Gaussian kernel function, and

s represents the kernel size for probability density function

estimation [18]. Assuming Gaussian kernels and substituting this in

the quadratic entropy expression Eq. (5), we get the following

estimator for V2 [1],

V̂V2,s(p(x))~

ð
p̂p2(x)dx

~

ð
1

n0

Xn0

i~1

Gs(x{x(i))

 !2

dx

~
1

n0
2

Xn0

i~1

Xn0

j~1

Gs
ffiffi
2
p (x(j){x(i)),

ð6Þ

where fx(1),x(2), . . . ,x(n0)g is a set of data samples. With the

steepest ascent approach, the training algorithm for weight

Synergistic Learning Based on Information Theory
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updating to maximize the quadratic information potential of the

error e, V2(p(e)), becomes

Dw~g
LV̂V2,s(p(e))

Lw
, ð7Þ

where Dw denotes the change of the weight w and g is the learning

rate. The gradient of the quadratic information potential with

respect to the connection weight is

LV̂V2,s(p(e))

Lw
~ 1

2n0
2s2

Pn0

i~1

Pn0

j~1

(e(i){e(j))

:Gs
ffiffi
2
p (e(j){e(i)) : ( Le(j)

Lw
{ Le(i)

Lw
):

ð8Þ

In training with entropy-based criteria, one important point to

note is that since entropy does not change with the mean of the

distribution the algorithm will converge to a set of optimal weights

that may not yield zero-mean error. This problem can be easily

solved by adding a bias to the final output to yield zero mean error

over training data set after the training procedure ends [19].

We now introduce our synergistic information-theoretic learn-

ing algorithm, which is the simple combination of the IP rule of

Eq. (2) and the synaptic plasticity rule of Eq. (7).

Synergistic Information-theoretic Learning
From the perspective of information maximization, there are

potential advantages of intrinsic plasticity in training artificial

neural networks. For traditional weight update learning algorithms

(synaptic plasticity rules), the activation functions of neurons are

fixed during the training procedure. However, an invariant

nonlinear activation function might be unsuitable for the input

distribution. In an extreme case, the output of the neuron may be

constantly found at saturation, and therefore carry very little

information about the input. For real-world applications, the

desired output distribution of a single neuron is far from these

distributions with very low information. As we stated in the

previous section, the information-maximization algorithm (the

intrinsic plasticity rule) can adjust the shape of the activation

function to match the input distribution and consequently increase

the mutual information between the input and the output.

Therefore, we hypothesize that the intrinsic plasticity rule might

be beneficial to learning in artificial neural networks.

The MEE algorithm requires several samples to accurately

estimate the information potential. We therefore perform batch

(epochwise) learning iterations, whereby the weights w are updated

according to Eq. (8), on the basis of the output-target pairs

collected from all samples in the training set [20]. This allows for a

correct estimation of the quadratic potential, and therefore more

stable learning. Note that the exact form of the gradient in Eq. (8)

depends on the network architecture, and is derived below for

both feedforward and recurrent networks. Following this weight

update, which we call the ‘‘synaptic stage’’ of a learning iteration,

we update the parameters a and b of the activation function Q of

each neuron to implement intrinsic plasticity according to Eq. (2).

This we call the ‘‘intrinsic stage’’. Note that the expected values

E :½ � in Eq. (2) are again estimated from the input-output pairs

collected from all samples in the training set. The synaptic and

intrinsic stages together define one learning iteration (epoch),

which we repeat until the stopping criterion is satisfied. In the

following simulations, we stop the learning process after a certain

number of learning iterations.

One may think that the effects of synaptic plasticity and intrinsic

plasticity merely superpose in the learning process. In fact, we

argue that they interact, which is why we call this combination

‘‘synergistic learning’’. Indeed, the weight updating procedure

affects the input of the neuron, and further influences the IP

learning; the IP learning procedure affects the output of the

neuron, and further influences the weight updating.

Stability of Synergistic Learning
It has been noted that, in reservoir networks, due to the

incremental nature of intrinsic plasticity (the value of parameter a

increases during learning), too large a value for a can cause

unstable learning behavior (oscillations in the learning curve) and

thus the performance might deteriorate as learning goes on [21].

This phenomenon is due to the cancellation effect, whereby high

gains can be compensated by small synaptic weights. Nevertheless,

with a proper IP learning rate, unstable behavior takes place only

when the IP rule is applied for a very long training time; thus, IP

learning can be kept stable before the stopping criterion of the cost

function is satisfied [21].

Construction of the FNN
In order to study the performance of the proposed synergistic

learning algorithm, we first choose a general class of feedforward

neural networks (FNN) as an example. As illustrated in Fig. 1, this

neural network is composed of an input layer, a single hidden layer

and an output layer. The activation function of each neuron is

Q(:)~tanh(:). The network input consisting of P external elements

can be described by the P|1 vector, u~½u1,u2, . . . ,uP�T. In the

hidden layer, there are M neurons (processing elements). Each

neuron in the hidden layer receives the weighted sum of the

network input u. The output of these neurons, yh, is described as

yh~½yh
1,yh

2, . . . ,yh
M �

T
, and is calculated by

vh ~(Wh)Tu,

yh ~j(vh),
ð9Þ

where vh~½vh
1,vh

2, . . . ,vh
M �

T
, and Wh represents the P|M

synaptic weight matrix connecting the input layer to the hidden

one. An element wh
k,l of this matrix represents the weight

connection from the lth input node to the kth hidden neuron.

For the output layer, we consider only one neuron, which receives

the weighted sum of the output of hidden neurons, yh, and

produces the network output, yo. The calculation is described as

vo ~(Wo)Tyh,

yo ~Q(vo),
ð10Þ

where Wo represents the M|1 synaptic weight matrix linking the

hidden layer to the output unit. An element wo
i of this matrix

represents the connection weight from the ith hidden neuron to

the final output.

Synergistic Algorithm for the FNN
The difference between the desired output, d, and the network

output, yo, is defined as the error of the FNN, e~d{yo. For the

output layer of a single-output FNN, the derivative of the error e

with respect to the weight wo
i in the M|1 matrix Wo can be

calculated as

Synergistic Learning Based on Information Theory
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Le

Lwo
i

~{Q
0
(vo)yh

i , ð11Þ

where

Q
0
(v)~a(1{tanh2(avzb))~a(1{y2):

In a multi-layer FNN, a backpropagation algorithm is usually used

to train the weight matrix from the input layer to the hidden layer,

Wh. If the EEC cost function is used, the training algorithm is the

MEE algorithm [22]. The derivative of the error e with respect to

the weight wh
k,l in the matrix Wh can be calculated as

Le

Lwh
k,l

~{Q
0
(vo)wo

kQ
0
(vh

k)ul : ð12Þ

By Eq. (11) and Eq. (12), the weight update rule in Eq. (7) and Eq.

(8) can be calculated.

On the basis of the algorithm description in [23], the proposed

synergistic learning algorithm for the FNN is summarized as

follows:

Step 1. Initialization. Choose a random set of small values

for the P|M hidden layer weight matrix Wh and the M|1
output layer weight matrix Wo. Set a~1 and b~0 for each

neuron. Let u(n)~½u1(n),u2(n), . . . ,uP(n)�T be the input signal and

let d(n) be the corresponding desired network output. The number

of samples in the training set is n0, thus 1ƒnƒn0.

Step 2. Repetition. The epochwise training procedure begins

with n~1. Repeat the following calculations with the input vector

u(n) and the target output d(n) for 1ƒnƒn0

vh(n) ~(Wh)Tu(n),

yh(n) ~Qh(vh(n)),

vo(n) ~(Wo)Tyh(n),

yo(n) ~Qo(vo(n)),

e(n) ~d(n){yo(n),

ð13Þ

where

vh(n) ~½vh
1(n),vh

2(n), . . . ,vh
M (n)�T,

Qh(vh(n))
~½Qh

1(vh
1(n); a1,b1),Qh

2(vh
2(n); a2,b2), . . . ,

Qh
M (vh

M (n); aM ,bM )�T,

yh(n) ~½yh
1(n),yh

2(n), . . . ,yh
M (n)�T:

Step 3. Weight Matrix Update. Update the weight matrices

Wo and Wh by the weight update algorithm. Calculation results of

vk(n) and yk(n) in Eq. (13) are used to compute the derivatives of

the error with respect to the weight in Eq. (11) and Eq. (12); with

the results of the derivatives and the errors e(n) in Eq. (13), Eq. (8)

can be computed and finally the weight matrices can be updated

by Eq. (7).

Step 4. Activation Function Update. Update the parame-

ters ak and bk of the activation function Qk of the neuron k using

the intrinsic plasticity rule described in Eq. (2) with all values of

vk(n) and yk(n). By the batch version of the IP rule, the

parameters ak and bk are only updated once during an epoch.

Step 5. Return or Stop. If the stopping criterion is satisfied,

the training procedure is stopped; otherwise, set n~1 and return

to Step 2.

Construction of the RNN
In this section, we continue to study the proposed synergistic

learning algorithm in a general class of recurrent neural networks

[23,24]. As illustrated in Fig. 2, the neural network contains N

neurons. The input vector u is comprised of the external signal

vector of P elements ½u1,u2, . . . ,uP�T, and the feedback vector

r~½r1,r2, . . . ,rN �T. The feedback signal rk after a delay of one

time unit is the output of the kth neuron yk, rk(n)~yk(n{1), thus

the feedback vector at the time point n can be rewritten as

r(n)~½y1(n{1),y2(n{1), . . . ,yN (n{1)�T. Then the input vector

at the time point n is given by

u(n)~½u1(n),u2(n), . . . ,uP(n),y1(n{1),y2(n{1), . . . ,yN (n{1)�T:

The (Pz1zN)|N synaptic weight matrix of the recurrent

network is represented by W. An element wk,l of this matrix

represents the connection weight from the lth input node to the

kth neuron. With the input vector u and the activation function Q,

the N|1 output vector y~½y1,y2, . . . ,yN � is calculated as

v ~WTu,

y ~Q(v),
ð14Þ

where v~½v1,v2, . . . ,vN � and y1 is the single output of the network.

Figure 1. Structure of the feedforward neural networks.
doi:10.1371/journal.pone.0062894.g001
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Synergistic Algorithm for the RNN
Following the approach of [25], a recursive learning algorithm

can be derived for the recurrent neural network. Referring to [26],

the gradients of the outputs of the neurons Lyj(n)=Lwk,l(n) can be

computed recursively as follows

Lyj(n)

Lwk,l(n)
&Q

0
(vk)½

XN

a~1

Lya(n{1)

Lwk,l(n{1)
wj,azPz1(n)

z dkjul(n)�,
ð15Þ

where dkj~1 for k~j, otherwise, dkj~0. The initial state is

Lyj(0)=Lwk,l(0)~0. With the relationship e~d{y1, where d is

the desired output and y1 is the true output of the RNN, the

partial derivative of the error with respect to the weight becomes

Le

Lwk,l

~{
Ly1

Lwk,l

: ð16Þ

By using Eq. (15) and Eq. (16), the weight update rule in Eq. (7)

and Eq. (8) can be calculated.

The proposed synergistic learning algorithm for the RNN is

summarized as follows:

Step 1. Initialization. Choose a random set of small values

for the (Pz1zN)|N weight matrix W and the N|1 feedback

vector r(n)~½r1(n),r2(n), . . . ,rN (n)�T. Set a~1 and b~0 for all

neurons. Obtain the P|1 external input vector and the desired

signal d(n) with 1ƒnƒn0.

Step 2. Repetition. The epochwise training procedure begins

with n~1. Input the external input vector, the feedback vector

and the desired signal, and perform the following calculations

v(n) ~WTu(n),

y(n) ~Q(v(n)),

e(n) ~d(n){y1(n),

ð17Þ

where

v(n) ~½v1(n),v2(n), . . . ,vN (n)�T,

Q(v(n))
~½Q1(v1(n); a1,b1),Q2(v2(n); a2,b2), . . . ,

QN (vN (n); aN ,bN )�T,

y(n) ~½y1(n),y2(n), . . . ,yN (n)�T:

Let n~nz1, and set

r(n)~y(n{1):

.

Repeat the calculation until n~n0.

Step 3. Weight Matrix Update. Update the weight matrix

W by the MEE learning algorithm. Calculation results of Eq. (17)

of the current epoch are used to compute the derivatives of the

error with respect to the weight in Eq. (15) and Eq. (16); with the

results of the derivatives and the errors e(n) in Eq. (17), Eq. (8) can

be computed and finally the weight matrix can be updated by Eq.

(7).

Step 4. Activation Function Update. Update the parame-

ters ak and bk of the activation function Qk of the neuron k using

the intrinsic plasticity rule described in Eq. (2). With the batch

version of the IP rule, the parameters ak and bk are only updated

once during an epoch.

Step 5. Return or Stop. As one epoch ends, if the stopping

criterion is satisfied, the training procedure is stopped; otherwise,

set n~1 and r(1)~y(n0), and return to Step 2.

Results

The FNN and RNN are widely applicable to a set of problems

such as regression and classification. As a typical example, we test

the proposed synergistic learning algorithm on the single-step

prediction of time series. For comparison, we also perform

simulations for the MEE algorithm alone. The time series is

denoted as s(i),i~1, � � � ,n0. In the following simulations, two data

sets of different time series are used. The first data set is the well-

known Mackey-Glass chaotic time series, which often serves as a

benchmark in testing prediction algorithms in the literature. The

Mackey-Glass system (for t = 17) is described by the following

differential equation

ds(t)
dt

~{0:1s(t)z 0:2s(t{17)

1zs(t{17)10 , ð18Þ

which is a chaotic system modelling irregular behaviors in

biological systems [27]. In our simulations, we use the Runge-

Kutta method with time-step 0.1 to integrate Eq. (18), and then we

draw samples at T~1s interval to obtain the discrete time series.

We use 300 samples for training and 10000 new samples

generated from a different initial condition for testing. We use

‘‘MG’’ to denote this data set. The other data set is a speech signal

obtained from an audio report in the program of ‘‘Scientific

Figure 2. Structure of the recurrent neural networks.
doi:10.1371/journal.pone.0062894.g002
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American 60 Seconds Science’’. We name this data set ‘‘SS’’. We

use 300 samples from this speech signal for training and 10000

different samples for testing. The values of these two data sets are

all normalized in the range [21, 1].

Results of the FNN
The P external time-delay signals serve as input of the FNN. At

the nth time point, the input vector u(n) is described by the P|1
vector,

u(n)~½s(n{1),s(n{2), . . . ,s(n{P)�T,

where (Pz1)ƒnƒ(Pzn0). In the output layer, there is only one

neuron. The actual prediction made by the feedforward neural

network at time n is the output of the FNN yo(n), and the desired

prediction is s(n).

In the following simulations, the elements of the initial weight

matrices Wh and Wo are randomly selected as small values

uniformly distributed in [0, 0.05]. All numerical results in this

section are averaged over 10 independent runs. The learning

curves of these 10 runs are quite similar and the standard

deviations of the learning results across the 10 independent runs

are very small, and are therefore not shown here. As for many

other learning algorithms, the convergence of the MEE-BP

algorithm is slow when a small learning rate is adopted. Certainly

we can increase the learning rate to accelerate the training process,

but in this situation the learning curve tends to oscillate slightly at

the latter stage of the training process. In this paper, we use a

damping learning rate to make the learning process fast at the

beginning and to prevent oscillations in the long run. The initial

learning rate is set to g~0:015 and the learning rate decreases

exponentially from one epoch to the next, g~0:996g. As we have

mentioned in the previous section, a damping IP learning rate is

also used to prevent unstable learning behavior during a long

training process. The initial learning rate of IP in Eq. (2) is

gIP~0:002, and the IP learning rate also decreases exponentially,

gIP~0:998gIP.

The first simulation compares the learning curves of the MEE

algorithm and the synergistic algorithm. In synergistic learning,

the activation functions of neurons in both the hidden layer and

the output layer are adjusted by IP. In this simulation, structural

parameters of the FNN are set to P~6 and M~5. A Gaussian

kernel is used to estimate entropy in all simulations with kernel size

s~0:1. The initial values of all activation functions are set to a~1
and b~0. Figure 3 shows the learning curves of quadratic

information potentials of the training error and Fig. 4 shows the

Figure 3. Learning curves of the quadratic information potential by the FNN. The dashed lines denote the learning curves of the MEE
algorithm, and the solid lines denote the learning curves of the synergistic algorithm. (A) 300-epoch learning curves for the training data set ‘‘MG’’. (B)
1000-epoch learning curves of ‘‘MG’’. (C) 300-epoch learning curves for the training data set ‘‘SS’’. (D) 1000-epoch learning curves of ‘‘SS’’.
doi:10.1371/journal.pone.0062894.g003
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Figure 4. Learning curves of the mean square error by the FNN. The dashed lines denote the learning curves of the MEE algorithm, and the
solid lines denote the learning curves of the synergistic algorithm. (A) 300-epoch learning curves for the training data set ‘‘MG’’. (B) 1000-epoch
learning curves of ‘‘MG’’. (C) 300-epoch learning curves for the training data set ‘‘SS’’. (D) 1000-epoch learning curves of ‘‘SS’’.
doi:10.1371/journal.pone.0062894.g004

Figure 5. Decomposition of the FNN. (A) The input layer and the hidden layer of the FNN. (B) The output layer of the FNN.
doi:10.1371/journal.pone.0062894.g005
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learning curves of the training MSE. When calculating the MSE

during the training procedure, the bias of the output is adjusted so

as to cancel the mean error over the training set. For each learning

curve, we display 300 epochs to compare the training speed and

also display 1000 epochs to measure the final performance. As the

learning curves of the information potential and the MSE show,

the synergistic algorithm outperforms the MEE algorithm with

regard to the convergence speed. After a long run, i.e., 1000

epochs, the synergistic algorithm can still maintain good perfor-

mance. As a classical performance criterion, the mean square

errors of the training set and the testing set after the 1000-epoch

training process are summarized in Table 1 for ‘‘MG’’ and Table 2

for ‘‘SS’’. In the last row of each table, the improvement

percentage of the performance is the difference between the

MSE of the MEE algorithm and the MSE of the synergistic

algorithm, divided by the MSE of the MEE algorithm. According

to the training and testing results of the MSE, the synergistic

learning algorithm performs better than the MEE algorithm

considered in isolation. The quadratic information potentials are

also summarized in these tables. The improvement of the

quadratic information potential is not as significant as that of the

MSE.

In order to analyze the synergies between IP and synaptic

plasticity in detail, input, output, and error distributions of neurons

for the training set ‘‘MG’’ are presented. All these distributions are

obtained by kernel density estimation in a single run, and results of

two independent runs are similar. In order to explain the results

clearly, we decompose the FNN into two parts, which are shown in

Fig. 5.

Figure 6 shows the input and output distributions of the neurons

in the hidden layer. We can refer to Figure 5(A) while analyzing

the results shown in Fig. 6. Figure 6(A) shows the initial input

distributions for five hidden neurons. As the elements of the initial

weight matrices are randomly selected small values, the initial

input of each hidden neuron is concentrated on a relatively small

range. Figure 6(B) shows the input distributions after 1000 epochs,

which are expanded into a relatively wide range in contrast to the

initial input distributions. During the training process, the network

input vectors u of each epoch for the two algorithms are totally

identical, therefore the change of the input distributions of five

hidden neurons is due to the updating of the synaptic weights Wh.

After training, the input distributions for the synergistic algorithm

are more similar to the initial input distributions than those for the

MEE algorithm, in other words, the change of the input

Figure 6. Input and output distributions for neurons in the hidden layer of the FNN. Input and output distributions for the five hidden
neurons with the training data set ‘‘MG’’ are displayed. (A) Initial input distributions for the five hidden neurons. (B) Input distributions after 1000-
epoch training for the two algorithms. (C) Initial output distributions for the five hidden neurons. (D) Output distributions after 1000-epoch training
for the two algorithms. In (B) and (D), the dash lines denote the distributions obtained by the MEE algorithm, and the solid lines denote the
distributions obtained by the synergistic algorithm.
doi:10.1371/journal.pone.0062894.g006
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distributions for the synergistic algorithm is relatively small. We

infer that it is relatively easy for the weight update rule to form

such input distributions from the initial input distributions, thereby

accelerating the training process. Figure 6(C) shows the initial

output distributions of the neurons in the hidden layer. The initial

output is also concentrated on a small range. Figure 6(D) shows the

output distributions after 1000 epochs. After training, the output

distributions of the two different algorithms are similar for each

hidden neuron.

Figure 7 shows the input and training error distributions of the

output neuron. Since the output of this neuron is closely related to

the error, so we do not present the output distribution here. We

can refer to Fig. 5(B) while analyzing the results shown in Fig. 7.

Figure 7 (A) and (B) show the input distributions of the output

neuron (distributions of vo) before and after training, respectively.

Before training, the input distribution is concentrated around zero.

After 1000 epochs, the input distribution obtained by the

synergistic learning algorithm is more concentrated than the

distribution obtained by the MEE algorithm. Note that the input

of the output neuron vo is the weighted sum of the output of

Figure 7. Input distributions for the output neuron and error distributions of the FNN. Input distributions for the single output neuron
and error distributions with the training data set ‘‘MG’’ are presented. (A) Initial input distribution. (B) Input distributions after 1000-epoch training for
the two algorithms. (C) Initial error distribution. (D) Error distributions after 1000-epoch training for the two algorithms. In (B) and (D), the dash lines
denote the distributions obtained by the MEE algorithm, and the solid lines denote the distributions obtained by the synergistic algorithm.
doi:10.1371/journal.pone.0062894.g007

Table 1. Performance comparison for the FNN using ‘‘MG’’.

Data set Training set Testing set

Criterion V̂V2,s MSE V̂V2,s MSE

No IP 2.2632 0.0056670 2.2967 0.0051939

With IP 2.3950 0.0048786 2.4212 0.0044354

Improvement (MSE) 13.91% 14.60%

doi:10.1371/journal.pone.0062894.t001

Table 2. Performance comparison for the FNN using ‘‘SS’’.

Data set Training set Testing set

Criterion V̂V2,s MSE V̂V2,s MSE

No IP 2.1518 0.0074291 2.6066 0.0019096

With IP 2.1905 0.0067886 2.6703 0.0012658

Improvement (MSE) 8.62% 33.71%

doi:10.1371/journal.pone.0062894.t002
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hidden neurons, vo~(Wo)Tyh. As we see from Fig. 6(D), the

output distributions of each hidden neuron for the two algorithms

are similar, which means that the statistical properties of the

output of hidden neurons yh are similar in the two algorithms.

Thus, the main reason for the difference in the distributions of vo

after training is the updating of the synaptic weights Wo. In the

synergistic learning case, the distribution of vo after training is

relatively similar to the initial input distribution. This implies the

weight updating process of the synergistic algorithm makes

relatively small change of the synaptic weights Wo, thus it is

more easily achieved. Figure 7(C) and (D) show the error

distributions of the two algorithms. After 1000 epochs, the FNN

trained by the synergistic learning algorithm produces errors that

are more concentrated around zero, which means there are higher

number of small errors and fewer number of large errors,

indicating better performance in terms of error. Although the

increase of the quadratic information potential with IP is not

substantial as shown in Table 1 and Table 2, learning with or

without IP yields qualitatively different error distributions.

Thus, the analysis on the results in Fig. 6 and Fig. 7 provides an

explanation for the fast convergence and good final performance

of the synergistic learning shown in Fig. 3 and Fig. 4.

Figure 8 shows how the parameters of the activation functions in

the FNN evolve over 1000 epochs. Figure 8 (A)(B) display the

evolution of a and b averaged over the five hidden neurons,

respectively. The changes of the parameter pairs for the five

hidden neurons are very similar, thus we show the averaged results

and the corresponding error bars (standard deviations across the

five hidden neurons). Figure 8 (C)(D) display the evolution of the

parameters of the output neuron. In the FNN trained by the

algorithm with IP, the values of a get large constantly to steepen

the activation functions while the values of b decrease.

The second simulation concerns the IP learning rate. Figure 9

compares the learning curves of the synergistic algorithm with

various initial IP learning rates gIP for the data set ‘‘MG’’. Four

initial IP learning rates gIP~0:001, gIP~0:002, gIP~0:003, and

gIP~0 (no IP) are used for comparison. The results in Fig. 9

indicate that with a relatively large IP learning rate the

information potential increases and the MSE decreases faster,

but the highest information potentials and the smallest mean-

square-errors during training procedures with the three non-zero

IP learning rates are similar. In terms of the convergence speed, a

relatively large IP learning rate is preferable, however, if gIP is set

to be a much larger value (larger than 0.003), some ripples appear

when the learning curve tends to converge, which is similar to that

of the online reservoir adaptation by intrinsic plasticity in [21].

Figure 10 displays the performance of FNNs with different

numbers of hidden neurons (from 3 to 15) using the training data

Figure 8. Evolution of the parameters of the activation functions in the FNN. The training data set ‘‘MG’’ is used. (A) Mean of the gain
parameter a of the five hidden neurons. (B) Mean of the bias parameter b of the five hidden neurons. (C) The gain parameter a of the output neuron.
(D) The bias parameter b of the output neuron.
doi:10.1371/journal.pone.0062894.g008
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Figure 9. Learning curves of the FNN with different IP learning rates. The training data set ‘‘MG’’ is used. The initial IP learning rates
gIP~0:001, gIP~0:002, gIP~0:003, and gIP~0 (no IP) are used for comparison. Learning curves of the quadratic information potential: (A) 300
epochs. (B) 1000 epochs. Learning curves of the mean square error: (C) 300 epochs. (D) 1000 epochs.
doi:10.1371/journal.pone.0062894.g009

Figure 10. Relation between the training result and the number of hidden neurons of the FNN. Training results after 1000-epoch training
for the case of the training data set ‘‘MG’’ are presented. The circle markers denote the results obtained by the MEE algorithm, and the cross markers
denote the results obtained by the synergistic algorithm. (A) Results of the quadratic information potential. (B) Results of the mean square error.
doi:10.1371/journal.pone.0062894.g010
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set ‘‘MG’’. The values of the estimated quadratic information

potential and the mean square error after 1000 epochs are shown.

With the assistance of IP, the performance of the FNN containing

various numbers of hidden neurons is always better. In terms of

the quadratic information potential, the result obtained by a FNN

containing 3 hidden neurons with IP is better than that obtained

by a FNN containing 15 hidden neurons without IP. As for the

MSE, the result obtained by a FNN containing 3 hidden neurons

with IP is comparable to that obtained by a FNN containing 10

hidden neurons without IP. The performance improvement

caused by adding IP is more significant than that caused by

increasing the number of hidden neurons. In addition, increasing

the number of hidden neurons brings a heavier computational

burden. In the FNN, adding one hidden neuron brings extra

(PzN) connection weights; for example, if we increase the

number of hidden neurons from 5 to 10 in the above simulations,

we have to update extra (6z1)|5~35 weights. However, we

only need to update (5z1)~6 parameter pairs of (a,b) with

simple calculations if we add IP to these five hidden neurons and

the one output neuron. According to these results, the FNN

trained by the synergistic learning algorithm can work well with

fewer neurons and thus reduce the computational cost.

Results of the RNN
As in the case of the FNN, we discuss how the recurrent neural

network handles the problem of single-step prediction using the

same data sets. The input of the network consists of P time-delay

signals and N feedback signals,

u(n)~½s(n{1),s(n{2), . . . ,s(n{P),

y1(n{1),y2(n{2), . . . ,yN (n{1)�T:

The prediction made by the recurrent neural network at time n is

the output of the first neuron y1(n), and the desired output is also

s(n).

The values of elements in the initial weight matrix are also

randomly selected as small values uniformly distributed in [0,

0.05]. Results in this section are also averaged over 10

independent runs. The MEE learning rate is set to g~0:01. The

initial IP learning rate is gIP~0:01 and it decreases exponentially,

gIP~0:995gIP.

The first simulation compares the learning curves of the

synergistic algorithm and the MEE algorithm. Structural param-

eters of the RNN are set to P~4 and N~2. A Gaussian kernel

with kernel size s~0:1 is used to estimate entropy. The initial

values of all activation functions are set to a~1 and b~0.

Figure 11 shows the learning curves concerning the quadratic

information potentials of the training error, and Fig. 12 shows the

learning curves of the training MSE. After the training procedure,

the mean square errors and the quadratic information potentials of

the training set and the testing set are summarized in Table 3 for

‘‘MG’’ and Table 4 for ‘‘SS’’. These results manifest that the

synergistic algorithm also outperforms the MEE algorithm for the

RNN.

Figure 13 shows the input and output distributions of the

neurons in the RNN. Before training, the input distribution of the

first neuron (the output neuron of the RNN, denoted by ‘‘Neuron

10 in the figure) is concentrated on a small range, as shown in

Fig. 13(A). After training, in contrast to the situation without IP,

the change of the input distribution from the initial state is

relatively small in the situation with IP, as shown in Fig. 13(B). The

training error distributions before and after training are shown in

Fig. 13(C) and (D), respectively. The situation of the first neuron in

the RNN is similar to that of the output neuron in the FNN, but

the difference between the distributions with and without IP for

the second neuron (denoted by ‘‘Neuron 20 in the figure) seems

interesting. Without IP, the input and output distributions of the

second neuron after learning are restricted in a relatively small

range. However, with IP, the input distribution after learning is

expanded to a wider range; correspondingly, the output of the

second neuron is also expanded from the initial distribution. Since

the output signal returns to constitute the input of the RNN, if the

output of the second neuron is restricted in a very small range, the

input signal, r2(n), is ineffective. With a wide data range, r2(n) can

provide more information (larger entropy) for the input of the

RNN.

Figure 14 shows the evolution of the parameters of the

activation functions in the RNN. The values of a get large

constantly to steepen the activation functions while the values of b

of the two neurons are adjusted to match the position of the input

distribution.

The second simulation concerns the initial IP learning rate.

Figure 15 compares the learning curves of the synergistic

algorithm with various initial IP learning rate gIP for the training

data set ‘‘MG’’. The initial IP learning rates gIP~0:005,

gIP~0:01, gIP~0:015, and gIP~0 (no IP) are used. In terms of

both the convergence speed and the final result, a relatively large

IP learning rate is better; however, oscillation behavior appears

when gIP gets much larger. This phenomenon of the intrinsic

plasticity rule may be ubiquitous in different kinds of neural

networks.

Figure 16 displays the performance of the RNNs with different

numbers of neurons using the training data set ‘‘MG’’. Without IP,

the performance improvement is trivial with the increasing of the

number of neurons. The MEE learning algorithm for the RNN

seems insensitive to the number of neurons. In this situation, using

two neurons seems effective enough since adding neurons

increases the computational cost but neither raises the quadratic

information potential nor lowers the MSE substantially. For the

RNNs, the performance improvement caused by adding IP is far

more significant than that caused by increasing the number of

hidden neurons.

Table 3. Performance comparison for the RNN using ‘‘MG’’.

Data set Training set Testing set

Criterion V̂V2,s MSE V̂V2,s MSE

No IP 2.5666 0.0021446 2.5876 0.0019388

With IP 2.6653 0.0013974 2.6994 0.0009594

Improvement (MSE) 34.84% 50.51%

doi:10.1371/journal.pone.0062894.t003

Table 4. Performance comparison for the RNN using ‘‘SS’’.

Data set Training set Testing set

Criterion V̂V2,s MSE V̂V2,s MSE

No IP 2.2362 0.0060375 2.6811 0.0011350

With IP 2.2765 0.0055386 2.7057 0.0009260

Improvement (MSE) 8.26% 18.41%

doi:10.1371/journal.pone.0062894.t004
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In some of the above simulations, we do not show the results for

the data set ‘‘SS’’, since they are similar to those for the data set

‘‘MG’’. All activation functions used in the above-mentioned

neural networks are tanh functions, thus the intrinsic plasticity rule

for the tanh function is applied to the synergistic learning

algorithm. In the case of using logistic functions, similar results

can be obtained.

Discussion

Combining the MEE algorithm as the synaptic plasticity rule

and the information-maximization algorithm as the intrinsic

plasticity rule, we proposed a synergistic information-theoretic

learning algorithm for training artificial neural networks. Whereas

the information-maximization algorithm can increase the mutual

information of a single neuron, it can not optimize the cost

function such as EEC and MSE. Nevertheless, simulations have

shown that this information-maximization-based IP rule benefits

the artificial neural networks in both the convergence speed and

the final learning result. As the IP rule adjusts the activation

function of a single neuron to match its input distribution so that

all output levels tend to appear equivalently, the input can be

encoded much more efficiently and the discriminative ability of the

neuron is enhanced. We believe that the discriminative ability of a

neuron plays a nontrivial role in the performance of artificial

neural networks. In terms of the FNN, the synergistic learning

algorithm with IP only in the hidden layer or only in the output

neuron still outperforms the MEE algorithm without IP, but is

inferior to the learning algorithm with IP in both layers (we do not

present these results in the paper).

Compared with the original algorithm, the synergistic learning

algorithm can be performed with a relatively small increase in

computational cost due to the local nature of the IP mechanism

and the simplicity of the information-maximization algorithm. In

addition, we have used the efficient batch version of the

information-maximization algorithm. In applications, a long

training process is unnecessary since the improvement is minor

at the end part of the training. For example, with a 300-epoch

training, the IP rule is quite effective to improve the performance.

In a long run, the synergistic learning maintains good perfor-

mance.

Advanced search methods for nonlinear optimization such as

conjugate gradient algorithms and the Levenberg-Marquardt

algorithm can be used to further speed up the learning process.

In order to focus on the synergies between IP and synaptic

plasticity and preclude influences of other advanced search

methods on learning, we used the simple gradient descent (GD)

method.

Figure 11. Learning curves of the quadratic information potential by the RNN. The dashed lines denote the learning curves of the MEE
algorithm, and the solid lines denote the learning curves of the synergistic algorithm. (A) 300-epoch learning curves for the training data set ‘‘MG’’. (B)
1000-epoch learning curves of ‘‘MG’’. (C) 300-epoch learning curves for the training data set ‘‘SS’’. (D) 1000-epoch learning curves of ‘‘SS’’.
doi:10.1371/journal.pone.0062894.g011
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In biology, Bell and Sejnowski’s information-maximization

algorithm can match the statistics of naturally occurring visual

contrasts to the response amplitudes of the blowfly’s large

monopolar cell (LMC). The contrast-response function of the

LMCs in the blowfly’s compound eye approximates to the

cumulative probability distribution of contrast levels in natural

scenes, thus the inputs are encoded so that all response levels are

used with equal frequency, resulting in a uniform output

distribution [28]. We may regard this experimental result as the

biological justification of the proposed synergistic learning rule.

As related work, several studies have combined synaptic

learning algorithms with Triesch’s IP rule [10,11,29] or other

revised versions for training artificial neural networks. In [30], an

unsupervised scheme including the IP rule for pretraining extreme

learning machines is introduced. In [21,31], an online adaptation

rule with IP for the reservoir networks is presented. To the best of

our knowledge, all these previous studies on the effects of IP on

neural network learning have used the MSE criterion rather than

the EEC criterion [21,30,31]. Besides, the energy consumption of

a biological neuron is considered as an important constraint for the

IP rules used in these previous studies. In this study, we neglect this

energy constraint and regard Bell and Sejnowski’s information-

maximization algorithm for a single neuron’s activation function

as the intrinsic plasticity rule. In a recent study related to ours,

Lazar et al. presented a self-organizing recurrent network (SORN)

combining intrinsic plasticity and synaptic plasticity that learns

spatio-temporal patterns in its input while maintaining its

dynamics in a healthy regime suitable for learning, in which the

IP rule regulates a neuron’s firing threshold to maintain a low

average activity level and the synaptic rule is a simple model of

STDP [29]. This work implies that as we try to understand neural

plasticity and how it shapes the brain’s representation and

processing, it is insufficient to study individual mechanisms in

isolation and studying their interactions is necessary [29]. In this

study, we have shown how the information-maximization IP rule

improves the performance of FNNs and RNNs trained with the

EEC criterion and we draw the conclusion that the interactions of

different plasticity mechanisms can benefit artificial neural

networks in supervised learning applications. Here we have

focused on providing an upgraded information-theoretic learning

method for applications and we have not specifically attempted to

emphasize on the biological relevance.

Figure 12. Learning curves of the mean square error by the RNN. The dashed lines denote the learning curves of the MEE algorithm, and the
solid lines denote the learning curves of the synergistic algorithm. (A) 300-epoch learning curves for the training data set ‘‘MG’’. (B) 1000-epoch
learning curves of ‘‘MG’’. (C) 300-epoch learning curves for the training data set ‘‘SS’’. (D) 1000-epoch learning curves of ‘‘SS’’.
doi:10.1371/journal.pone.0062894.g012
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Figure 13. Input, output and error distributions for neurons of the RNN. The training data set ‘‘MG’’ is used. Neuron 1 (output neuron): (A)
Initial input distribution. (B) Input distributions after 1000-epoch training for the two algorithms. (C) Initial error distribution. (D) Error distributions
after 1000-epoch training for the two algorithms. Neuron 2: (E) Initial input distribution. (F) Input distributions after 1000-epoch training for the two
algorithms. (G) Initial output distribution. (H) Output distributions after 1000-epoch training for the two algorithms. In (B), (D), (F), and (H), the dash
lines denote the distributions obtained by the MEE algorithm, and the solid lines denote the distributions obtained by the synergistic algorithm.
doi:10.1371/journal.pone.0062894.g013

Figure 14. Evolution of the parameters of the activation functions in the RNN. The training data set ‘‘MG’’ is used. (A) The gain parameter a.
(B) The bias parameter b.
doi:10.1371/journal.pone.0062894.g014
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Figure 15. Learning curves by the RNN with different IP learning rates. The training data set ‘‘MG’’ is used. The initial IP learning rates
gIP~0:005, gIP~0:01, gIP~0:015, and gIP~0 (no IP) are used for comparison. Learning curves of the quadratic information potential: (A) 300 epochs.
(B) 1000 epochs. Learning curves of the mean square error: (C) 300 epochs. (D) 1000 epochs.
doi:10.1371/journal.pone.0062894.g015

Figure 16. Relation between the training result and the number of neurons of the RNN. Training results after 1000-epoch training for the
case of the training data set ‘‘MG’’ are presented. The circle markers denote the results obtained by the MEE algorithm, and the cross markers denote
the results obtained by the synergistic algorithm. (A) Results of the quadratic information potential. (B) Results of the mean square error.
doi:10.1371/journal.pone.0062894.g016
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