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Abstract
The association between blood- based estimates of mitochondrial DNA parameters, 
mitochondrial DNA copy number (mtDNA- CN) and heteroplasmy load, with skele-
tal	muscle	bioenergetic	capacity	was	evaluated	in	230	participants	of	the	Baltimore	
Longitudinal	Study	of	Aging	(mean	age:74.7	years,	53%	women).	Participants	 in	the	
study sample had concurrent data on muscle oxidative capacity (τPCr) assessed by 
31P magnetic resonance spectroscopy, and mitochondrial DNA parameters estimated 
from whole- genome sequencing data. In multivariable linear regression models, ad-
justed for age, sex, extent of phosphocreatine (PCr) depletion, autosomal sequenc-
ing coverage, white blood cell total, and differential count, as well as platelet count, 
mtDNA- CN and heteroplasmy load were not significantly associated with τPCr (both 
p >	0.05).	However,	in	models	evaluating	whether	the	association	between	mtDNA-
 CN and τPCr varied by heteroplasmy load, there was a significant interaction between 
mtDNA- CN and heteroplasmy load (p = 0.037). In stratified analysis, higher mtDNA-
 CN was significantly associated with lower τPCr among participants with high het-
eroplasmy load (n = 84, β	 (SE)	=	−0.236	(0.115),	p- value = 0.044), but not in those 
with low heteroplasmy load (n = 146, β	(SE)	= 0.046 (0.119), p- value = 0.702). Taken 
together, mtDNA- CN and heteroplasmy load provide information on muscle bioener-
getics. Thus, mitochondrial DNA parameters may be considered proxy measures of 
mitochondrial function that can be used in large epidemiological studies, especially 
when comparing subgroups.
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1  |  INTRODUC TION

Mitochondria produce energy for metabolic and functional activity 
through aerobic metabolism and are also linked to a broad range of 
cellular processes including apoptosis, and immune signaling, iron 
and calcium homeostasis, and reactive oxygen species signaling 
(Gonzalez-	Freire	 et	 al.,	 2015).	 Dysfunction	 of	 these	 activities	 has	
been implicated in the development of chronic disease and is also 
considered	a	hallmark	of	aging	 (Lopez-	Otin	et	al.,	2013).	Muscle	 is	
an energetically demanding tissue that is central to decline in phys-
ical	 function	 in	 later	 life.	 However,	 commonly	 used	 methods	 to	
assess mitochondrial function in skeletal muscle, such as respirom-
etry in muscle biopsies and 31P magnetic resonance spectroscopy 
(MRS),	are	resource-	intensive	and	impractical	for	population-	based	
studies	 (Coen	et	al.,	2013;	Conley	et	al.,	2000;	Short	et	al.,	2005).	
Recent studies have shown that measurements of mitochondrial 
oxidative capacity in human skeletal muscle via 31P-	MRS	are	asso-
ciated	with	multiple	chronic	diseases	and	morbidity	(AlGhatrif	et	al.,	
2017;	Brown	et	 al.,	 2019;	 Zampino	 et	 al.,	 2020).	 Techniques	 have	
also been developed to estimate mitochondrial DNA copy number 
(mtDNA- CN) and heteroplasmy load from whole- genome sequenc-
ing	 (WGS),	most	often	 in	blood	samples,	such	as	buffy	coat	speci-
mens	(Ding	et	al.,	2015;	Qian	et	al.,	2017).	However,	the	relationship	
between	mtDNA-	CN	and	heteroplasmy	 load	estimated	from	WGS	
and mitochondrial function in skeletal muscle is unknown, as mito-
chondrial characteristics, number, and volume vary by organ, tissue, 
and cell types. If such a relationship was established, mtDNA- CN 
and heteroplasmy load would be invaluable for clinical research, in-
cluding studies of aging, as proxies for muscle bioenergetic status. In 
addition, they would form therapeutic targets for drugs and inter-
ventions designed to address chronic disease and improve function 
in aging through improved mitochondrial function (Andreux et al., 
2019).

Using	 data	 collected	 from	 230	 participants	 of	 the	 Baltimore	
Longitudinal	Study	of	Aging	(BLSA),	a	study	of	community-	dwelling	
individuals, we tested the hypothesis that mtDNA- CN and hetero-
plasmy	 load	 estimated	 from	WGS	would	 be	 associated	with	mus-
cle bioenergetic status as assessed with the phosphocreatine (PCr) 
exponential recovery time constant (τPCr) determined by 31P-	MRS	
(Coen et al., 2013). The mean age of the study sample was 74.7 years, 
and	53%	of	participants	were	women	(Table	1).	Study	participants	
were free of dismobility, mean usual gait speed of 1.20 m/s with a 
minimal value of 0.63 m/s (Table 1) (Cummings et al., 2014). In this 
sample, higher values of τPCr were associated with older age, indi-
cating	 age-	related	 decline	 in	 mitochondrial	 function	 (Figure	 S1).	
BLSA	protocols	 are	 approved	by	 the	National	 Institutes	of	Health	
Institutional	Review	Board,	and	all	participants	provided	written	in-
formed consent.

mtDNA- CN was estimated using the mitoCalc algorithm ((Ding 
et	al.,	2015;	Qian	et	al.,	2017)	in	WGS	data	from	buffy	coat	samples.	
Heteroplasmic	variants	(mtDNA	variants	with	more	than	one	allele	
at a DNA site) were identified in the same sequencing data using the 
mitoCaller	algorithm.	Heteroplasmy	load	is	represented	by	the	total	

number of heteroplasmic variants in each individual. In vivo 31P-	MRS	
measurements of the concentrations of phosphorus- containing me-
tabolites including phosphocreatine (PCr) were obtained from the 
vastus lateralis muscle using 31P	MRS	at	3T,	 following	a	 standard-
ized	protocol	(Choi	et	al.,	2016).	τPCr, the PCr exponential recovery 
time constant measured in seconds, was calculated by fitting time- 
dependent changes in PCr peak area to the monoexponential recov-
ery function:

where PCr(0) is the end- of- exercise PCr signal area and ΔPCr is the 
decrease in signal area from its pre- exercise value (Choi et al., 2016). 
Higher	 values	 of	 τPCr indicate longer recovery and lower oxidative 
capacity. Associations of mtDNA- CN and heteroplasmy load with 
τPCr	were	tested	using	multivariable	 linear	regression	(SAS	v9.4;	SAS	
Institute, Inc). After adjustment for age, sex, extent of PCr deple-
tion, autosomal sequencing coverage, white blood cell total, and 
differential count, as well as platelet count, mtDNA- CN and hetero-
plasmy load were not significantly associated with τPCr	 (Table	 S1,	
Model 1, Model 2).

Since	 recent	 data	 suggest	 that	 mtDNA-	CN	 and	 heteroplasmy	
load provide complementary information on mitochondrial function 
in	 patients	 with	 peripheral	 artery	 disease	 (Gonzalez-	Freire	 et	 al.,	
2020), we also tested the hypothesis that the association between 
mtDNA- CN and τPCr would be different according to levels of het-
eroplasmy load through the evaluation of an interaction term in 
multivariable models. There was a significant interaction between 
mtDNA-	CN	and	heteroplasmy	load	(Table	S1,	Model	3);	after	strati-
fying by a median split of heteroplasmy load of 3, higher mtDNA- CN 
was significantly associated with lower τPCr in participants with high 
heteroplasmy	 load	 (Table	S2;	Figure	1),	while	 there	was	not	 a	 sig-
nificant association between mtDNA- CN and τPCr in those with low 
heteroplasmy	load	(Table	S2;	Figure	1).	At	high	heteroplasmy	load,	
there was also a relationship between mtDNA- CN and/or τPCr and 
gait speed (p = 0.06 and <0.001, respectively). Results were not 
substantially changed after excluding participants with diabetes and 
non- skin cancer after full adjustment (β	(SE),	p- value for those with 
high (n = 68) and low (n =	126)	heteroplasmy	load:	−0.315	(0.128),	
0.017; and 0.117 (0.113), 0.302, respectively). Results remained sim-
ilar	in	sex-	stratified	analysis	(Table	S3).

In this sample of community- dwelling older adults, we demon-
strate that mtDNA- CN and heteroplasmy load provide complemen-
tary information on mitochondrial oxidative capacity measured in 
skeletal muscle. The significant interaction between mtDNA- CN 
and heteroplasmy load indicated that the relationship of mtD-
NA- CN with muscle bioenergetics was different according to lev-
els of heteroplasmy load. In particular, we found that mtDNA- CN 
was associated with skeletal muscle oxidative capacity only in in-
dividuals	 with	 high	 heteroplasmy	 load.	 While	 the	 mechanism	 for	
this interaction remains unclear, we have previously demonstrated 
that mtDNA- CN can be associated with both positive and nega-
tive health outcomes, for example in participants with and without 

PCr(t) = PCr(0) + ΔPCr ×

(
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diabetes (Moore et al., 2018). Our results support the notion that 
mtDNA- CN can be assessed at the population level and it can be 
correlated with other parameters and used to compare subgroups. 
It may also serve as a measure sensitive to mitochondrial mass in 
skeletal	muscle.	However,	 if	 higher	heteroplasmy	 load	 leads	 to	 al-
tered mitochondrial damage, increased mtDNA- CN may indicate a 
homeostatic response toward increasing mitochondrial biogenesis 
(Filograna	et	al.,	2020;	Qian	&	Van	Houten,	2010).	 It	 is	also	possi-
ble that increased mtDNA- CN may be observed in conjunction with 
a high level of heteroplasmy load within the context of damage in-
duced by oxidative stress, a strong correlate of impaired mitochon-
drial function. Thus, increased mtDNA- CN may reflect the spilling of 
mtDNA from damaged mitochondria, and in this case, mitochondrial 
mass	may	not	correlate	with	function.	 It	can	be	hypothesized	that	
reduced ATP production may be sensed by AMP kinase which in turn 
stimulates	mitochondrial	biogenesis	through	PGC-	1	alpha	leading	to	
increased mtDNA synthesis through transcription factor A, which 
is required for maintenance of normal levels of mtDNA (Kasashima 

et al., 2012). The additional mtDNA that is not incorporated in func-
tioning mitochondria may enter the circulation. These data suggest 
that mtDNA- CN and heteroplasmy load should be used in conjunc-
tion to obtain insight into mitochondrial function.

Our	study	has	certain	limitations,	including	a	modest	sample	size;	
the	BLSA	population	from	which	the	study	sample	is	drawn	is	health-
ier, less diverse, and more well- educated than the general popula-
tion.	 Future	 studies	 with	 larger	 samples	 encompassing	 a	 greater	
range of functional status would provide validation of our results. 
In addition, our study has several strengths. The study sample is 
comprised	of	well-	characterized	community-	dwelling	older	men	and	
women, allowing us to control for multiple known covariates: Our 
observations were robust to adjustment for differential white blood 
cell and platelet count as well as to exclusion of participants with 
diabetes and non- skin cancer, both of which are known to affect 
mtDNA- CN.

In sum, when taken together mtDNA parameters, mitochondrial 
DNA copy number and heteroplasmy load provide an indication of 

F I G U R E  1 Scatter	plots	(A)	(red:	
women;	blue:	men)	and	boxplots	(B)	for	
the unadjusted relationship between 
mitochondrial DNA copy number and 
τPCr in participants with low and high 
heteroplasmy load. Caption: τPCr, the 
PCr exponential recovery time constant 
measured in seconds, higher values of 
which indicate longer recovery time and 
lower oxidative capacity. In scatter plots, 
the specific amount of mitochondrial DNA 
copy number attributed to low and high 
heteroplasmy load ranged from 136 to 
356,	and	from	127	to	366,	respectively.	
In boxplots, mitochondrial DNA copy 
number	was	categorized	by	a	median	split	
at 216

(a)

(b)
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muscle bioenergetics. Assessing mitochondrial DNA copy number 
and heteroplasmy load may provide cost- effective and accessible 
insight into muscle mitochondrial function in large epidemiological 
studies.
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