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Abstract

Objectives Incidentally detected pulmonary nodules present a challenge in clinical routine with demand for reliable
support systems for risk classification. We aimed to evaluate the performance of the lung-cancer-prediction-
convolutional-neural-network (LCP-CNN), a deep learning-based approach, in comparison to multiparametric statistical
methods (Brock model and Lung-RADS®) for risk classification of nodules in cohorts with different risk profiles and
underlying pulmonary diseases.

Materials and methods Retrospective analysis was conducted on non-contrast and contrast-enhanced CT scans
containing pulmonary nodules measuring 5–30mm. Ground truth was defined by histology or follow-up stability. The final
analysis was performed on 297 patients with 422 eligible nodules, of which 105 nodules were malignant. Classification
performance of the LCP-CNN, Brock model, and Lung-RADS®was evaluated in terms of diagnostic accuracy measurements
including ROC-analysis for different subcohorts (total, screening, emphysema, and interstitial lung disease).

Results LCP-CNN demonstrated superior performance compared to the Brock model in total and screening cohorts (AUC
0.92 (95% CI: 0.89–0.94) and 0.93 (95% CI: 0.89–0.96)). Superior sensitivity of LCP-CNN was demonstrated compared to the
Brock model and Lung-RADS® in total, screening, and emphysema cohorts for a risk threshold of 5%. Superior sensitivity of
LCP-CNNwas also shown across all disease groups compared to the Brock model at a threshold of 65%, compared to Lung-
RADS® sensitivity was better or equal. No significant differences in the performance of LCP-CNN were found between
subcohorts.

Conclusion This study offers further evidence of the potential to integrate deep learning-based decision support systems
into pulmonary nodule classification workflows, irrespective of the individual patient risk profile and underlying pulmonary
disease.

Key Points
Question Is a deep-learning approach (LCP-CNN) superior to multiparametric models (Brock model, Lung-RADS®) in classifying
pulmonary nodule risk across varied patient profiles?
Findings LCP-CNN shows superior performance in risk classification of pulmonary nodules compared to multiparametric models
with no significant impact on risk profiles and structural pulmonary diseases.
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Clinical relevance LCP-CNN offers efficiency and accuracy, addressing limitations of traditional models, such as variations in
manual measurements or lack of patient data, while producing robust results. Such approaches may therefore impact clinical
work by complementing or even replacing current approaches.

Keywords Lung neoplasm, Risk assessment, Decision support, Emphysema, Interstitial lung disease

Introduction
Pulmonary nodules are a common finding in chest com-
puted tomography (CT) scans that pose an ongoing
management problem when detected, as their etiology can
range from benign findings to lung cancer, which often
cannot be differentiated by visual inspection alone. The
rising number of chest CT scans, exacerbated by the
increasing implementation of lung cancer screening pro-
grams, is placing an increasing workload on radiologists as
more nodules are detected. In the US alone, approxi-
mately 1.56 million pulmonary nodules are diagnosed
each year with incidental nodules found in nearly 31% of
all chest CT examinations [1]. Effective risk stratification
of lung nodules is therefore needed in clinical practice to
avoid unnecessary follow-up, invasive procedures to
characterize nodules, and uncertainty for patients if mis-
classified as malignant and delay or lack of treatment if
misclassified as benign.
In clinical practice, probably the most widely used sys-

tem for the management of pulmonary nodules are the
guidelines published by the Fleischner Society [2]. These
guidelines are based on the number of nodules and their
average nodule diameter or volume while stratifying
patients into low- and high-risk groups. Resulting
recommendations range from no need for follow-up for
low-risk patients with small nodules to positron emission
tomography/CT or tissue sampling for high-risk patients
with large nodules. However, these guidelines are only
validated for patients outside of the lung cancer screening
population, as those have a different risk profile for lung
cancer.
The Brock University model is a multivariable statistical

approach developed specifically for the screening setting
in the context of the Pan-Canadian Early Detection of
Lung Cancer Study [3–6]. This model combines nodule
characteristics and patient characteristics to calculate the
risk of malignancy for lung nodules. Management
guidelines are not proposed by this model. Although
developed for the lung cancer screening setting, the Brock
model has also been validated in patient cohorts with
incidental pulmonary nodules [7, 8]. However, in many
clinical situations, radiologists have limited information
about patient characteristics, which reduces the accuracy
of the model.
The American College of Radiology has proposed a

system for the management of pulmonary nodules

detected in the context of lung cancer screening: Lung
Imaging Reporting and Data System (Lung-RADS®)
[9, 10], currently in its third version from 2022. Like
Fleischner guidelines, Lung-RADS® focuses on the ima-
ging assessment of pulmonary nodules, taking into
account nodule size, morphology, and location, classifying
nodules into one of six groups with a corresponding risk
of malignancy ranging from < 1% for scores 1–2 to > 15%
in the highest score groups (4B and 4X). Resulting man-
agement recommendations range from yearly screening
continuation to further imaging workup or tissue sam-
pling. Although strictly not developed for incidental pul-
monary nodules, the similarities of Lung-RADS® and
Fleischner guidelines, along with its widespread use in
screening settings, make it an interesting risk stratification
model for further investigation in patient cohorts with
incidental pulmonary nodules.
Although established methods for risk stratification of

pulmonary nodules exist, there are still limitations. These
methods can be time-consuming, requiring careful eva-
luation of nodule characteristics or even the need to
include patient characteristics that might not be readily
available when reading a study.
The integration of artificial intelligence into radiology

workflows has the potential to substantially alter the way
radiologists work, with the objective of reducing workload
and possibly providing support in decision-making
[11, 12]. The company Optellum has developed a deep
learning-based approach for malignancy prediction of
pulmonary nodules, the LCP-CNN score. The model was
trained on the dataset from the National Lung Cancer
Screening Trial [13, 14] and subsequently validated in the
LUCINDA study (early lung cancer diagnosis using arti-
ficial intelligence and big data) [15]. Different authors
have investigated the performance of the LCP-CNN score,
demonstrating better performance compared to the Brock
model [16] and the Mayo Clinic model [13], as well as
examining the implications for nodule management
compared to British Thoracic Society guidelines [17] or
looking at the performance with changing imaging para-
meters [18]. The Food and Drug Administration (FDA)-
approved and clinically available version used in this study
classifies pulmonary nodules into ten categories with
corresponding relative risk thresholds (see Table 1). A
dataset was derived from clinical practice at Thoraxklinik,
University Hospital Heidelberg, including patients with
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pulmonary nodules. The study employed minimal exclu-
sion criteria to better reflect everyday clinical practice.
Based on the ground truth the AI-based Optellum LCP-
CNN score was then compared to the Brock model and
Lung-RADS®, with the addition of subclassifying patients
with underlying pulmonary structural changes due to
emphysema or fibrosis and further evaluating possible
effects on the investigated risk stratification model
performance.

Materials and methods
Ethics approval was granted by the local ethics committee
and the study was conducted in accordance with the
principles of the Helsinki Declaration.

Patient cohort and CT examination criteria
Eligible studies were selected retrospectively from a
patient population examined at Thoraxklinik at University
Hospital Heidelberg, Germany, between 2010 and 2021.
The cohort initially included patients found to have at
least one pulmonary nodule, regardless of comorbidities,
amounting to 1010 CT examinations of the chest in total.
This represented the typical clinical case-mix at the
institution. Criteria for inclusion and exclusion of
patients/examinations are presented in Fig. 1 and were
selected in accordance with the criteria defined by the
FDA-approved version of the Optellum LCP-CNN score
used in this study [19]. Only patients aged ≥ 35 years with
no known history of extrapulmonary malignancy in the
past 5 years were included. CT studies are required to
include 1–5 pulmonary nodules, measuring 5–30mm.
Only solid or partly solid nodules were included with
(partially) calcified nodules and ground-glass nodules

being excluded. Examinations were included if they were
performed without contrast or if the density in the aorta
was measured below 300 Hounsfield Units in contrast-
enhanced CTs with no beam hardening artifacts present.
Nodule characteristics are summarized in Table 2. Figure
2 gives examples of investigated incidental pulmonary
nodules that were classified as false negatives by LCP-
CNN, Brock model, and Lung-RADS®. The study
employed only the earliest available examination of
each patient.
All CT scans were performed on a 64-row CT scanner

(Definition AS64, Siemens, Siemens Medical Solutions) in
full inspiration supine position and with and without
intravenous contrast administration. Standard acquisition
parameters were used (100–120 kV and 70mAs reference
with dose modulation (Caredose 4D, Siemens), collimation
0.6mm, re-constructed slice thickness 1.0mm, and incre-
ment 0.8mm in an iterative medium-soft kernel (I40f,
SAFIRE level 3, Siemens)).
A total of 297 examinations met the defined criteria

(208 non-contrast CT scans and 89 contrast-enhanced
CT scans), containing 422 pulmonary nodules. Of these
105 were found to be malignant, while 317 nodules were
benign findings. Malignancy was confirmed histologically,
while benign nodules were defined either by histological
results (mandatory for part-solid nodules), 2-year stability
in nodule diameter, or 1-year stability in nodule volume.
Corresponding clinical patient data was extracted from

the digital medical records archive. A summary of patient
characteristics is presented in Table 3. Three subcohorts
were derived from the total patient cohort: a screening
cohort, an emphysema cohort, and an interstitial lung
disease (ILD) cohort. The screening cohort comprised

Table 1 Results of the risk assessment for all nodules with LCP-CNN, Brock model, and Lung-RADS® (Lung-RADS® category 1 is not
included, as this category is used when no nodule is found)

Nodule risk assessment results

Low risk Intermediate risk High risk

LCP-CNN score (relative risk) 1 (0.2%) 2 (0.4%) 3 (0.8%) 4 (2%) 5 (5.6%) 6 (15%) 7 (34%) 8 (64%) 9 (84%) 10 (93%)

Benign (n= 317) 47 (15%) 47 (15%) 42 (13%) 39 (12%) 47 (15%) 38 (12%) 20 (6%) 24 (8%) 8 (3%) 5 (2%)

Malignant (n= 105) 0 0 0 3 (3%) 4 (4%) 6 (6%) 13 (12%) 21 (20%) 19 (18%) 39 (37%)

Total (n= 422) 47 (11%) 47 (11%) 42 (10%) 42 (10%) 51 (12%) 44 (10%) 33 (8%) 45 (11%) 27 (6%) 44 (10%)

Brock model < 0.4% < 0.8% < 2% < 5.6% < 15% < 34% < 64% < 84% < 93% > 93%

Benign (n= 317) 9 (3%) 26 (8%) 85 (27%) 94 (30%) 65 (21%) 30 (9%) 8 (3%) 0 0 0

Malignant (n= 105) 0 1 (1%) 2 (2%) 8 (8%) 20 (19%) 40 (38%) 32 (30%) 2 (2%) 0 0

Total (n= 422) 9 (2%) 27 (6%) 87 (26%) 102 (24%) 85 (20%) 70 (17%) 40 (9%) 2 (0.5%) 0 0

LungRADS© (relative risk) 2 (< 1%) 3 (1–2%) 4A (5–15%) 4B (> 15%) 4X (> 15%)

Benign (n= 317) 118 (37%) 84 (26%) 58 (18%) 4 (1%) 53 (17%)

Malignant (n= 105) 2 (2%) 7 (7%) 23 (22%) 6 (6%) 67 (64%)

Total (n= 422) 120 (28%) 91 (22%) 81 (19%) 10 (2%) 120 (28%)
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only patients meeting the criteria for inclusion into lung
cancer screening as defined by the US Preventive Services
Task Force (age between 50 years and 80 years, current
smokers or ex-smokers within the last 15 years with at
least 20 pack years of smoking history [20]). The
emphysema cohort and ILD cohort comprise patients
with a documented diagnosis of one of these pulmonary
diseases made by specialists at the study site in a multi-
disciplinary approach. The study included some patients
presenting with changes compatible with ILD in imaging,
including for example usual interstitial pneumonia or
non-specific interstitial pneumonia patterns as reported
by a thoracic radiologist, but lacking a definitive diagnosis
as defined by a multidisciplinary ILD board.

Determining pulmonary nodule risk stratification scores
Pulmonary nodules were manually identified in CT
examinations and their location (lung lobe), morphology,
and size (mean diameter) were assessed. Nodule assess-
ment was performed by a radiology resident (1 year of
experience) under the supervision of an experienced chest
radiologist (5 years of experience in chest radiology): In
the beginning, a number of cases were assessed together,
and then questionable cases were resolved by consensus.
Brock model was calculated by combining nodule

characteristics (size, morphology, presence of spicula-
tion, location, and number of nodules) and patient
characteristics (age, sex, family history, and presence of
pulmonary emphysema) using the “Nodule Malignancy

Fig. 1 Patient flowchart
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Prediction Calculator (full model)” (version Tammemagi
V1-2SEP13 [3]).
The Lung-RADS® version 1.1 score was determined

from nodule size, morphology, and location in accordance
with the current guidelines proposed by the American
College of Radiology [9].
The deep learning-based LCP-CNN score was derived

by manually selecting the relevant nodule within the
commercially available Optellum Nodule Lung Nodule
Clinic, thus creating a region of interest (ROI) for soft-
ware analysis.

Statistical analysis
IBM SPSS Statistics software (version 27.0.0.0; IBM Corp.)
and MedCalc software (version 20.115) were used for
statistical analysis.
Receiver operating characteristics (ROC) curves were

generated for two investigated prediction models (Brock
Model and LCP-CNN), with the areas under the curve
(AUC) and a 95% confidence interval (CI) calculated. The
AUCs are compared using the DeLong test [21]. The level
of significance is set at α= 0.05. ROC analysis was not
performed for Lung-RADS® as it is not a direct risk
estimator with only six categorical outcome values. Ratio-
scaled characteristics, namely mean, median, standard
deviation (SD), and interquartile range were calculated.

For nominal scaled characteristics, the frequency is
reported as a percentage. Sensitivity, specificity, positive
and negative diagnostic likelihood ratio (DLR), positive
predictive value (PPV), negative predictive value (NPV),
and accuracy for different cut-off values were calculated
for the models and reported with the associated CI.
The Fleischner Society, in conjunction with the

American College of Chest Physicians, has proposed
classifying pulmonary nodules into three groups of
individual risk for malignancy: high-risk, with a like-
lihood of malignancy of > 65%, low-risk, with a like-
lihood < 5% and intermediate-risk, with a likelihood in
between [2]. For each of the three models, individual
cut-off values were chosen that resemble the 5% (rule-
out) and 65% (rule-in) threshold. Nodules with an LCP-
CNN score of 1–4, a Lung-RADS® of 1–3, and a Brock
model of < 5% were classified as low-risk. Nodules with
an LCP-CNN score of 8–10, a Lung-RADS® score of 4B
to 4X, and a Brock-Model Score of > 65% were classified
as high-risk. Nodules with a value in between were
classified as intermediate-risk nodules. According to
these thresholds, the sensitivity, specificity, positive and
negative DLRs, PPV, NPV, and accuracy are calculated
and specified with the corresponding CI for all three
models (LCP-CNN score, Brock model score, Lung-
RADS® score).
As this is an exploratory analysis, no formal sample size

calculation was conducted. Consequently, all p-values are
of a descriptive nature.

Results
Cohort and subcohorts
A total of 297 patients with a mean age of 64.9 years were
included in this study (Table 3). One hundred thirty-six
patients had a previous diagnosis of pulmonary emphy-
sema, while 47 patients suffered from an ILD. The
majority of patients were former smokers (n= 180,
60.6%), followed by current smokers (n= 47, 15.8%), and
39 patients had never smoked (13.1%). In 31 patients, the
smoking status was not documented (10.4%). Family
history for lung cancer was available for 161 patients, for
136 patients this information was not available, and a
negative family history had to be assumed.
A total of 105 malignant and 317 benign pulmonary

nodules were found (Table 2). A significant difference was
observed in nodule size (p < 0.001) for malignant nodules
with a mean [SD] average diameter of 14.9 mm [4.8] and
benign nodules with a mean [SD] average diameter of 8.7
[3.3]. Most malignant nodules were identified in the upper
pulmonary lobes (34.3% in the right upper lobe and 25.7%
in the left upper lobe). No malignant nodules were
observed subpleural or perifissural, which is consistent
with cancer registration statistics and the literature

Table 2 Nodule characteristics

Nodule characteristics

Total

(n= 422)

Malignant

(n= 105)

Benign

(n= 317)

Diameter (mean, SD) 10.2 (4.6) 14.9 (4.8) 8.7 (3.3)

Size (n, %)

5 mm 3 (0.7%) 0 3 (0.9%)

> 5–7 mm 122 (28.9%) 2 (1.9%) 120 (37.9%)

> 7–10 mm 128 (30.3%) 11 (10.5%) 117 (36.9%)

> 10–15 mm 108 (25.6%) 46 (43.8%) 62 (19.6%)

> 15–30 mm 61 (14.5%) 46 (43.8%) 15 (4.7%)

Localization (n, %)

RUL 93 (22.0%) 36 (34.3%) 57 (18.0%)

ML 45 (10.7%) 8 (7.6%) 37 (11.7%)

RLL 108 (25.6%) 24 (22.9%) 84 (26.5%)

LUL 78 (18.5%) 27 (25.7%) 51 (16.1%)

LLL 98 (23.2%) 10 (9.5%) 88 (27.8%)

Perifissural (n, %) 29 (6.9%) 0 29 (9.1%)

Subpleural (n, %) 42 (10.0%) 0 42 (13.2%)

Morphology (n, %)

Solid 399 (94.6%) 92 (87.6%) 307 (96.8%)

Part-solid 23 (5.5%) 13 (12.4%) 10 (3.2%)

Spiculation (n, %) 111 (26.3%) 63 (60.0%) 48 (15.1%)
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[22, 23]. Spiculation was a much more common mor-
phological feature in malignant nodules (60.0%) compared
to benign nodules (15.1%).

Descriptive statistics
Table 1 gives an overview of the performed risk assessment.
For better comparison, Brock model results were grouped
according to the risk categories defined for LCP-CNN.
Lung-RADS® results are sorted according to the relative
risk attributed to each score [24]. For the Brock model, an
average risk of malignancy of 11.8% (SD of 14.5%) was
calculated with a minimum of 0.3% and a maximum
of 79.6%.
Results of sensitivity, specificity, and DLRs, as well as

positive and NPVs calculated for rule-in (5% threshold)
and rule-out (65% threshold) for each model in every
cohort, are shown in Table 4. No relevant differences in
the performance of LCP-CNN could be found between
the total cohort, screening cohort, and both pulmonary
disease subgroups for emphysema and ILD. At a threshold
value of 5%, the LCP-CNN score demonstrated superior

sensitivity compared to the Brock model and Lung-
RADS® in the total, screening, and emphysema cohorts,
with 97.1% in the total cohort compared to 91.4% in the
Brock model and Lung-RADS®. In the ILD cohort, the
LCP-CNN and Lung-RADS® each demonstrated a sen-
sitivity of 100%. Superior sensitivity of LCP-CNN was also
shown at a threshold value of 65% across all disease
groups compared to the Brock model, while compared to
Lung-RADS® sensitivity was better or equal. The speci-
ficity of LCP-CNN was found to be moderate and no
superiority to the Brock model or Lung-RADS® can be
concluded. DLRs show strong diagnostic evidence for
LCP-CNN across disease groups with no relevant differ-
ences between the groups. Furthermore, LCP-CNN
demonstrated excellent NPVs in the total cohort and in
the subgroups.

LCP-CNN outperforms the Brock model in ROC analysis in
selected cohorts
LCP-CNN achieved an AUC of 0.92 (95% CI: 0.89–0.94)
in the total cohort, demonstrating significantly superior

Fig. 2 Examples of investigated incidental pulmonary nodules that were classified as false negatives by LCP-CNN (A, B) and Brock model and Lung-
RADS® (C, D)
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performance in classifying pulmonary nodules in terms of
malignancy compared to the Brock model (AUC of 0.88,
95% CI: 0.84–0.92, p= 0.022) (Fig. 3A). These findings
were replicated in the screening cohort, where LCP-CNN
demonstrated an area under the curve (AUC) of 0.93 (95%
CI: 0.89–0.96), which was significantly higher than the
Brock model AUC of 0.88 (95% CI: 0.83–0.93, p= 0.016)
(Fig. 3B).
In the cohort of patients with emphysema, LCP-CNN

showed a similar AUC of 0.91 (95% CI: 0.86–0.95) com-
pared to 0.88 (95% CI: 0.83–0.94) for the Brock model
with the difference not being statistically significant
(p= 0.232) (Fig. 3C). Equally, in the subcohort of patients
diagnosed with ILD, LCP-CNN and Brock model did not
show significant differences with an AUC of 0.92 (95% CI:
0.86–0.98) for LCP-CNN and 0.91 (95% CI: 0.82–1.00) for
Brock model (p= 0.404) (Fig. 3D).

LCP-CNN ROC performance shows no significant difference
in patients with underlying pulmonary disease
LCP-CNN demonstrated comparable results for the
classification of pulmonary nodules in all investigated
subcohorts (Table 5), with an AUC ranging from 0.91
(95% CI: 0.86–0.95) in the emphysema cohort to 0.92
(95% CI: 0.89–0.94) in the total cohort and the ILD cohort
(0.92, 95% CI: 0.86–0.98), and to 0.93 (95% CI: 0.89–0.96)
in the screening cohort.

Discussion
Incidentally detected pulmonary nodules present an
ongoing challenge as misclassification can lead to unne-
cessary procedures, costs, and uncertainty for patients, if
misclassified as malignant, or delay of or no therapy, if
misclassified as benign. Demand for reliable support sys-
tems for lung nodule classification therefore persists to
this day. The increasing implementation of lung cancer
screening is adding a different aspect to this problem with
different risk characteristics of screening populations. It is
essential to gain a comprehensive understanding of the
potential and limitations of classification approaches.
The design of this study was based on a previous

publication by Baldwin et al [16] in order to achieve
comparable results and thus allow for the examination
of possible reproducibility. In comparison, Baldwin et al
analyzed 1397 pulmonary nodules collected at three
sites (Leeds, Nottingham, and Oxford). The inclusion
and exclusion criteria were similar to those used in this
study, with minor differences (age of inclusion ≥ 18 years
and nodule diameters of 5–15 mm compared to an age
of inclusion ≥ 35 years and nodule diameters of
5–30 mm in our study). However, this study introduced
further aspects. In addition to the comparison to the
Brock model, the performance of the LCP-CNN AI-
based classification tool was compared to Lung-RADS®.
Furthermore, the respective performance of these
models in different clinically derived patient cohorts,
which differed by risk profile (screening cohort [25])
and/or underlying pulmonary disease (pulmonary
emphysema [26] and ILD cohort [27, 28]), was analyzed.
In our study, LCP-CNN showed good results in the

classification of pulmonary nodules into different risk
categories with no significant differences when analyzing
nodules in patients with pulmonary emphysema or
fibrosis. It is noteworthy that even a screening cohort does
not present a relevant challenge to the discrimination
performance, despite the lack of specific adaptation of the
LCP-CNN model for this purpose. Comparing results
between the models we can show that LCP-CNN out-
performs the Brock model in all cohorts in terms of AUC
and sensitivity, except for the emphysema and ILD
cohorts, while outperforming Lung-RADS® in all inves-
tigated cohorts in terms of sensitivity. Specificity, how-
ever, was shown to be lower for LCP-CNN compared to
the Brock model score and Lung-RADS®, pointing to a
higher risk for overdiagnosis.
Overall results are comparable with the study by Bald-

win et al with LCP-CNN reaching an AUC of 92% (95%
CI: 89–94%) in our study compared to 90% (95% CI:
88–92%) for Baldwin et al These findings corroborate
those of further studies, demonstrating AUC-values for
LCP-CNN from 92% [13], 94% [29] to 95% [15].

Table 3 Patient demographics and clinical characteristics

Patient demographics and characteristics

Age, (years)

Total Male patients Female patients

Mean, SD 64.9 (9.5) 65.8 (9.5) 63.9 (9.3)

Median 65 66 64

IQR 59–72 60–73 57–71

Total

(n= 297)

Male patients

(n= 167)

Female patients

(n= 130)

Screening cohort (n, %)

Screening 148 (49.8%) 83 (49.7%) 65 (50%)

Pulmonary disease (n, %)

Emphysema 136 (45.8%) 74 (44.3%) 62 (47.7%)

ILD 47 (15.8%) 32 (19.2%) 15 (11.5%)

Smoking status (n, %)

Current 47 (15.8%) 27 (16.2%) 20 (15.4%)

Former 180 (60.6%) 102 (61.1%) 78 (60.0%)

Never 39 (13.1%) 19 (11.4%) 20 (15.4%)

Unknown 31 (10.4%) 19 (11.4%) 12 (9.2%)

Family history of lung cancer (n, %)

Negative 139 (46.8%) 74 (44.3%) 65 (50.0%)

Positive 22 (7.4%) 15 (9.0%) 7 (5.4%)

Unknown 136 (45.8%) 78 (46.7%) 58 (44.6%)
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In interpreting the results of this study, it is important
to consider some limitations in the study design. The
study was conducted retrospectively, only containing CT
scans from a single center specializing in pulmonary
diseases. This may potentially have led to a higher pretest
probability for lung cancer, which could have influenced
the classification performance of the LCP-CNN model

[15]. Lung nodule assessment was primarily performed by
only one reader with limited experience (a radiology
resident with 1 year of experience), although under the
supervision of an experienced chest radiologist as stated
above. Furthermore, several assumptions were made that
might result in a sampling error. Small nodules that
remained stable over a 2-year period were considered

Fig. 3 Comparison of the ROC for Brock model and LCP-CNN in the total cohort (A), in the screening cohort (B), in the emphysema cohort (C), and in
the ILD cohort (D)
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benign by clinical convention, without undergoing a
definite workup [30, 31]. To calculate the Brock model, a
family history of lung cancer must be taken into account.
Due to the retrospective nature of this study, for 136
patients this information was not available, and a negative
family history was assumed, which may have implications
for the performance of the model. This represents a
relevant limitation of the Brock model, as it requires
careful collection of patient data, which may not always be
feasible in clinical practice.
In this analysis, Lung-RADS v.1.1 was used, as it was the

current version, when CT examinations were conducted. The
introduction of Lung-RADS® 2022 might influence results, as
DeSimone has recently shown the superiority of the new
version with lower numbers in false-positive screening CT
examinations [32]. This would likely serve to reinforce the
high specificity of Lung-RADS® demonstrated in this study.
The superior performance of the LCP-CNN score

indicates its potential as a valuable tool in the risk stra-
tification of pulmonary nodules, even in lung cancer
screening programs. The deep learning-based approach
offers efficiency and accuracy, addressing some of the
limitations of traditional models, such as variations in
manual measurements or the lack of patient data. Its use
is straightforward and fast, reducing reading time com-
pared to multiparametric statistical methods. Future
research directions should involve further prospective
validation studies in larger and more diverse cohorts.
Consequently, this study offers further evidence of the
potential to integrate deep learning-based decision sup-
port systems into pulmonary nodule classification work-
flows, irrespective of individual patient risk profile and
underlying pulmonary disease.
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