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The effects of rhein on D-GalN/
LPS-induced acute liver injury in
mice: Results from gut
microbiome-metabolomics and
host transcriptome analysis
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and Jianhua Hu1*

1Beijing Youan Hospital, Capital Medical University, Beijing, China, 2Beijing Institute of Hepatology,
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Background: Rhubarb is an important traditional Chinese medicine, and rhein

is one of its most important active ingredients. Studies have found that rhein

can improve ulcerative colitis by regulating gut microbes, but there are few

reports on its effects on liver diseases. Therefore, this study aims to investigate

these effects and underlying mechanisms.

Methods:Mice were given rhein (100mg/kg), with both a normal control group

and a model group receiving the same amount of normal saline for one week.

Acute liver injury was induced in mice by intraperitoneal injection of D-GalN

(800 mg/kg)/LPS (10 ug/kg). Samples (blood, liver, and stool) were then

collected and assessed for histological lesions and used for 16S rRNA gene

sequencing, high-performance liquid chromatography-mass spectrometry

(LC-MS) and RNA-seq analysis.

Results: The levels of ALT and AST in the Model group were abnormal higher

compared to the normal control group, and the levels of ALT and AST were

significantly relieved in the rhein group. Hepatic HE staining showed that the

degree of liver injury in the rhein group was lighter than that in the model

group, andmicrobiological results showed that norank_o:Clostridia_UCG-014,

Lachnoclostridium, and Roseburia were more abundant in the model group

compared to the normal control group. Notably, the rhein treatment group

showed reshaped disturbance of intestinal microbial community by D-GalN/

LPS and these mice also had higher levels of Verrucomicrobia,

Akkermansiaceae and Bacteroidetes. Additionally, There were multiple

metabolites that were significantly different between the normal control

group and the model group, such as L-a-amino acid, ofloxacin-N-oxide, 1-

hydroxy-1 ,3-diphenylpropan-2-one,and L-4-hydroxyglutamate

semialdehyde, but that returned to normal levels after rhein treatment. The

gene expression level in the model group also changed significantly, various

genes such as Cxcl2, S100a9, Tnf, Ereg, and IL-10 were up-regulated, while
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Mfsd2a and Bhlhe41 were down-regulated, which were recovered after rhein

treatment.

Conclusion: Overall, our results show that rhein alleviated D-GalN/LPS-

induced acute liver injury in mice. It may help modulate gut microbiota in

mice, thereby changing metabolism in the intestine. Meanwhile, rhein also may

help regulate genes expression level to alleviate D-GalN/LPS-induced acute

liver injury.
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Introduction

Rhein is an anthraquinone compound extracted from the

rhubarb plant. Multiple studies have found rhein to have various

biological effects such as anti-inflammatory (1), lipid-lowering

(2), antioxidant (3), and anti-tumor (4) effects. In addition,

many studies have also shown that rhein can improve the

treatment of various diseases such as diseases of the nervous

system (5), blood (6), digestive system (7, 8), metabolism (9),

and kidney (10). In the study of liver injury, rhein has been

found to help alleviate liver fibrosis caused by CCL4 (11), and for

chronic liver injury caused by methotrexate (12) (MTX), rhein

has been shown to inhibit the elevation and remission of alanine

aminotransferase (ALT) and aspartate aminotransferase (AST)

through the Nrf2-HO-1 pathway.

Acute liver injury is usually caused by viruses, drugs (13, 14),

or autoimmune disorders and frequently leads to hepatocyte

death. This type of injury is characterized by no underlying liver

disease, rapid onset, and high mortality. At present, the main

treatment for acute liver injury is liver transplantation. Although

the survival rate of acute liver injury has been improved in recent

years, its mortality rate remains high. Studies have found that

acute liver injury caused by drugs (such as acetaminophen) (15)

has a significantly higher survival rate without transplantation,

and a large number of researchers have begun to conduct

extensive investigations into nontransplantation treatment of

acute liver injury.

In recent years, research on the liver-gut axis has gradually

deepened, and the development of gut microbiome technology

has led to the result that gut microbes are closely related to the

occurrence and development of acute liver injury. Although

probiotic strains primarily colonize the intestine, they can also

interact with the liver at distant sites via the gut-liver axis and its

associated metabolism (16). Studies have found that increasing

intest inal probiot ics such as Baci l lus cereus (17) ,

Bifidobacterium longum R0175 (18), and Lactobacillus reuteri
02
DSM 17938 (19), can effectively reduce D-GaIN/LPS-induced

increases in plasma AST and ALT, improve the abnormality of

liver tissue, and regulate intestinal dysbiosis. Furthermore,

studies have also found that the gut microbiome may regulate

the level of acute liver injury through certain signaling pathways,

such as with Lactobacilli (20), which can activate the

transcription factor Nrf2 which has a protective effect on

oxidative liver injury. Furthermore, Lactobacillus (21) is able

to immunoregulate the recruitment of canonical dendritic cells

(cDCs) to the liver to produce IL-10 and TGF-b via TLR9

activation, preventing further liver inflammation. However,

studies have also shown that the gut microbiome can

modulate the MYC pathway and exacerbate liver damage (22).

Moreover, the metabolites of gut microbes such as 1-phenyl-1,2-

propanedione (23) have been found to be present in increased

proportions in the metabolites of gut microbiota in liver-injured

mice, but Galactose, Myo-inositol and Oleic Acid (24, 25)

metabolites have been found to be significantly lower in the

gut microbiota of liver-injured mice.

In addition to the above, rhein has been reported to be able

to modulate gut microbiota diversity and community

composition, reduce obesity, and improve glucose tolerance in

high-fat diet-fed rats (2). Not only that, but rhein can also

regulate gut microbiota metabolism and relieve ulcerative colitis

(26). We,therefore,hypothesize that gut microbiota is the

“targets” for rhein in the treatment of acute liver injury.
Materials and methods

Animals and experimental design

Fifteen specific pathogen-free conventional male C57BL/6

mice weighing 18-20 g, were used for this study. After 1 week of

adaptive feeding, we randomly divided themice into three groups:

the normal control group (NC group), the D-GaLN/LPS model
frontiersin.org
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group (Sigma-Aldrich; St. Louis, USA; cat: G0500/cat: L2630),

and the rhein (Abmole Bioscience Inc: Catalog No: M3998)

gavage treatment group, with five mice in each group. After 1

week of adaptive feeding, for the 8th to 15th days of the

experiment, we gave rhein to the treatment group (100 mg/kg)

by intragastric administration, and the other two groups were

intragastrically administered the same dose of normal saline. On

the 15th day of the experiment, the mice in the model group and

rhein group were intraperitoneally injected with D-GalN/LPS

(800mg/kg, 10ug/kg), and the normal control group was

intraperitoneally injected with the same dose of physiological salt.
Sample collection

After injection of D-GalN/LPS, all animals were anesthetized

with ether 5 hours later, blood was collected from the eyeball for

AST and ALT analysis, part of the liver was fixed with 4%

paraformaldehyde for histomorphological analysis, and part of

the liver was snap-frozen in liquid nitrogen for transcriptome

analysis. Cecal contents were snap-frozen in liquid nitrogen and

immediately stored at -80°C for further 16s rRNA and

metabolomic analysis. During the experiment, all tissue

samples were kept frozen for as long as possible.
Assessment of liver injury

Plasma alanine aminotransferase (ALT) and aspartate

aminotransferase (AST) were measured using an automatic

biochemical analyzer (Chemray 800, rayto, China). We also

excised 2 × 2 ×1 cm of liver tissue from the left lobe, fixed it

with 4% formaldehyde, embedded it in paraffin, sectioned it, and

stained it with HE. Pathological liver tissue damage was assessed

using the HAI score (27).
DNA extraction and 16S rRNA gene
sequencing

The total genomic DNA of gut microbiota was extracted from

feces using the E.Z.N.A.® Soil DNA Kit (Omega Bio-Tek, USA).

Then, DNA concentration and integrity were measured by

NanoDrop2000 and agarose gel electrophoresis before

sequencing preparation. The 27F_1492R region of the 16S

rRNA gene of the microbiota was amplified using barcoded

primers (forward primer: 27F: AGRGTTYGATYMTGG

CTCAG; reverse primer: 1492R: RGYTACCTTGTTACGA

CTT) and sequenced using the Illumina MiSeq platform. A

thermal cycler was performed on a PCR system (GeneAmp

9700, ABI, USA), and the mixture of PCR products was
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subsequently purified using an AxyPrep DNA Gel Extraction

Kit. After purification, amplicons were combined in equal

amounts and subjected to sequencing library preparation

according to the manufacturer’s manual. Eligible libraries were

sequenced on Pacbio Sequel II (Illumina, USA).
Metabolite analysis

To analyze the metabolites of the gut microbiota, we first

added 400 mL of extraction solution (methanol:water=4:1(v:v),

containing 0.02 mg/mL internal standard (L-2-chlorophenyl

alanine) to 50mg fecal samples, ground them up, and

extracted them by low-temperature ultrasonic extraction for 30

min (5°C, 40 KHz), let them stand at -20°C for 30 min,

centrifuged them for 15 min (13000 g, 4°C), and pipetted the

supernatant into a sample vial with an inner cannula for analysis

on the computer.

Next, we performed LC-MS analysis and chromatographic

separation on an ultra-high performance liquid chromatography-

tandem Fourier transformmass spectrometry (UHPLC-Q Exactive

HF-X) system. The chromatographic conditions were as follows.

The columnwas ACQUITYUPLCHSS T3 (100mm× 2.1mm i.d.,

1.8 mm;Waters, Milford, USA), the column temperature was 40°C,

and the flow rate was 0.4 mL/min. The mass spectrometry

conditions were that the sample was ionized by electrospray and

that themass spectral signals were collected in positive (3500V) and

negative ion (3500V) scanningmodes, respectively, with a scanning

range of 70-1050 (m/z), a sheath gas flow rate of 50 (arb), and an

auxiliary gas flow rate of 13 (arb), a capillary temperature of 325°C,

a heating temperature of 425°C, an S-Lens voltage of 50V, collision

energy parameters of 20eV, 40eV, 60eV, and a resolution of 6000

(Full MS)/7500 (MS2). ProgenesisQI (Waters Corporation,

Milford, USA) was used to perform baseline filtering, peak

identification, integration, retention time correction, and peak

alignment in order to screen for metabolic biomarkers that

showed significant differences between different treatment

groups. Finally, we matched the obtained precursor and fragment

ions with metabolic databases: the human metabolome (database

http://www.hmdb.ca/), and the Scripps database (https://metlin.

scripps.edu/).
RNA-seq analysis of the liver

Total RNAwas extracted from tissue samples using the Zymo

Quick-RNA™ Miniprep Kit (zymo), and we were able to isolate

AT base pairings with polyA using magnetic beads with Oligo

(dT). After this,we isolated mRNA isolated from total RNA, and

this enriched mRNA was randomly broken into small fragments

of 300bp. Next, the mRNA was used as a template to reverse
frontiersin.org
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synthesize one-strand cDNA using random primers, followed by

two-strand synthesis. After adding adapters, the final library was

obtained by purification and amplification, and qualified library

2X150bp duplex sequencing was performed on IlluminaNovaseq.

After filtering the raw data, high-quality sequencing data (clean

data) was obtained for subsequent analysis. The original data after

quality control and cleaning (reads) were then compared to the

reference genome to obtain the number of read counts of genes,

and then we carried out the expression difference analysis of genes

between samples to identify genes that were differentially

expressed between samples.
Statistical analysis

Statistical analyses were performed using GraphPad 8.0.

Data are presented as the Mean ± SEM. The differences

between two groups were analyzed by Student’s t-test. Multiple

group comparisons were analyzed using one-way analysis of

variance (ANOVA) with Bonferroni correction. All results were

considered statistically significant at P < 0.05. The differential

metabolites were filtered by variable influence on projection

(VIP) selection according to the PLS-DA and the filtering

conditions VIP > 1 and P < 0.05. Spearman’s correlation

values were computed with the R version 3.3.1. Metabolites

were tentatively assigned by molecular formula matching and

related information obtained from online databases such as the

Human Metabolome Database (HMDB, http://www.hmdb.ca/

spectra/ms/search) (28). Pathway analysis was performed on the

KEGG website (29) (http://www.genome.jp/kegg/).
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Results

The effects of rhein on acute liver injury
caused by D-galactosamine/LPS

Compared to the normal control group, the plasma ALT and

AST levels of the mice in the D-GalN/LPS group were significantly

higher. Plasma ALT [NC vs Model, P < 0.01, Model vs Rhein, P <

0.01] and AST [NC vsModel, P < 0.01, Model vs Rhein, P < 0.001]

levels were significantly relieved in the rhein group, however

(Figure 1A). The histopathological results showed that there was

no abnormal difference in the histological changes of the normal

mouse liver; the hepatic lobules were clear, and no hepatocyte

degeneration or necrosis was found (Figures 1B, C). In contrast,

D-GalN/LPS treatment resulted in severe liver damage in the

mice, but the rhein group showed significantly less liver damage

and lower histological changes.
The effects of rhein on the structure of
intestinal flora

Fecal samples were analyzed by 16s rRNA high-throughput

sequencing technology to elucidate the regulatory role of rhein

on gut microbiota, and we used the b-diversity analysis method

to evaluate the diversity differences between different groups.

The structure of gut microbiota was different in different

treatment groups. Specifically, in our Bray–Curtis distance-

based principal coordinate analysis (PCoA), the NC group

showed a separation from the model group and the rhein
B

C

A

FIGURE 1

Rhein alleviates d-galactosamine/LPS-induced liver injury. (A) Plasma ALT and AST levels were determined 12 hours after intraperitoneal
injection of D-GalN/LPS. (B) Liver HAI score. (C) Representative liver sections from different treatment groups (n = 6 each). (**P < 0.01,
and ****P < 0.0001 compared to the ALF group, one-way ANOVA).
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group, and the gut microbiota structure of the model group

showed distinct deviation from the rhein group (explaining

37.42% of the variation), indicating that the core microbiota

changed significantly after treatment (Figure 2A). Using a

diversity index to evaluate the diversity (Shannon index and

Simpson index) of the microbial community (Figure 2B), we

found that compared with the normal control group, the

diversity of the microbiota of the mice in the model group
Frontiers in Immunology 05
decreased, and the intestinal microbes of the rhein intervention

group decreased significantly.

The microbial community composition of mouse cecal

contents showed that the microorganisms primarily consisted

of Firmicutes (58.36%), Proteobacteria (24.92%), and

Verrucomicrobiota (15.53%) at the phylum level (Figure 2C).

Compared to the model group, the rhein intervention group had

higher levels of Verrucomicrobiota (P<0.01) and Proteobacteria
B

C

D

A

FIGURE 2

The effects of rhein on gut microbial composition and structure in mice (n =5). (A) Alpha diversity. (B) Beta diversity was determined by the
Bray–Curtis distance-based principal. (C) predominant fecal microbial communities, and different bacteria at the phylum, family, and genus
levels. (The symbol * indicates statistically significant differences between two groups, *p < 0.05 and **p < 0.01, one-way ANOVA). (D) The linear
discriminant analysis effect size (LEfSe) analysis identified gut bacterial biomarkers in mice in three group.
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(P<0.05). Additionally, the most abundant families included

Lachnospiraceae (42.52%), Muribaculaceae (22.20%),

Akkermansiaceae (17.02%), Lactobacillaceae (7.62%),

Ruminococcaceae (2.41%), Bacteroidaceae (1.74%), and

Oscillospiraceae (1.35%). The amount of Norank_o:

Clostridia_UCG-014 in the model group was higher than that

in the normal control group and rhein group (P<0.05), but

Akkermansiaceae (P<0.01) and Bacteroidaceae (P<0.05) in the

rhein treatment group were much higher than those in the

model group. The most abundant genera were norank_f:

Muribaculaceae (23 .96%) , Akkermans ia (18 .88%) ,

Lachnospiraceae_NK4A136_group (17.79%), norank_f:

Lachnospiraceae (14.73%), Lactobacillus (8.45%), Bacteroides

(1.94%), Lachnoclostridium (1.54%), Roseburia (1.46%),

Lachnospiraceae_UCG-006 (1.09%), and Mucispirillum

(1.07%). Compared to the normal control group and the rhein

group, the relative abundances of Lachnoclostridium and

norank_o:Clostridia_UCG-014 in the model group were

higher (P<0.05). Furthermore, the abundance of Roseburia in

the model group was also higher than that in the other two

groups, but the difference was not statistically significant. Finally,

compared to the model group, the abundance of Bacteroides in

the rhein group was higher (P<0.05).

Our LEfSe analysis further showed the abundance of

differential taxa, and a histogram with logarithmic LDA > 4.0

and a cladogram is shown in Figure 2D. This analysis showed

that acute liver injury was accompanied by higher amounts of o:

Clostridia_UCG-014, f:norank_o:Clostridia_UCG014, and g:

norank_f:norank_o:Clostridia_UCG-014 and that the rhein

i n t e r v e n t i o n g r o u p w a s mo r e a b u nd a n t i n p :

Verrucomicrobiota, c:Verrucomicrobiae, o:Verrucomicrobiales,

f:Akkermansiaceae, and g:Akkermansia, :Johns:Akkeracactii.
The effects of rhein on intestinal
metabolism

The complex interactions between the host and gut

microbiota are closely related to the host-microbe metabolic

axis. Hence, we next performed untargeted metabolomics of

stool samples using liquid chromatography-mass spectrometry

(LC-MS). Overall there were 997 and 869 metabolites identified

in feces, under the negative and positive modes, respectively. The

score plots of principal component analysis PCA (38.80%) and

partial least squares discriminant analysis OPLS-DA (38.40%)

showed that the metabolome profiles of the NC group, Model

group, and rhein group were clustered separately (Figure 3A).

There were significant differences in metabolic profiles between

the three groups.

In analyzing the different metabolites among the three

groups, we detected a total of 818 differential metabolites. We

conducted KEGG pathway enrichment analysis for all

differential metabolites (Figure 3B) and found that compared
Frontiers in Immunology 06
to the normal group, the most significant metabolic pathways in

the model group were taurine and hypotaurine metabolism,

sphingolipid metabolism, starch and sucrose metabolism, the

citrate cycle (TCA cycle), tropane, piperidine and pyridine

alkaloid biosynthesis, glycerophospholipid metabolism,

alanine, aspartate and glutamate metabolism, caffeine

metabolism, arginine and proline metabolism, galactose

metabolism, and arginine biosynthesis.

Pathways of differential metabolites in the rhein treatment

group and acute liver injury group had higher amounts of alanine,

aspartate and glutamate metabolism, sphingolipid metabolism,

arginine and proline metabolism, arginine biosynthesis,

monoterpenoid biosynthesis, glycerophospholipid metabolism,

flavonoid biosynthesis, tropane, piperidine and pyridine alkaloid

biosynthesis, pyruvate metabolism, histidine metabolism, glycine,

serine and threonine metabolism, aminoacyl-tRNA biosynthesis,

pyrimidine metabolism, carbon fixation in photosynthetic

organisms, and galactose metabolism. This suggests that the

rhein group may have partially reversed some of the side effects

of D-GalN/LPS through these metabolisms.

Next, to discover the possible biomarkers of rhein treatment,

we used Student’s t-test to compare metabolite variation in acute

liver injury between the three groups. We found that 224

metabolites were significantly changed between the normal

control group and the model group (VIP > 1, P < 0.05, FDR <

0.05). Among them, 126 metabolites gradually returned to

normal after rhein treatment, and 36 metabolites had

statistical significance (P<0.05). Among these, the rhein group

up-regulated 11 metabolites reduced by D-GalN/LPS and down-

regulated 25 other metabolites (Figure 3C). Our spearman

correlation analysis of microbiota and metabolites found

correlations between the top 40 significantly altered differential

fecal metabolites and the top 10 most abundant gut microbes

(Figure 3D). We found that Dehydrocyanaropicrin,

Homoveratric acid, Glutamylalanine, 3-(4-hydroxyphenyl)-N-

(4oxobutyl)prop-2-enimidic acid, {[3-(4,5-dihydroxy-2,3-

dimethoxyphenyl)prop- 2-en-1yl]oxy}sulfonic acid, L-4-

Hydroxyglutamate semialdehyde, furocoumarinic acid

glucoside, corchoionoside B, Ofloxacin-N-oxide, (+)-cis-5,6-

Dihydro-5-hydroxy-4 -methoxy-6-(2-phenylethyl)- 2H-pyran-

2-one, and 1-hydroxy-1,3-diphenylpropan-2-one were all

positively correlated with Bacteroidesfen but negatively

correlated with Lachnoclostridium, norank_o:Clostridia_UCG-

014. dehydrocyanaropicrin, glutamylalanine, {[3-(4,5-

dihydroxy-2,3-dimethoxyphenyl)prop-2-en-1yl]oxy}sulfonic

acid, and ofloxacin-N-oxide were also positively correlated with

Akkermansia but negatively correlated with Roseburia Related.

Finally, 5-hydroxymethyl-4-methyluracil, PC(15:0/0:0),

Tetranor, 12-HETE, 9(S)-HODE, Heptadecanoyl, Carnitine,

Paln, litoleoyl Ethanolamide showed positive correlation with

Lachnoclostridium, norank_o:Clostridia_UCG-014, and

Roseburia Positive correlation but negative correlation with

Bacteroidesfen and Akkermansia.
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The effects of rhein on mouse
liver genes

We used transcriptome analysis to determine whether the

gene expression profiles of mouse livers were similar between

different treatment groups. Principal component analysis

showed that the genes of the mice had significant segregation

(41.12%), and compared to the distance between the rhein group

and the normal group, the mice in the model group and the

normal group had more obvious segregation (Figure 4A). We

then identified differentially expressed genes (FC >2 or less than
Frontiers in Immunology 07
0.5, Padj < 0.05) by pairwise comparison of groups. Compared to

the normal group, the number of differentially expressed genes

(DEGs) in the ALF group was 5,220 (DEG1 2663/2557; up-

regulated and down-regulated DEGs and DEGseq), and

compared to the ALF group, the number of differentially

expressed genes (DEGs) in the rhein group was 2,503 (DEG2,

1499/1004; up-regulated and down-regulated DEGs and

DEGseq) (Figure 4B). Among these, rhein vs. ALF and NC vs.

ALF intersected for 1,907 genes (DEG3), indicating that rhein

may alleviate acute liver injury through these genes. Next, DGE3

underwent KEGG annotation and Gene Ontology (GO) term
B

C

D

A

FIGURE 3

Rhein protects against D-galactosamine/LPS-induced altered feceal metabolites. (A) Principal component analysis (PCA) (PC1 = 38.8%): the
partial least squared discriminant analysis (PLS-DA) score plot based on LC-MS profiling data of feceal samples (compound1 = 47.2%). Each dot
with three kinds of color represents the different samples. (B) Meaningful metabolic pathways in the comparison of NC and Model group, and
Model and Rhein groups. (C) Based on VIP > 1, P < 0.05, FDR < 0.05 as a filter for differential metabolites between normal control and ALF
groups, and rhein treatment significantly improved metabolic disorders, *p < 0.05 and **p < 0.01. (D) Heatmap of the correlation between the
altered microbial community and significantly changed metabolites. The color indicates the Spearman’s correlation coefficient.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.971409
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.971409

Fro
B

C

D

A

E

FIGURE 4 (Continued)
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FIGURE 4 (Continued)

Comparisons of gene expression profiles in the mouse livers by RNA-seq among different treatment groups. (A) Principal component analysis
showed that the Model group had distinct gene expression signatures compared with the NC group and rhein group PC1 (explaining 77.68% of
variation). (B) Compared to the NC group, the number of differentially expressed genes (DEGs) in the Model groups was 5,220 (DEG1 2,663/
2,557, upregulated and downregulated DEGs, DEGseq, respectively). Compared to the Model group, the number of differentially expressed
genes (DEGs) in the rhein group was 2,503 (DEG2, 1,499/1,004, up-regulated and down-regulated DEGs, DEGseq, respectively). (C) The
number of genes for Rhein vs. ALF and NC vs. ALF with the same trend was 1,907 (DEG3): KEGG annotation of DEG3 and GO annotation
analysis of DEG3. (D) Heatmap of DEG3. DEG3 genes were further clustered into 10 Genes clusters according to their expression profiles.
(E) Heatmap of the correlation between the altered microbial community and significantly changed gene expressions. *P < 0.05, **P < 0.01.
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annotation analysis, and our KEGG annotation of significantly

differentially expressed genes indicated that most genes were

annotated to amino acid metabolism, carbohydrate metabolism,

energy metabolism, lipid metabolism; folding, classification and

degradation, transcription, translation, signal transduction,

signaling molecules and interactions, cell growth and death,

cell movement, cell communities, and eukaryotes. Our GO

annotations primarily involved molecular functions, cellular

organization, and biological processes (Figure 4C).

In order to study the expression of rhein vs. ALF and NC vs.

ALF for the intersection gene DEG3 in each group, we generated

related expression heatmaps and further aggregated these into 10

cluster trend maps (Figure 4D). Compared to the NC group and

rhein group, subcluster1 and subcluster6 in the ALF group

showed an activated expression pattern, while subcluster2,

subcluster4, subcluster7, subcluster8, and subcluster10 in the

ALF group were inhibited compared to the NC group and rhein

group. Next, we further screened the activated and inhibited

gene groups in the model group (5<Log2FC<5, Padjust<0.05). In

the model group, 9 genes were down-regulated (Table 1), and

102 genes were up-regulated (Table 2), which were recovered

after rhein treatment (P<0.05). For our correlation analysis

between transcriptome genes and microbiota, we selected the

top 30 genes with the largest differences in the above-mentioned

gene table with significant differences for correlation analysis

with the top 10 microorganisms in the gut microbiota

(Figure 4E). These results showed that Mfsd2a and Bhlhe41

genes were positively correlated with Bacteroides (P<0.001;
Frontiers in Immunology 09
P<0.05) and that they were also positively correlated with

Akkermansia, but this correlation was not statistically

significant. The other 28 genes, including Cxcl2, S100a9, Tnf,

Ereg and IL-10 were activated genes in the model group and

were associated with Lachnoclostridium, Roseburia, norank_f:

norank_o:Clostridia_UCG-014, Lactobacillus, norank_f:

Lachnospiraceae, and norank_f:Muribaculaceae, which were all

positively regulated.
Discussion

Our main finding is that the group pretreated with rhein had

substantially better outcomes from liver damage after D-GalN/

LPS injection. Additionally, we observed several other beneficial

effects in the rhein group, including attenuation of microbial

dysbiosis, improvement of metabolic profile, and modulation of

certain gene levels. We also summarized the results of our 16S

rRNA gene sequencing metabolomic and transcriptomic

analysis and discussed the relationship between rhein and

acute liver injury in light of the association of gut bacteria

with metabolic biomarkers and liver tissue genes.

Serum ALT and AST levels have been shown to be the major

biomarkers for liver injury (30), and this study showed that the

rhein group had significantly lower D-GalN/LPS-induced AST,

ALT elevation, and liver tissue damage than the other two

groups. The changes in these two functional indices, along

with the improvement in HAI score, indicated that the
TABLE 1 Significantly down- regulated genes (-5<Log2FC<5, Padjust<0.05) upon exposure of D-DalN/LPS compared to the control group.

Gene name Log2FC (Model/NC) Padjust (NC/Model) Padjust (Model/Rhein)

Mfsd2a -8.107638231 0.00 0.00

Bhlhe41 -6.766796975 0.00 0.01

Per3 -5.665128898 0.00 0.01

Fam13a -5.624820496 0.00 0.02

Grem2 -5.220023357 0.03 0.00

Bbs10 -5.171843892 0.00 0.01

Thsd1 -5.104965618 0.00 0.05

Zfp108 -5.020511277 0.00 0.05

Ttc30b -5.00163948 0.00 0.00
The genes significantly recovered after rhein treatment (Padjust<0.05).
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TABLE 2 Significantly up-regulated genes (-5<Log2FC<5, Padjust<0.05) upon exposure of D-DalN/LPS compared to the control group.

Gene name Log2FC (Model/NC) Padjust (NC/Model) Padjust (Model/Rhein)

Car4 6.919175284 0.00 0.00

Timp1 6.944975523 0.00 0.04

Tgfb1 5.151649063 0.00 0.00

Ier3 5.506764099 0.00 0.00

Hmox1 5.212161173 0.00 0.00

Adamts4 6.706936815 0.00 0.03

Ccl8 5.324963207 0.00 0.00

Stc1 6.06811393 0.00 0.03

Slamf1 5.655920857 0.00 0.00

Il10 6.751278575 0.00 0.00

Cd40 6.349012026 0.00 0.03

Adora2b 5.320542683 0.00 0.01

Plek 6.476748845 0.00 0.00

Adora2a 5.050565758 0.00 0.02

Gfpt2 5.366385622 0.00 0.01

Pik3r5 5.153700574 0.00 0.00

Arg2 6.261374572 0.00 0.00

Acod1 10.4080818 0.00 0.05

Samsn1 6.538537579 0.00 0.00

Cdkn1a 6.453109266 0.00 0.04

Gzma 5.062957775 0.00 0.00

Apom 5.116050176 0.00 0.01

Tnf 7.491073348 0.00 0.00

Hbegf 6.132634273 0.00 0.00

Ms4a4c 5.40723121 0.00 0.01

Ms4a6d 5.985060818 0.00 0.00

Slc16a3 6.097855153 0.00 0.00

Il6 6.740192438 0.00 0.01

Ccr1 5.242404986 0.00 0.00

Sema4c 6.110668584 0.00 0.02

Gpr35 6.249355827 0.00 0.00

Ifi211 6.64611414 0.00 0.01

Sell 5.184631989 0.00 0.00

Il1b 5.774572407 0.00 0.00

Procr 6.322937193 0.00 0.00

Glipr2 7.662069079 0.00 0.03

Tnfrsf9 7.222147271 0.00 0.00

Bst1 7.000658331 0.00 0.00

Ppbp 6.533548869 0.00 0.00

Ereg 7.283104436 0.00 0.01

Clec4e 7.841833483 0.00 0.00

Clec4d 7.743163983 0.00 0.00

Olr1 6.171770662 0.00 0.04

Pglyrp1 6.041945188 0.00 0.00

Siglece 5.451987043 0.00 0.00

Adm 5.451046818 0.00 0.00

Il2rg 5.922866163 0.00 0.01

Angpt2 5.046610524 0.00 0.00

(Continued)
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TABLE 2 Continued

Gene name Log2FC (Model/NC) Padjust (NC/Model) Padjust (Model/Rhein)

Ngp 6.211127623 0.00 0.00

Ptgs2 7.49760651 0.00 0.00

AA467197 7.869514992 0.00 0.00

Batf 6.738098848 0.00 0.00

Jdp2 5.270912884 0.00 0.03

Dbn1 6.522036342 0.00 0.00

Ccl5 5.736058999 0.00 0.01

Serpine1 6.105035149 0.00 0.00

Egr2 6.365133619 0.00 0.00

Slamf7 5.910760118 0.00 0.00

Batf2 5.665438455 0.00 0.02

Spsb1 5.327076278 0.00 0.02

Chil3 8.006701052 0.00 0.00

Serpina3g 5.669202334 0.00 0.03

Trem3 5.377878513 0.00 0.03

Trem1 6.934995142 0.00 0.00

Ccno 5.265875138 0.00 0.00

Il1f9 8.283161225 0.00 0.01

Fpr1 5.057008415 0.00 0.00

Plaur 5.781148943 0.00 0.01

Marcksl1 5.065599451 0.00 0.02

Selplg 5.380248123 0.00 0.00

Tmem252 5.608693398 0.00 0.03

Rasd1 5.127485541 0.00 0.00

Lrrc25 5.036998147 0.00 0.01

Fpr2 5.34870867 0.00 0.00

Hbb-bs 6.318989389 0.00 0.00

S100a8 7.009760337 0.00 0.02

S100a9 7.779229798 0.00 0.00

Capg 5.48152647 0.00 0.00

Cxcl2 9.817770623 0.00 0.00

Osm 5.163056101 0.00 0.04

Nfe2 5.860432292 0.00 0.02

Fcgr4 5.007453977 0.00 0.00

Chil1 7.752737989 0.00 0.01

Snora73a 5.780667664 0.00 0.00

Hba-a2 5.89064318 0.00 0.00

Hba-a1 5.840920595 0.00 0.00

Rps13-ps2 7.199941268 0.00 0.00

Sp110 5.580940347 0.00 0.04

Hbb-bt 5.972566189 0.00 0.00

Pdf 7.367754009 0.00 0.00

Ms4a6c 5.06313634 0.00 0.00

Cstdc4 7.270625276 0.00 0.02

Dnah2os 5.722701063 0.00 0.00

Snora81 7.677871672 0.00 0.03

Apold1 5.765146149 0.00 0.00

Ms4a4a 6.453485429 0.00 0.00
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hepatocyte injury in the rhein group was alleviated compared to

the model group. We also applied fecal microbiome sequencing

to identify changes in the microbiota and found that

Lachnoclostridium, norank_o:Clostridia_UCG014 and

Roseburia were higher in the gut of mice during acute liver

injury, whereas Bacteroides and Akkermansiacea were lower in

the acute liver injury group. Among these, Lachnoclostridium

has been found to be significantly more abundant in the gut of

high-fat diet rats (31, 32) but was significantly inhibited after our

treatment. Roseburia has also been shown to increase in

abundance in high-fat diet mice and has been found to be

positively correlated with increased deoxycholic acid in the

plasma, liver tissue, and feces of high-fat diet mice as well

(33). Studies have shown that deoxycholic acid is a cytotoxic

bile acid that can activate oxidative stress and promote

hepatocyte apoptosis, causing various diseases of the liver

(34, 35).

Additionally, norank_o:Clostridia_UCG-014 is associated

with ulcerative colitis, and it was significantly higher in the

mice in our model group. In models with a tendency to self-heal,

this bacteria has shown a downward trend (36). However, our

rhein group showed signs of regulated DGalN/LPS-

induced gut flora disturbance and suppressed abundance

of Lachnoclostridium, norank_o:Clostridia_UCG-014 and

Roseburia, and higher amounts of Bacteroides and

Akkermansiacea. We further validated these results by LEfSe

analysis and found that two species, Akkermansia_muciniphila

and Lactobacillus_johnsonii, dominated the rhein-treated

group. Akkermansiacea and Bacteroidesfen have been found to

be lower in the feces of patients with cirrhosis and nonalcoholic

fatty liver, respectively, and both have been shown to be

negatively correlated with elevated calprotectin concentration

in the feces of patients with cirrhosis (37).

Akkermansia_muciniphila has recently been recognized as a

next-generation probiotic strain for the treatment of obesity-

related diseases (38), and studies have found that

supplementation with Akkermansia_muciniphila can reduce

the levels of blood markers related to liver dysfunction and

inflammation (39) and improve oxidative stress-induced

intestinal Apoptosis (40), reduce neutrophil infiltration (41),

maintain intestinal barrier function, and promote of short-chain

fatty acid (SCFA) secretion (42) as well, thereby remodeling the

composition of gut microbiota. It also has preventive effects on

fatty liver (40), alcoholic liver disease (41), and hepatic fibrosis
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induced by acetaminophen or carbon tetrachloride (42, 43), and

it has s extracellular vesicles (EVs), which are the cell

membranes of Gram-negative and Gram-positive bacteria that

can interact not only with host cells but also with other

microbiota. Akkermansia_muciniphila has also been found to

improve intestinal permeability, modulate inflammatory

responses, and prevent liver injury in HFD/CCl4-administered

mice (44, 45).

Lactobacillus_johnsonii is a type of lactobacillus that adheres

to intestinal cells (46). Studies have shown that it can inhibit the

cell adhesion of toxic bacteria in the intestine and help maintain

intestinal microecology. In addition, Lactobacillus_johnsonii has

been shown to improve bacterial translocation in cirrhotic rats

with ascites, and bacterial translocation is closely related to

mucosal oxidative damage and impaired intest inal

permeability (47, 48). Therefore, we speculate that rhein can

regulate the intestinal microbiota, induce a more favorable

composition of intestinal microbiota, improve the intestinal

barrier, and improve inflammatory and oxidative stress

responses to prevent and treat acute liver injury.

In the primary differential metabolic-pathway-amino-acid

metabolism, a number of differential metabolites were screened

in this study, among which Tryptophanol, N-acetylputrescine,

L-Glutamine, N-Aarbamoylsarcosine, 2-Hydroxycinnamic acid,

Ornithine, Citrulline, Maleic acid, L-Proline and L-Aspartic acid

were down-regulated in the rhein treatment group. In addition,

the rhein group showed up-regulated 3-Indoleacetic acid,

Formiminoglutamic acid, L-Arogenate, Vanillylmandelic Acid,

Stizolobate, Allysine, Oxoglutaric acid, Indole Acetaldehyde,

Gentisic acid, 5hydroxyindoleacetaldehyde, 2-Isopropylmalic

acid, Pipecolic acid, Imidazole acetic acid, acid riboside, L- 4-

hydroxyglutamate semialdehyde, Citric acid, and Phenyl lactic

acid. We consider these to be biomarkers that can be used to

assess the effects of rhein treatment on fecal metabolites in mice.

There were multiple metabolites that were significantly

different between the normal control group and the model

group but that returned to normal levels after rhein treatment.

Among the metabolites up-regulated in the rhein group, L-4-

hydroxyglutamate semialdehyde in the above-mentioned

biomarkers is an organic compound of L-alpha-amino acids,

and studies have found that amino acid metabolism disorders

play an important role in the pathological process of drug-

induced liver injury. In vitro experiments (49, 50) have found

that L-alpha-amino acids can participate in the consumption of
TABLE 2 Continued

Gene name Log2FC (Model/NC) Padjust (NC/Model) Padjust (Model/Rhein)

Bcl2a1a 7.012518761 0.00 0.04

Usf2-ps1 7.124584422 0.00 0.00

7SK 7.365687369 0.00 0.01
The genes significantly recovered after rhein treatment (Padjust<0.05).
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TAMa• free radicals, which are stable carbon-centered free

radicals that are mostly consumed by oxidative metabolism in

liver microsomes. Experimental results have shown that the

consumption of TAMa• free radicals by L-alpha-amino acids

is similar to that of glutathione.

Abnormal amino acid metabolism, such as L-tyrosine and

taurine, has been found to be associated with hydrazine-induced

liver injury in vivo (51). In our experiment, two antibacterial

components, ofloxacin-N-oxide and 1-hydroxy-1,3-

diphenylpropan-2-one, in the up-regulated metabolism of the

rhein group were also significantly higher in the fecal metabolites

of these mice compared to the model group. Ofloxacin-N-oxide,

a metabolite of Ofloxacin, has antibacterial effects on 150

pathogens such as Enterobacteriaceae and Haemophilus

influenzae, and can produce antibacterial activity against some

pathogens in patients with severe diseases (52). Similarly, 1-

hydroxy-1,3diphenylpropan-2-one has shown antibacterial

act iv i ty against 13 strains of methic i l l in-res is tant

Staphylococcus aureus (MRSA) (53). In this study, the rhein

group down-regulated multiple metabolites related to liver

diseases, such as tetranor 12-HETE, which is significantly

associated with nonalcoholic fatty liver fibrosis and can be

used as a noninvasive biomarker of liver fibrosis (54) and 9(S)

–HODE, which is an endogenous fatty acid (PPAR) gamma

agonist and is closely related to hepatic steatosis. After dietary

intervention in obese adolescents, 9-HODE, ALT, triglyceride,

and cholesterol levels have been found to be significantly

reduced (55–57). So the metabolites may jointly improve acute

liver injury through some direct and indirect pathways,

including inhibiting harmful flora in the gut, regulating the

disorder of metabolites such as amino acids, and participating in

the oxidative metabolism of free radicals.

We also analyzed liver gene expression in different groups of

mice. The model group mice had different gene expression

profiles compared to the normal group mice, and the rhein

treatment group had significantly altered liver gene expression

by up-regulating and down-regulating specific gene groups, with

more similar gene expression to the normal control group. The

GO and KEGG pathways that were significantly enriched in the

rhein pretreatment group were similar to those of the

metabolomics results and were mostly those responsible for

regulating amino acid, lipid, and carbohydrate metabolism.

This was also consistent with the metabolomic results from

the mouse feces.

Research has shown that rhein is a potential treatment for

inflammatory diseases (58, 59), and cancer, and we found

evidence for its anti-inflammatory, anti-oxidative (60), and

anti-cancer effects in this study as well. The model group was

enriched with genes that were positively related to

Lachnoclostridium and norank_o:Clostridia_UCG-014, and

the genes’ functions were mostly proinflammatory, pro-

apoptotic, and cancer-promoting, aggravating the degree of
Frontiers in Immunology 13
liver damage. For example, CXCL2 can recruit neutrophils to

help with immunity, induce immunosuppression, and promote

HCC progression (61), and S100A9 levels have been shown to

play a role in liver necroinflammation and necroptosis (62, 63).

Furthermore, the Tnf gene can induce multiple mechanisms to

initiate hepatocyte apoptosis, leading to subsequent liver injury

(64), and Ereg and IL10 are up-regulated in acute liver injury

and hepatocellular carcinoma, respectively (65, 66). however, the

mice in the rhein group not only down-regulated the above

genes that have a positive effect on liver injury, but also the genes

that are positively related to enriched gut flora, that have anti-

cancer properties, and that promote liver regeneration. For

example, MFSD2A is known to help maintain the blood-brain

barrier (67). Recent studies have found that it may also act as a

new tumor-suppressing gene in regulating the cell cycle, and it

plays an important role in matrix attachment as well (68).

Experimental results have also shown that the mRNA and

protein levels in cancer tissues are significantly lower than those

in adjacent normal tissues (69, 70). Other studies have shown

that MFSD2A+ is expressed in many tissues (especially in the

liver) and is not only significantly downregulated in

hepatocellular carcinoma but also able to repopulate the liver

during hepatocyte regeneration (71). In addition, researchers

have found that Bhlhe41 is negatively correlated with the

transcriptional repressor capicua (CIC) (72) and that CIC is

involved in immune regulation. When CIC is inhibited, it can

promote follicular helper T (Tfh) and liver-resident memory-

like CD8+. The differentiation of T cells (73, 74), both of which

are important cell groups in human immunity, maintain the

immune balance of the body, and studies have found that there is

a causal relationship between the occurrence of immunity and

cancer (75). Rhein may up-regulate anti-cancer and liver

regeneration-promoting genes, and down-regulate pro-

inflammatory, pro-apoptotic, and pro-oncogenes through

intestinal flora, and may also alleviate acute liver injury caused

by D-GalN/LPS.
Conclusion

Our results suggest that our rhein treatment alleviated D-

GalN/LPS-induced acute liver injury in mice, improved

intestinal flora disturbance, and modulated metabolic

abnormalities and gene expression. From the perspective of

gut microbes, we find that rhein may be able to help prevent

and treat acute liver injury. Bacteroides and Akkermansiacea

may have certain therapeutic effects on acute liver injury.

Lachnoclostridium, norank_o:Clostridia_UCG-014 and

Roseburia may have some exacerbating effects of acute liver

injury. In addition, we described the relationship between

microbiota and metabolites and microbiota and gene

expression and found that gut microbiota is correlated with a
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variety of amino acid metabolites and gene expressions for

immunity, apoptosis, and cancer.

In the future, we will conduct further experimental studies

on the mechanism of rhein in alleviating acute liver injury. And

we will continue to improve the investigation of the correlation

between rhein and intestinal flora and carry out experimental

verification such as flora transplantation, to clarify whether the

intestinal flora and metabolites regulated by rhein have an

certain protective effect on acute liver injury.
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