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Abstract
In this work, we studied a two-component mixture model with stochastic dominance 
constraint, a model arising naturally from many genetic studies. To model the sto-
chastic dominance, we proposed a semiparametric modelling of the log of density 
ratio. More specifically, when the log of the ratio of two component densities is in 
a linear regression form, the stochastic dominance is immediately satisfied. For the 
resulting semiparametric mixture model, we proposed two estimators, maximum 
empirical likelihood estimator (MELE) and minimum Hellinger distance estimator 
(MHDE), and investigated their asymptotic properties such as consistency and nor-
mality. In addition, to test the validity of the proposed semiparametric model, we 
developed Kolmogorov–Smirnov type tests based on the two estimators. The finite-
sample performance, in terms of both efficiency and robustness, of the two estima-
tors and the tests were examined and compared via both thorough Monte Carlo sim-
ulation studies and real data analysis.
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1  Introduction

We consider the two-sample model introduced by Abedin (2018). Specifi-
cally, suppose there is a sample from a two-component mixture population 
H = (1 − �)F + �G , where the mixing proportion � is strictly between 0 and 1, and 
F, G and H are cumulative distribution functions (c.d.f.) such that F ≠ G and F and 
G satisfy the stochastic dominance constraint F ≥ G . In addition, we have a separate 
sample identified as from the first component F. As a result, the data and model are 
formularized as

where f, g and h are the corresponding probability density functions (p.d.f.) of F, G 
and H, respectively. Here f, g and � are all unknown. The problem of our interest is 
to make inferences for � , treating f and g as nuisance parameters, and to estimate the 
likelihood of a new observation coming from a particular component.

A motivating example that made model (1) arise is the problem to identify dif-
ferentially expressed genes in case-control studies (e.g., contract vs. not contract 
COVID-19) of genetic data, such as in Chen and Wu (2013), Kharchenko et  al. 
(2014), Lu et  al. (2015) and Ficklin et  al. (2017), among many others. In order 
to solve the problem, frequently a proposed test is applied repeatedly to each sin-
gle gene. The distribution of those thousands of test statistic values is thus a two-
component mixture (1 − �)f + �g , where f is the p.d.f. of the statistic under the 
null hypothesis that a particular gene is not differentially expressed while g is that 
under the alternative hypothesis that a particular gene is differentially expressed, 
and � is the proportion of differentially expressed genes. Usually f is much easier 
to derive theoretically than g, otherwise if f is unknown in practice, in many studies 
pathologists or experts can confidently identify some genes that are not differentially 
expressed so that we have a sample (test statistic values of those genes) from f. The 
latter case is exactly model (1). The dominance constraint F ≥ G is very intuitive in 
many cases where the statistic values of marker genes are likely larger (or smaller) 
than those of non-marker genes (e.g., Student’s t, ANOVA test statistic). In this 
motivating example one may argue that the genes, and thus the values of a particular 
statistic, are not i.i.d. as assumed in model (1). Nevertheless, the distribution of the 
statistic over all genes is assumed nonparametrically unknown which will provide 
enough flexibility to weaken, if not remove, the effect of dependence. By Bayes’ rule 
the probability of a gene with test statistic value y being a marker gene is given by

Once � , f and g are estimated, one can estimate according to (2) the probability that 
a particular gene is differentially expressed.

Besides the motivating example, model (1) could also be used to model many 
other real data structure. For more examples readers are referred to Abedin (2018) 

(1)
X1,… ,Xm

i.i.d.
∼ f (x),

Y1,… , Yn
i.i.d.
∼ h(x) = (1 − �)f (x) + �g(x), x ∈ ℝ,

(2)p(y) ∶= P(marker gene|y) =
�g(y)

(1 − �)f (y) + �g(y)
.
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and Wu and Abedin (2021) which, to our best knowledge, are the only works in 
literature on model (1). In these two works, the authors proposed and studied two 
estimators. The first one is based on c.d.f. estimations with use of the dominance 
inequality, while the second is a maximum likelihood estimator (MLE) based on 
multinomial approximation. Another work on a model closely related to model (1) 
is given in Smith and Vounatsou (1997). However their model doesn’t assume the 
stochastic dominance constraint but instead makes a generally stronger assumptions 
on the p.d.f.s f and g.

This paper is organized in the following way. In Sect. 2, we introduce a semipara-
metric mixture model in order to accommodate the stochastic dominance constraint. 
A maximum empirical likelihood estimator (MELE) and a minimum Hellinger dis-
tance estimator (MHDE) of the unknown parameters are proposed in Sects. 3 and 4, 
respectively. Their asymptotic properties such as consistency and asymptotic nor-
mality are also presented in these two sections. Section 5 is devoted to testing the 
validity of the proposed semiparametric model with use of the MELE and MHDE. 
The finite-sample performance of the two proposed estimators and the goodness-of-
fit tests are assessed in Sect. 6 via thorough Monte Carlo simulation studies, while 
the implementation of the proposed methods are demonstrated in Sect.  7 through 
two real data examples. Finally the concluding remarks are presented in Sect.  8. 
Some conditions for the theoretical results are deferred to Appendix, while the deri-
vations and proofs of the theorems and lemmas are given in a separate supplemen-
tary document to save space.

2 � A semiparametric modelling

Abedin (2018) and Wu and Abedin (2021) proposed and studied two consistent 
estimators for model (1). However, due to the non-identifiability of the model in 
general, it is difficult to obtain an estimator with good asymptotic properties such 
as asymptotic normality. Therefore, we introduce in what follows a semiparametric 
model which will be proved identifiable and will ensure the stochastic dominance.

Let Z denote a binary response variable and Y the associated covariate. Then the 
logistic regression model is given by

where r(y) = (r1(y),… , rp(y))
⊤ is a given p × 1 vector of functions of y, �∗ is the 

intercept parameter and 𝛽 = (𝛽1,… , 𝛽p)
⊤ is the p × 1 coefficient parameter vector. In 

case-control studies data are collected retrospectively. For example, a random sam-
ple of subjects with disease Z = 1 (‘case’) and a separate random sample of subjects 
without disease Z = 0 (‘control’) are selected with Y observed for each subject. Let 
� = P(Z = 1) = 1 − P(Z = 0) . Let f(y) and g(y) denote the conditional p.d.f.s of Y 
given Z = 0 and Z = 1 respectively, then it follows from the Bayes’ rule that

P(Z = 1|Y = y) =
exp

[
𝛼∗ + 𝛽⊤r(y)

]

1 + exp
[
𝛼∗ + 𝛽⊤r(y)

] ,
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where � = �∗ + log[(1 − �)∕�] . Now model (1) is reduced to the semiparametric 
mixture model

with f ∈ F  and the parameter vector of interest 𝜃 =
(
𝜆, 𝛼, 𝛽⊤

)⊤
∈ 𝛩 ⊆ ℝ

p+2 such 
that ∫ e𝛼+𝛽

⊤r(x)f (x)dx = 1 , where

The relationship (3) between two p.d.f.s was first proposed by Anderson (1972). It 
essentially assumes that the log-likelihood ratio of the two p.d.f.s is linear in the 
observations. With r(x) = x or r(x) = (x, x2)⊤ , it has wide applications in logistic dis-
criminant analysis (Anderson, 1972, 1979) and case-control studies (Prentice and 
Pyke, 1979; Breslow and Day, 1980). For r(x) = x , (3) encompasses many com-
mon distributions, including two exponential distributions with different means 
and two normal distributions with common variance but different means. Model 
(3) with r(x) = (x, x2)⊤ also coincides with the exponential family of densities con-
sidered in Efron and Tibshirani (1996). Moreover, model (3) can be viewed as a 
biased sampling model with the ‘tilt’ weight function exp

[
𝛼 + 𝛽⊤r(x)

]
 depending 

on the unknown parameters � and � . Note that the test of equality of f and g can be 
regarded as a special case of model (4) with � = 0.

Qin and Zhang (1997) discussed a goodness-of-fit test for logistic regres-
sion based on case-control data where the first sample comes from the control 
group f and independently the second sample comes from the case group g. They 
proposed a Kolmogorov–Smirnov type statistic to test the validity of (3) with 
r(y) = y . When data from both the mixture and the two individual components 
satisfying (3) are available, Qin (1999) developed an empirical likelihood ratio-
based statistic for constructing confidence intervals of the mixing proportion. For 
the same model and data structure, Zhang (2002) proposed an EM algorithm to 
calculate the MELE while (Zhang, 2006) proposed a score statistic to test the 
mixing proportion. Chen and Wu (2013) employed (3) to model differentially 
expressed genes of acute lymphoblastic leukemia patients and acute myeloid leu-
kemia patients.

For model (4) with r(y) = y , if 𝛽 > 0 then we can easily check that p(y) in (2), 
the probability of y being from g, is a monotonic increasing function. Further we 
can prove in the next theorem that if 𝛽 > 0 , then the stochastic dominance con-
straint F ≥ G is implied by (3). We call (1, r(y))⊤ linearly independent on the sup-
port, say � , of f if (1, r(y))⊤ , as a vector of functions of y, is linearly independent 
over �.

(3)g(y) = exp
[
𝛼 + 𝛽⊤r(y)

]
f (y),

(4)
X1,… ,Xm

i.i.d.
∼ f (x),

Y1,… , Yn
i.i.d.
∼ h𝜃(x) ∶= h(x) =

{
(1 − 𝜆) + 𝜆 exp

[
𝛼 + 𝛽⊤r(x)

]}
f (x),

(5)

𝛩 =
{
(𝜆, 𝛼, 𝛽⊤)⊤ ∶ 𝜆 ∈ (0, 1), 𝛽 ≠ 0

}
,

F ∶=

{
f ∶ f ≥ 0,� f (x)dx = 1,� exp

[
𝛽⊤r(x)

]
f (x)dx < ∞, f is continuous

}
.
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Theorem 1  If (1, r(y))⊤ is linearly independent on the support of f, then model (4) 
with parameter space (5) is identifiable. Specially, (4) is identifiable when r(y) = y ; 
if further 𝛽 > 0 , then F ≥ G.

Even though Theorem 1 tells us that the condition (3) is stronger than the origi-
nal stochastic dominance constraint, the resulting semiparametric mixture model (4) 
is identifiable and has better interpretation than the nonparametric mixture model 
(1). In addition, the estimation of (4) may possess better asymptotic properties than 
those of (1). One may also consider higher order polynomial for r(y) and find suf-
ficient conditions for F ≥ G . For model simplicity, we focus on model (4) with 
r(x) = x and 𝛽 > 0 (to ensure the dominance F ≥ G ) throughout this paper. We first 
propose two estimators for this model.

3 � MELE of the parameters

Let (T1,… , Tm+n)
⊤ = (X1,… ,Xm, Y1,… , Yn)

⊤ be the pooled data. In MELE, F is 
assumed a step function with pi = dF(Ti) (jump at Ti ) such that 

∑m+n

i=1
pi = 1 . As a 

result, dH(Yj) = pm+j
[
(1 − �) + �e�+�Yj

]
 . Consequently, the empirical likelihood 

function of (4) with r(y) = y and 𝛽 > 0 is

subject to constraints 𝛽 > 0 , 0 < 𝜆 < 1 , pi ≥ 0 , 
∑m+n

i=1
pi = 1 , and 

∑m+n

i=1
pie

�+�Ti = 1 . 
The constraint 𝛽 > 0 won’t limit the use of model (4) and proposed estimation 
methods, as we can always switch F with G if 𝛽 < 0 in model (4). Though in this 
work we assume both F and G are two continuous populations, we can see that the 
above likelihood is also valid for discrete populations. To find the MELE, we use the 
Lagrange multipliers and maximize

By taking partial derivatives we obtain (details in the supplementary document)

where �N = n∕(m + n) with N = m + n . Therefore ignoring a constant, the empirical 
log-likelihood function is

L(�, �, �) =

m∏
i=1

dF(Xi)

n∏
j=1

dH(Yj) =

m+n∏
i=1

pi

n∏
j=1

[
(1 − �) + �e�+�Yj

]
,

m+n∑
i=1

log pi +

n∑
j=1

log
[
(1 − �) + �e�+�Yj

]
− t1

[
m+n∑
i=1

pi − 1

]
− t2

[
m+n∑
i=1

pie
�+�Ti − 1

]
.

(6)pi =
1

(m + n)
[
1 + �N�

(
e�+�Ti − 1

)] ,

(7)l(�, �, �) ∝

n∑
j=1

log
[
(1 − �) + �e�+�Yj

]
−

m+n∑
i=1

log
[
1 + �N�(e

�+�Ti − 1)
]
.
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Let 𝜃̂MELE = (𝜆̂MELE, 𝛼̂MELE, 𝛽MELE)
⊤ denote the MELE of � , i.e., the maximizer of 

the log-likelihood function l in (7). In our numerical studies, we used Optim in the 
R-package to find 𝜃̂MELE . Then the MELE of p(y) in (2) is

We now examine the asymptotic properties of the MELE 𝜃̂MELE . Define

with l given in (7), and let

where

with

Since f ∈ F  and r(x) = x , implying ∫ e𝛽yf (y)dy < ∞ , it is easy to show that all the 
Sij ’s defined above are finite.

(8)p̂MELE(y) =
𝜆̂MELE exp[𝛼̂MELE + 𝛽MELEy]

(1 − 𝜆̂MELE) + 𝜆̂MELE exp[𝛼̂MELE + 𝛽MELEy]
.

(9)SN = −
1

N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�2l

��2
�2l

����

�2l

����

�2l

����

�2l

��2

�2l

����

�2l

����

�2l

����

�2l

��2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)S = ∫
�
𝜕w1(y)

𝜕𝜃

��
𝜕w1(y)

𝜕𝜃

�⊤
f

w1w2

(y)dy =

⎛⎜⎜⎝

S11 S12 S13
S12 S22 S23
S13 S23 S33

⎞⎟⎟⎠
,

S11 = ∫ (e�+�y − 1)2 ⋅
f

w1w2

(y) dy,

S22 = �2 ∫ e2�+2�y ⋅
f

w1w2

(y) dy,

S33 = �2 ∫ y2e2�+2�y ⋅
f

w1w2

(y) dy,

S12 = �∫ e�+�y(e�+�y − 1) ⋅
f

w1w2

(y) dy,

S13 = �∫ ye�+�y(e�+�y − 1) ⋅
f

w1w2

(y) dy,

S23 = �2 ∫ ye2�+2�y ⋅
f

w1w2

(y) dy

(11)w1(y) = 1 − � + �e�+�y and w2(y) = 1 − �� + ��e�+�y.
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Lemma 1  Assume �N → � as N → ∞ , with 0 < 𝜌 < 1 . Then SN
P

⟶ �(1 − �)S as 
N → ∞ , where SN and S are defined in (9) and (10) respectively and P

→
 denotes con-

vergence in probability.

The condition �N → � with 0 < 𝜌 < 1 , as N → ∞ , in Lemma 1 requires that 
the sample sizes m and n converge to infinity at the same order. With the results 
in Lemma 1, the following theorem gives the asymptotic normality of the MELE 
𝜃̂MELE . Let

where

with w1 and w2 defined in (11).

Theorem  2  Assume �N → � as N → ∞ with 0 < 𝜌 < 1 and S defined in (10) is 
invertible. Then under model (4) with parameter space (5) and some regularity con-
ditions (for MELE in general; see Qin and Lawless, 1994),

where � =
1

�(1−�)
S−1VS−1 with S and V defined in (10) and (12) respectively, and D

→
 

denotes convergence in distribution. In addition, V and further � are positive 
definite.

In Theorem 2, the assumption of S being invertible is generally true except for some 
special cases such as � = 0 , or � = � = 0 , or f is a singleton. When 0 < 𝜆 < 1 , � ≠ 0 
and f is continuous (or an even weaker condition that the support of f contains at least 

(12)

V = ∫
�
𝜕w1(y)

𝜕𝜃

��
𝜕w1(y)

𝜕𝜃

�⊤
f

w1w2

(y)dy − ∫
𝜕w1(y)

𝜕𝜃

f

w2

(y)dy∫
�
𝜕w1(y)

𝜕𝜃

�⊤
f

w2

(y)dy

= S − ∫
𝜕w1(y)

𝜕𝜃

f

w2

(y)dy∫
�
𝜕w1(y)

𝜕𝜃

�⊤
f

w2

(y)dy

=

⎛⎜⎜⎝

V11 V12 V13

V12 V22 V23

V13 V23 V33

⎞⎟⎟⎠
,

V11 = ∫ (e�+�y − 1)2
f

w1w2

(y) dy −
[∫ (e�+�y − 1)

f

w2

(y) dy
]2
,

V22 = �2 ∫ e2�+2�y
f

w1w2

(y) dy − �2
[∫ e�+�y

f

w2

(y) dy
]2
,

V33 = �2 ∫ y2e2�+2�y
f

w1w2

(y) dy − �2
[∫ ye�+�y

f

w2

(y) dy
]2
,

V12 = � ∫ e�+�y(e�+�y − 1)
f

w1w2

(y) dy − � ∫ (e�+�y − 1)
f

w2

(y) dy ∫ e�+�y
f

w2

(y) dy,

V13 = � ∫ ye�+�y(e�+�y − 1)
f

w1w2

(y) dy − � ∫ (e�+�y − 1)
f

w2

(y) dy ∫ ye�+�y
f

w2

(y) dy,

V23 = �2 ∫ ye2�+2�y
f

w1w2

(y) dy − �2 ∫ e�+�y
f

w2

(y) dy ∫ ye�+�y
f

w2

(y) dy,

√
N

⎛⎜⎜⎝

𝜆̂MELE − 𝜆

𝛼̂MELE − 𝛼

𝛽MELE − 𝛽

⎞⎟⎟⎠
D

⟶ N(0,𝛴),



	 J. Wu et al.

1 3

two points), we would expect S being invertible. With the results in Theorem 2, one can 
easily make MELE-based inferences, such as Wald test, about the parameter when the 
unknown � in � is replaced with some consistent estimators such as the MELE.

4 � MHDE of the parameters

Though MELE is efficient, it is generally non-robust against outliers and model mis-
specifications. As a robust alternative, we propose in this section an MHDE for the 
unknown parameters in model (4).

The Hellinger distance between two functions f1 and f2 is defined as ‖f 1∕2
1

− f
1∕2

2
‖ , 

the L2-norm of root functions. For a fully parametric model {h� ∶ � ∈ �} with � the 
parameter space, the MHDE of � is defined as

where ĥ is an appropriate nonparametric estimator of h� . MHDE was first introduced 
by Beran (1977) for fully parametric models. Beran (1977) showed that the MHDE 
for parametric model has both full efficiency and good robustness properties. Lind-
say (1994) outlined the comparison between MHDE and MLE in terms of robust-
ness and efficiency and showed that MHDE and MLE are members of a larger class 
of efficient estimators with various second-order efficiency properties. However, 
the literature on MHDE for mixture models is not redundant. Lu et al. (2003) con-
sidered the MHDE for mixture of Poisson regression models. MHDE of mixture 
complexity for finite mixture models was investigated by Woo and Sriram (2006, 
2007). Recently, MHDE has been extended from parametric models to semipara-
metric models. Wu et  al. (2010) proposed an MHDE for two-sample case-control 
data under model (3) and investigated the asymptotic properties and robustness of 
the proposed estimator. Xiang et al. (2014) proposed a minimum profile Hellinger 
distance estimator (MPHDE) for the two-component semiparametric mixture model 
studied by Bordes et al. (2006) where one component is known and the other is an 
unknown symmetric function with unknown location parameter. Wu et  al. (2017) 
and Wu and Zhou (2018) proposed algorithms for calculating the MPHDE and the 
MHDE, respectively, for the two-component semiparametric location-shifted mix-
ture model. Inspired by these works, we propose to use the MHDE to estimate the 
parameters in (4).

In model (4), even though � and � can possibly take any value on the real line, we 
can essentially use intervals that are large enough to cover their true values. So for prac-
tical purpose, we can assume that � ∈ � with � a compact subset of ℝ3 . To give the 
MHDE for model (4), note that the MHDE defined in (13) is not available in practice 
since the f in ht(x) = (1 − t1 + t1e

t2+t3x)f (x) , with t = (t1, t2, t3)
⊤ , is unknown. Intui-

tively, we can use an appropriate nonparametric density estimator, say fm , based on 
X1,… ,Xm to replace f and apply the plug-in rule to estimate ht by

(13)𝜃̂MHDE = argmin
t∈𝛩

‖‖‖h
1∕2
t − ĥ1∕2

‖‖‖,
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With another appropriate nonparametric density estimator, say hn , of h� based on 
Y1,… , Yn , we define the MHDE of 𝜃 = (𝜆, 𝛼, 𝛽)⊤ as

That is, 𝜃̂MHDE is the minimizer t of the Hellinger distance between the estimated 
parametric model ĥt and the nonparametric density estimator hn . In this work, we 
use kernel density estimators

where K0 and K1 are kernel p.d.f.s and bandwidths bn and bm are positive sequences 
such that bm → 0 as m → ∞ and bn → 0 as n → ∞ . The MHDE of p(y) in (2) is 
given by

Note that in (15) we do not impose any restriction on ĥt to make it a density func-
tion. The reason behind this is that a t ∈ � that makes ĥt not a density can still make 
ht a density. The true parameter value � may not make ĥ𝜃 a density, but it is not 
reasonable to exclude � as the estimate 𝜃̂MHDE of itself. As the explicit expression of 
𝜃̂MHDE does not exist, one needs to use iterative methods such as Newton-Raphson 
to numerically calculate it. Karunamuni and Wu (2011) has shown for parametric 
models that with an appropriate initial value, even one-step iteration works well and 
gives a quite accurate approximation of MHDE.

We now examine the asymptotic properties of the MHDE 𝜃̂MHDE given in (15). 
Let H be the set of all p.d.f.s with respect to Lebesgue measure on the real line. 
The conditions (D1)–(D3) and (C0)–(C11) are listed in Appendix. The following 
theorem gives the existence, Hellinger-metric consistency, and uniqueness of the 
proposed MHDE.

Theorem 3  Suppose � is a compact parameter space and (D1) holds for all t ∈ � . 
Then 

	 (i)	 For every � ∈ H and fm defined in (16) with K0 compactly supported, there 
exist T(f ,�) and T(fm,�) in � satisfying (15).

(14)ĥt(x) = (1 − t1 + t1e
t2+t3x)fm(x).

(15)𝜃̂MHDE = T(fm, hn) = argmin
t∈𝛩

‖‖‖ĥ
1∕2
t − h1∕2

n

‖‖‖.

(16)andfm(x) =
1

mbm

m∑
i=1

K0

(
x − Xi

bm

)
,

(17)hn(x) =
1

nbn

n∑
j=1

K1

(
x − Yj

bn

)
,

(18)p̂MHDE(y) =
𝜆̂MHDE exp[𝛼̂MHDE + 𝛽MHDEy]

(1 − 𝜆̂MHDE) + 𝜆̂MHDE exp[𝛼̂MHDE + 𝛽MHDEy]
.
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	 (ii)	 Suppose that m, n → ∞ as N → ∞ and � = T(f ,�) is unique for � ∈ H . Then 
�N = T(fm,�n) → � as N → ∞ for any density sequences fm and �n such that 
‖�1∕2

n − �1∕2‖ → 0 and supt∈𝛩 ‖ĥ1∕2t − h
1∕2
t ‖ → 0 as N → ∞ with ĥt given in 

(14).
	 (iii)	 T(f , h�) = � uniquely for any � ∈ �.

With the results given in Theorem 3, the consistency of our proposed MHDE can be 
proved and is presented in the following theorem.

Theorem 4  Let m, n → ∞ as N → ∞ . Suppose that (D1) holds for any � ∈ � and 
the bandwidths bm and bn in (16) and (17) respectively satisfy bm, bn → 0 and 
mbm, nbn → ∞ as N → ∞ . Further suppose that either (D2) or (D3) holds. Then 
‖f 1∕2m − f 1∕2‖ P

−→0 , ‖h1∕2n − h
1∕2

�
‖ P
−→0 and supt∈𝛩 ‖ĥ1∕2t − h

1∕2
t ‖ P

−→0 as N → ∞ . Fur-
thermore, 𝜃̂MHDE

P
−→𝜃 as N → ∞ , where 𝜃̂MHDE is defined in (15) with fm , hn and ĥt 

given in (16), (17) and (14), respectively.

We derive in the next theorem an expression of the bias term 𝜃̂MHDE − 𝜃 . Define 
symmetric matrix

where

Let

where

(19)𝛥(𝜃) = ∫
�
𝜕w1(x)

𝜕𝜃

��
𝜕w1(x)

𝜕𝜃

�⊤
f

w1

(x)dx =

⎛⎜⎜⎝

𝛥11(𝜃) 𝛥12(𝜃) 𝛥13(𝜃)

𝛥12(𝜃) 𝛥22(𝜃) 𝛥23(𝜃)

𝛥13(𝜃) 𝛥23(𝜃) 𝛥33(𝜃)

⎞⎟⎟⎠
,

�11(�) = ∫ (
�w1(x)

��

)2
f

w1

(x)dx = ∫ (e�+�x − 1)2
f

w1

(x)dx,

�22(�) = ∫ (
�w1(x)

��

)2
f

w1

(x)dx = �2 ∫ e2�+2�x
f

w1

(x)dx,

�33(�) = ∫ (
�w1(x)

��

)2
f

w1

(x)dx = �2 ∫ x2e2�+2�x
f

w1

(x)dx,

�12(�) = ∫ �w1(x)

��

�w1(x)

��

f

w1

(x)dx = � ∫ e�+�x(e�+�x − 1)
f

w1

(x)dx,

�13(�) = ∫ �w1(x)

��

�w1(x)

��

f

w1

(x)dx = � ∫ xe�+�x(e�+�x − 1)
f

w1

(x)dx,

�23(�) = ∫ �w1(x)

��

�w1(x)

��

f

w1

(x)dx = �2 ∫ xe2�+2�x
f

w1

(x)dx.

(20)AN(�) = ∫
�w1

��
(x)

�
f
1∕2
m h

1∕2
n

w
1∕2

1

(x) − fm(x)

�
dx =

⎛⎜⎜⎝

AN1(�)

AN2(�)

AN3(�)

⎞⎟⎟⎠
,
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Theorem 5  Suppose � ∈ int(�) , �(�) defined in (19) is invertible, (C2) and assump-
tions in Theorem 4 hold. Then it follows that

where 𝜃̂MHDE is defined by (15) and RN is a 3 × 3 matrix with elements tending to 
zero in probability as N → ∞.

From this result, we obtain immediately the asymptotic distribution of the 
MHDE.

Theorem 6  Suppose that 𝜃̂MHDE defined in (15) satisfies (21). Further suppose that 
conditions (C0) − −(C9) hold. Then the asymptotic distribution of 

√
N(𝜃̂MHDE − 𝜃) 

is N(0,�) , where � is defined by

with

In Theorems 5 and 6, the assumption of �(�) being invertible is generally true 
except for some special cases such as � = 0 , or � = � = 0 , or f is a singleton.

Since MELE is a likelihood-based method, we expect MELE asymptotically 
more efficient than MHDE. Looking at the asymptotic covariance matrices given 
in Theorems 2 and 6 for MELE and MHDE respectively, we note that roughly 
speaking |Sij| is smaller than |�ij| while |𝛥ij| is much bigger than both, due to the 
fact that the denominator w1 or w2 can control the exponential terms in the inte-
grands. As a result, the asymptotic variances of the MELEs of � , � and � are 
smaller than those of the corresponding MHDEs.

To see the asymptotic relative efficiency of the MHDE with respect to the 
MELE, we take the normal mixture (1 − �)N(0, 1) + �N(�, 1) , a model examined 
also in our later simulation studies, as an example and Table 1 below presents the 

AN1(�) = ∫ (e�+�x − 1)

[
f
1∕2
m h

1∕2
n

w
1∕2

1

(x) − fm(x)

]
dx,

AN2(�) = ∫ �e�+�x
[
f
1∕2
m h

1∕2
n

w
1∕2

1

(x) − fm(x)

]
dx,

AN3(�) = ∫ �xe�+�x
[
f
1∕2
m h

1∕2
n

w
1∕2

1

(x) − fm(x)

]
dx.

(21)𝜃̂MHDE − 𝜃 = 2
[
𝛥−1(𝜃) + RN

]
AN(𝜃),

𝛴 = 𝛥−1(𝜃)

[
1

1 − 𝜌
𝛥(𝜃) +

1

𝜌
𝛥(𝜃)

]
𝛥−1(𝜃)

=
1

𝜌(1 − 𝜌)
𝛥−1(𝜃)

[
𝛥(𝜃) + 𝜌

(
𝛥(𝜃) − 𝛥(𝜃)

)]
𝛥−1(𝜃)

𝛥(𝜃) = ∫ 𝜕w1

𝜕𝜃
(x)

[
𝜕w1

𝜕𝜃
(x)

]⊤
f (x)dx,

𝛥(𝜃) = ∫ 𝜕w1

𝜕𝜃
(x)

[
𝜕w1

𝜕𝜃
(x)

]⊤
f

w1

(x)dx.
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Table 1   Asymptotic covariance matrices of the MELE and MHDE under normal mixture 
(1 − �)N(0, 1) + �N(�, 1) with � = 0.5

� � MELE MHDE

.05 ⎡⎢⎢⎣

153 631 − 1258

631 2852 − 5705

−1258 − 5705 11, 416

⎤⎥⎥⎦

⎡⎢⎢⎣

157 556 − 1260

556 4456 − 5714

−1260 − 5714 11, 434

⎤⎥⎥⎦
.20 ⎡⎢⎢⎣

164 179 − 357

179 213 − 428

−357 − 428 861

⎤⎥⎥⎦

⎡⎢⎢⎣

169 167 − 363

166 317 − 435

−363 − 435 876

⎤⎥⎥⎦
� = .5(

� = −.125

� = .5

) .50 ⎡⎢⎢⎣

163 78 − 155

78 40 − 80

−155 − 80 166

⎤⎥⎥⎦

⎡⎢⎢⎣

174 79 − 167

79 58 − 86

−167 − 86 178

⎤⎥⎥⎦
.80 ⎡⎢⎢⎣

140 44 − 91

44 15 − 31

−91 − 31 67

⎤⎥⎥⎦

⎡⎢⎢⎣

159 50 − 105

50 24 − 36

−105 − 36 77

⎤⎥⎥⎦
.95 ⎡⎢⎢⎣

119 33 − 69

33 10 − 20

−69 − 20 45

⎤⎥⎥⎦

⎡⎢⎢⎣

142 39 − 83

39 16 − 25

−83 − 25 54

⎤⎥⎥⎦
.05 ⎡⎢⎢⎣

14 171 − 169

171 2548 − 2559

−169 − 2559 2573

⎤⎥⎥⎦

⎡⎢⎢⎣

18 104 − 179

104 4298 − 2711

−179 − 2711 2728

⎤⎥⎥⎦
.20 ⎡⎢⎢⎣

17 63 − 63

63 285 − 292

−63 − 292 302

⎤⎥⎥⎦

⎡⎢⎢⎣

23 63 − 79

63 459 − 369

−79 − 369 383

⎤⎥⎥⎦
� = 1(
� = −.5

� = 1

) .50 ⎡⎢⎢⎣

16 29 − 30

29 65 − 69

−30 − 69 77

⎤⎥⎥⎦

⎡⎢⎢⎣

26 44 − 50

44 123 − 115

−50 − 115 126

⎤⎥⎥⎦
.80 ⎡⎢⎢⎣

11 15 − 16

15 24 − 27

−16 − 27 33

⎤⎥⎥⎦

⎡⎢⎢⎣

21 30 − 34

30 57 − 57

−34 − 57 67

⎤⎥⎥⎦
.95 ⎡⎢⎢⎣

7 8 − 10

8 14 − 16

−10 − 16 21

⎤⎥⎥⎦

⎡⎢⎢⎣

14 20 − 23

20 37 − 38

−23 − 38 46

⎤⎥⎥⎦
.05 ⎡⎢⎢⎣

2 78 − 40

78 4566 − 2422

−40 − 2422 1296

⎤⎥⎥⎦

⎡⎢⎢⎣

14 441 − 268

441 29, 913 − 14, 795

−268 − 14, 795 7744

⎤⎥⎥⎦
.20 ⎡⎢⎢⎣

3 37 − 20

37 830 − 474

−20 − 474 277

⎤⎥⎥⎦

⎡⎢⎢⎣

34 561 − 309

561 11, 232 − 5998

−309 − 5998 3242

⎤⎥⎥⎦
� = 2(
� = −2

� = 2

) .50 ⎡⎢⎢⎣

3 18 − 10

18 235 − 146

−10 − 146 96

⎤⎥⎥⎦

⎡⎢⎢⎣

51 537 − 298

537 5969 − 3304

−298 − 3304 1842

⎤⎥⎥⎦
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asymptotic covariance matrices of the MELE and MHDE for � = 0.5 and vari-
ous parameter settings � = .5, 1, 2 (i.e., (�, �) = (−.125, .5), (−.5, 1), (−2, 2) respec-
tively) and � = .05, .20, .50, .80, .95 . From Table  1 we see that, as expected, the 
elements in the covariance matrices of the MELE are almost always smaller than 
those of the MHDE, in absolute values. The difference in the asymptotic vari-
ances of the MELE and MHDE of � or � is very small for smaller � ( = .5 ) and 
smaller � values. The relative efficiency of the MHDE with respect to the MELE 
deteriorates when � increases or, especially when � increases. We also observe 
from Table 1 that the asymptotic variances of both the MELE and MHDE of � 
and � decrease when � increases, which is expected by the fact that the informa-
tion of � and � is contained in the second component only and the amount of such 
information increases when the mixing proportion � of the second component 
increases. Comparatively, when � increases, the asymptotic variances of both the 
MELE and MHDE of � increase first, reach their maxima around � = 0.5 and then 
decrease. This phenomenon can be explained by the fact that the estimation of 
� is associated with a Bernoulli random variable with parameter � and the vari-
ance of this random variable, �(1 − �) , as a function of � has the same increasing-
decreasing trend.

5 � Test of the semiparametric model

In this section we discuss the validity of the semiparametric mixture model (4) or 
equivalently the relationship (3) between f and g, with r(x) = x . Several goodness-
of-fit test statistics for testing the relationship (3) in case-control studies are availa-
ble in literature; see, for example, Qin and Zhang (1997), Zhang (1999, 2001, 2006), 
and Deng et  al. (2009). For our semiparametric mixture model (4), we will con-
struct Kolmogorov–Smirnov (K–S) type statistics based on the proposed MELE and 
MHDE.

Table 1   (continued)

� � MELE MHDE

.80 ⎡⎢⎢⎣

1 8 − 5

8 93 − 63

−5 − 63 47

⎤⎥⎥⎦

⎡⎢⎢⎣

37 367 − 209

367 3759 − 2140

−209 − 2140 1229

⎤⎥⎥⎦
.95 ⎡⎢⎢⎣

1 3 − 2

3 49 − 35

−2 − 35 29

⎤⎥⎥⎦

⎡⎢⎢⎣

14 191 − 112

191 2639 − 1540

−112 − 1540 909

⎤⎥⎥⎦
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The idea of K–S test statistic is to use the discrepancy between two c.d.f. esti-
mates, one with the model assumption and the other without, to assess the validity 
of a model. For model (4) with r(x) = x , we can use the empirical c.d.f. based on 
the first sample Xi ’s as the first estimate and the MELE or MHDE based on both 
samples Xi ’s and Yi ’s exploiting (4) as the second. We first look at the special case 
of testing � = 0 in model (4). When � = 0 , we also have � = 0 , which implies the 
equality of the two components F and G and further the equality of F and H. The 
two-sample K–S statistic for testing the equality of F and H is

where N = m + n , F̂ , Ĥ and F̃0 denote the empirical c.d.f.s based on Xi’s, Yi ’s and 
Ti ’s respectively, and (T1,… , TN)

⊤ = (X1,… ,Xm, Y1,… , Yn)
⊤ is the pooled sample. 

Note that F̂ and Ĥ are the nonparametric MLEs of F and H respectively without the 
assumption of F = H , whereas F̃0 is the nonparametric MLE of F with the assump-
tion of F = H . Now consider the general case of testing (4) with any � . Motivated 
by the construction of the K–S statistic for testing � = 0 , to test the validity of model 
(4) with r(x) = x , we propose to use the test statistic

where F̃ is an estimator of F based on either the MELE or the MHDE of 
𝜃 = (𝜆, 𝛼, 𝛽)⊤ with model assumption (4). Recall in Sect.  3, with pi = dF(Ti) and 
�N = n∕N , the MELE p̂i of pi is given by (6). Then an estimator F̃ of F under model 
(4) is given by

If the 𝜃̂ = (𝜆̂, 𝛼̂, 𝛽)⊤ in (6) and (23) is the MELE 𝜃̂MELE that we constructed in Sect. 3, 
then the resulting F̃MELE is the actual MELE of F under (4) and we denote the cor-
responding test statistic in (22) as KSMELE . This test statistic is similar to that in Qin 
and Zhang (1997), but they used it for case-control data instead of our more com-
plicated mixture model (4). Intuitively, we can also use the MHDE 𝜃̂MHDE given in 
(15) for 𝜃̂ , and then we denote the resulting F̃ in (23) and KS in (22) as F̃MHDE and 
KSMHDE , respectively.

In our later numerical studies, we use bootstrap procedure to find the approxi-
mated distributions and critical values for KSMELE and KSMHDE . To generate boot-
strapping data, we randomly select independent samples X∗

i
 ’s from dF̃(x) and Y∗

i
 ’s 

from (1 − 𝜆̂ + 𝜆̂e𝛼̂+𝛽x)dF̃(x) , where 𝜃̂ and F̃ are either the MELEs 𝜃̂MELE and F̃MELE 
or the MHDEs 𝜃̂MHDE and F̃MHDE , respectively. Note that both X∗

i
 ’s and Y∗

i
 ’s are 

selected from the pooled data (T1,… , TN) but with different probability distribution 

sup
t

|F̂(t) − Ĥ(t)| =
N

n
sup
t

|||F̂(t) − F̃0(t)
|||,

(22)KS = N1∕2 sup
t

|||F̂(t) − F̃(t)
|||,

(23)F̃(t) =

N∑
i=1

p̂iI(Ti ≤ t) =
1

N

N∑
i=1

I(Ti ≤ t)

1 − 𝜌N 𝜆̂ + 𝜌N 𝜆̂e
𝛼̂+𝛽Ti

.
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function. This means that some of the selected X∗
i
 ’s could be values in the original 

second sample Yi ’s and some of the selected Y∗
i
 ’s could be values in the original 

first sample Xi’s. Let (T∗
1
,… , T∗

N
) denote the combined bootstrapping sample and 

𝜃̂∗ = (𝜆̂∗, 𝛼̂∗, 𝛽∗)⊤ be either the MELE or the MHDE based on the bootstrapping 
samples X∗

i
 ’s and Y∗

i
’s. Then we can calculate the empirical function F̂ based on X∗

i

’s, the quantities in (6) and the function in (23) based on T∗
i
 ’s and 𝜃̂∗ , with results 

denoted by F̂∗ , p̂∗
i
 and F̃∗ , respectively. Then finally the bootstrapping KS test statis-

tic is

We can generate 1000 bootstrapping samples to produce 1000 bootstrapping KS sta-
tistic values for both KSMELE and KSMHDE at the same time. Then the distributions, 
and further the critical values, of KSMELE and KSMHDE can be estimated by these 
respective 1000 statistic values.

6 � Simulation studies

In this section we examine through Monte Carlo simulation studies the finite-sample 
performance of the proposed MELE and MHDE of the parameters in model (4) and 
the proposed K–S tests of this model. In our simulation study, we consider mix-
ture of normals, Poissons or uniforms given in Table 2. We can easily check that all 
the five models satisfy the stochastic dominance condition, however only models 
M1-M4 satisfy relationship (4). Model M5 does not satisfy (4) since the two com-
ponents have different support. Even though the focus of this paper is on continuous 
mixture models, we also want to check the performance of the proposed methods for 
discrete mixture models such as M3 and M4. For each model, the true values of � 
and � are calculated and listed in Table 2.

6.1 � Efficiency of the estimators

For each of the mixture models in Table 2, we consider different � values varying 
from .05 to .95. Under each model, we take N = 1000 repeated random samplings 

KS∗ = N1∕2 sup
t

|||F̂
∗(t) − F̃∗(t)

|||.

Table 2   Mixture models considered in simulation study

Model Form � � Note

M1 (1 − �)N(0, 1) + �N(1, 1) −.5 1 Mixture of normals that are close
M2 (1 − �)N(0, 1) + �N(5, 1) −12.5 5 Mixture of normals that are apart
M3 (1 − �)Po(2) + �Po(4) −2 .693 Mixture of Poissons that are close
M4 (1 − �)Po(2) + �Po(6) −4 1.099 Mixture of Poissons that are apart
M5 (1 − �)U(0, 4) + �U(2, 6) NA NA Mixture of uniforms
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and for each sampling we use two different sample sizes (m, n) = (30, 30) and 
(100, 100). In the kernel density estimators fm and hn given in (16) and (17) respec-
tively, standard normal p.d.f. is used as both kernels K0 and K1 , and the bandwidths 
bm and bn are chosen the same as in Silverman (1986) and Wu and Abedin (2021). 
The effect of different choice of kernel on kernel estimator is trivial, while the band-
width has more influence on the finite-sample performance and the convergence rate 
of the nonparametric kernel estimator. Nevertheless, Theorems 4–6 indicate that 
the MHDE has the consistency and asymptotic normality if the bandwidths are of 
the form bm, bn = O(N−r) with r from a subinterval of (0, 1). This subinterval may 
depend on the population of the two components. With the component population 
unknown, we choose r = 1∕5 in our simulation as in Silverman (1986) and Wu and 
Abedin (2021) which achieves the optimal mean square error of the kernel estima-
tor. In addition, the bandwidths bm and bn of our choice are adaptive in the sense that 
they involve a factor of robust scale estimate to incorporate the different variation of 
f and h.

To compute the estimates numerically, we use �+ , an estimator based on odds 
ratio, given by Smith and Vounatsou (1997) as the initial of � . Initial values of � and 
� are calculated by exploiting the relationship (3), or equivalently

Thus for each Ti in the pooled sample, we generate the pair (Ti,Ri) , where 
Ri = log

hn(Ti)∕fm(Ti)−(1−�+)

�+
 . Then we use (Ti,Ri) , i = 1,… ,N , to fit a least-squares 

regression line and the fitted coefficients are used as the initials of � and � . To evalu-
ate the finite-sample performance of an estimator 𝜃̂ of � , we calculate the bias and 
mean squared error (MSE) over N = 1000 replications. The results are presented in 
Tables 3, 4 and 5.

Table 3 gives the biases and MSEs of 𝜆̂MELE and 𝜆̂MHDE for all the five models with 
varying � values and sample size m = n = 30 whereas Table 4 is for m = n = 100 . 
For the purpose of comparison, we also report the results of the two estimators 𝜆̂ 
and 𝜆̂L proposed in Wu and Abedin (2021) for model (1) directly, without assuming 
the relationship (3). The 𝜆̂ is based on cumulative distribution estimation while 𝜆̂L 
is the MLE of the multinomial approximation of model (1). From Tables 3 and 4 
we can see that all the four methods are very competitive when � is concerned. The 
nonparametric estimators 𝜆̂ and 𝜆̂L perform slightly better than the semiparametric 
estimators 𝜆̂MELE and 𝜆̂MHDE when the two components are close to each other (such 
as M1 and M3) or the relationship (3) does not holds (M5), while 𝜆̂MELE and 𝜆̂MHDE 
perform better than 𝜆̂ and 𝜆̂L when the two components are relatively far away (such 
as M2). Both the MELE and the MHDE perform surprisingly well for model M5, 
even though the assumed relationship (3) is not valid for M5.

The simulation results for estimating � are given in Table  5. Since (3) is not 
assumed in Wu and Abedin (2021), their methods are for estimating � only and thus 

log
h(x)∕f (x) − (1 − �)

�
= � + �x.
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in Table 5 we compare 𝛽MELE and 𝛽MHDE only. In addition, we omit the results for � 
and model M5 as � depends on � through normalization and M5 doesn’t satisfy (3). 
From Table 5 we observe that the MHDE performs better than the MELE in terms 
of both smaller bias and MSE. However, the MHDE tends to give very large bias 
and MSE when � is small, such as M2 with � = .05 . We also observe from Table 5 
that the MSEs of both MHDE and MELE of � decrease as the true � value increases, 
which is very consistent with the observations from Table 1 on their asymptotic var-
iances. This phenomenon is justified by the fact that when � increases the expected 
number of observations from the second component g gets larger, and as a result 
the data contains more and more information about � . This is also the reason why 
the MHDE and the MELE give large biases and inflated MSEs for small � , espe-
cially when sample size is small. For example, for model M2 with � = 0.05 and 
m = n = 30 (or 100), we would expect only n� = 1.5 (or 5) observations on average 

Table 3   Bias (MSE) of 𝜆̂MELE , 𝜆̂MHDE , 𝜆̂ and 𝜆̂
L
 with m = n = 30

Model � 𝜆̂MELE 𝜆̂MHDE 𝜆̂ 𝜆̂
L

.05 .139 (.091) .126 (.066) .052 (.031) .020 (.031)
M1 .20 .093 (.106) .069 (.041) .093 (.074) .032 (.068)
� = −.5 .50 .035 (.102) – .052 (.087) .067 (.078) – .039 (.078)
� = 1 .80 – .024 (.056) – .059 (.059) – .009 (.047) – .144 (.089)

.95 – .062 (.032) – .099 (.040) – .052 (.029) – .181 (.090)

.05 .029 (.005) .054 (.007) .053 (.022) .022 (.031)
M2 .20 .019 (.007) .047 (.017) .095 (.032) .055 (.071)
� = −12.5 .50 .004 (.014) .055 (.017) .082 (.015) .029 (.066)
� = 5 .80 – .008 (.014) .009 (.009) .061 (.014) – .009 (.036)

.95 .002 (.002) .004 (.001) .034 (.002) – .011 (.009)

.05 .058 (.055) .142 (.054) .203 (.089) .002 (.015)
M3 .20 – .019 (.089) .091 (.060) .133 (.064) – .017 (.046)
� = −2 .50 – .091 (.148) .026 (.062) .019 (.039) – .076 (.010)
� = .693 .80 – .109 (.119) – .059 (.043) – .096 (.034) – .128 (.101)

.95 – .139 (.093) – .116 (.039) – .152 (.042) – .163 (.102)

.05 – .003 (.012) .067 (.016) .211 (.092) .003 (.016)
M4 .20 – .084 (.037) .027 (.024) .178 (.071) – .007 (.047)
� = −4 .50 – .092 (.087) .016 (.021) .117 (.034) – .028 (.084)
� = 1.099 .80 – .027 (.051) – .032 (.014) .019 (.010) – .033 (.059)

.95 – .027 (.021) – .054 (.009) – .026 (.004) – .048 (.037)

.05 .166 (.177) .237 (.190) .249 (.136) .026 (.032)

.20 – .002 (.114) .178 (.127) .151 (.078) .049 (.069)
M5 .50 – .121 (.135) .076 (.063) .067 (.048) .025 (.065)

.80 – .055 (.076) .046 (.029) .031 (.022) – .001 (.029)

.95 – .022 (.018) .014 (.005) .009 (.006) – .012 (.010)
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from g that contain information about � , which thus produces estimates of � with 
large bias and MSE.

In order to examine the effect of unbalanced sample sizes on the performance 
of MELE and MHDE, in Table  6 we present the simulation results for sample 
sizes (m, n) = (50, 150) and (150,  50). Comparing Table  6 with Table  4, we 
observe that when � is concerned, the MELE and MHDE under unbalanced sam-
ple sizes (m, n) = (50, 150) and (150,  50) perform slightly worse, though still 
comparable, than under balanced sample sizes (m, n) = (100, 100) , especially in 
terms of MSE. When � is concerned and Table 6 is compared with Table 5, we 
observe that the performance of the MELE and MHDE under unbalanced sample 
sizes is significantly worse than that under balanced sample sizes, especially in 
terms of MSE. These phenomenon can be possibly explained by the fact that both 
the asymptotic covariance matrices of MELE and MHDE given in Theorems 2 
and 6 respectively have a factor 1

�(1−�)
 in front. Other places in the covariance 

matrix expressions also involve � , though not as influencing as this factor, which 

Table 4   Bias (MSE) of 𝜆̂MELE , 𝜆̂MHDE , 𝜆̂ and 𝜆̂
L
 with m = n = 100

Model � 𝜆̂MELE 𝜆̂MHDE 𝜆̂ 𝜆̂
L

.05 .066 (.036) .059 (.026) .049 (.019) .022 (.009)
M1 .20 .053 (.059) .039 (.044) .085 (.052) .011 (.016)
� = −.5 .50 .051 (.062) .039 (.057) .067 (.052) – .048 (.026)
� = 1 .80 – .006 (.029) – .018 (.031) .008 (.026) – .121 (.033)

.95 – .041 (.014) – .058 (.019) – .027 (.012) – .149 (.035)

.05 .008 (.001) .013 (.001) .048 (.015) .026 (.009)
M2 .20 – .003 (.004) .001 (.006) .065 (.018) .033 (.016)
� = −12.5 .50 .001 (.005) .029 (.004) .049 (.005) .017 (.019)
� = 5 .80 .002 (.002) .005 (.002) .057 (.009) .000 (.010)

.95 .001 (.001) .004 (.001) .036 (.002) – .002 (.003)

.05 .019 (.019) .062 (.018) .035 (.005) – .000 (.004)
M3 .20 – .026 (.045) .049 (.029) .034 (.013) – .022 (.013)
� = −2 .50 – .022 (.078) .029 (.039) – .015 (.001) – .073 (.029)
� = .693 .80 – .023 (.036) – .043 (.028) – .084 (.190) – .121 (.038)

.95 – .057 (.018) – .088 (.024) – .119 (.023) – .143 (.034)

.05 – .024 (.004) .003 (.004) .044 (.006) .000 (.004)
M4 .20 – .080 (.025) – .005 (.012) .071 (.012) – .000 (.012)
� = −4 .50 – .018 (.025) .002 (.011) .048 (.009) – .009 (.021)
� = 1.099 .80 .004 (.007) – .028 (.006) .009 (.006) – .018 (.013)

.95 – .007 (.002) – .037 (.004) – .006 (.002) – .023 (.005)

.05 .082 (.099) .186 (.170) .018 (.002) .033 (.009)

.20 – .093 (.040) .093 (.056) .017 (.005) .035 (.014)
M5 .50 – .132 (.057) .037 (.028) .016 (.008) .011 (.019)

.80 – .048 (.032) .063 (.012) .012 (.006) – .001 (.008)

.95 – .006 (.005) .033 (.002) .012 (.002) – .005 (.002)
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makes the level of deterioration different for � and � when m∕(m + n) deviates 
away from 1/2 (i.e., balanced samples).

To examine the performance of p̂MELE and p̂MHDE given in (8) and (18) respec-
tively, we calculate misclassification rates (MR) based on these estimates and a sim-
ple classification rule with use of .5 as the hard threshold, i.e., an individual with 
observation y is classified as from G if p̂(y) > .5 and as from F if otherwise, where 
p̂ is either p̂MELE or p̂MHDE . Considering the fact that MR is higher for some models, 
such as M1 when the two components significantly overlap, than some other models 
such as M2, we use the optimal misclassification rate (OMR) in Wu and Abedin 
(2021) as the baseline to compare with. The OMR is the misclassification rate cal-
culated assuming p(y) is completely known (ideal scenario) and the same value .5 is 
used as the classification threshold. The simulation results are presented in Table 7. 
For the purpose of comparison, we also report the results of this classification rule 
but based on the nonparametric estimators 𝜆̂ and 𝜆̂L in Wu and Abedin (2021).

From Table 7 we observe that 𝜆̂L performs worst, while other three methods are 
quite competitive. Particularly, 𝜆̂MELE and 𝜆̂MHDE performs much better than 𝜆̂ in 
model M2, while 𝜆̂ has a little better performance in M1, M3 and M5. Even though 
the assumed relationship (3) is not valid for M5, the classification results based on 

Table 5   Bias (MSE) of 𝛽MELE and 𝛽MHDE

m = n = 30 m = n = 100

Model � 𝛽MELE 𝛽MHDE 𝛽MELE 𝛽MHDE

.05 .006 (.436) – .117 (.359) .025 (.427) – .127 (.349)
M1 .20 .174 (.469) .023 (.387) .174 (.407) .034 (.342)
� = −.5 .50 .225 (.376) .110 (.328) .094 (.198) – .007 (.193)
� = 1 .80 .200 (.245) .062 (.223) .095 (.113) – .011 (.121)

.95 .219 (.205) .059 (.119) .116 (.082) – .002 (.092)

.05 .255 (1.125) – 1.504 (5.266) .594 (.654) – .789 (3.278)
M2 .20 .581 (.648) .456 (1.009) .564 (.560) .534 (.598)
� = −12.5 .50 .564 (.594) .632 (.641) .411 (.441) .535 (.519)
� = 5 .80 .500 (.532) .552 (.592) .316 (.386) .463 (.434)

.95 .428 (.471) .468 (.599) .255 (.331) .423 (.385)

.05 .063 (.641) – .299 (.265) .078 (.536) – .229 (.219)
M3 .20 .427 (.734) – .094 (.168) .399 (.529) – .025 (.104)
� = −2 .50 .504 (.599) .044 (.097) .246 (.296) .016 (.068)
� = .693 .80 .335 (.331) .072 (.077) .119 (.091) .035 (.052)

.95 .301 (.241) .085 (.068) .130 (.055) .034 (.043)

.05 .029 (.705) – .242 (.610) .201 (.565) – .155 (.579)
M4 .20 .512 (.492) .059 (.292) .450 (.389) .093 (.187)
� = −4 .50 .337 (.271) .098 (.085) .115 (.097) .042 (.066)
� = 1.099 .80 .144 (.109) .090 (.073) .053 (.039) .039 (.049)

.95 .131 (.075) .089 (.070) .066 (.033) .033 (.048)
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MELE and MHDE for M5 are surprisingly reasonable and the MRs don’t deviate 
from OMR too much for larger sample sizes.

6.2 � Robustness of the estimators

In this subsection, we examine the robustness properties of the proposed MELE 
and MHDE. In order to compare with the two nonparametric estimators in Wu and 

Table 7   Misclassification rate (MR, in %) of p(y) in (2) with threshold .5 based on 𝜃̂MELE , 𝜃̂MHDE , 𝜆̂ and 
𝜆̂
L

m = n = 30 m = n = 100

Model � 𝜃̂MELE 𝜃̂MHDE 𝜆̂ 𝜆̂
L

𝜃̂MELE 𝜃̂MHDE 𝜆̂ 𝜆̂
L

OMR

.05 18.53 14.90 8.03 5.60 11.04 8.81 7.37 5.00 4.99
M1 .20 31.20 28.13 26.30 22.13 27.04 24.97 26.09 20.16 18.61
� = −.5 .50 38.04 37.93 36.63 46.77 37.29 37.98 37.05 44.37 30.85
� = 1 .80 24.50 24.03 22.83 41.57 22.23 23.04 21.29 27.39 18.61

.95 10.53 12.40 9.07 25.17 8.14 9.04 6.80 11.73 4.99

.05 1.13 2.37 2.20 4.97 .69 1.67 2.28 5.00 .24
M2 .20 1.24 1.70 3.97 20.57 .90 .97 3.02 19.90 .48
� = −12.5 .50 1.27 1.33 2.73 39.13 .91 .89 2.12 25.61 .62
� = 5 .80 .53 1.03 6.93 19.97 .61 .61 6.21 4.56 .48

.95 .37 .63 7.40 4.53 .29 .29 4.16 2.21 .24

.05 13.63 12.27 28.40 5.40 7.61 6.89 5.04 5.01 4.76
M3 .20 25.47 25.00 32.27 22.03 21.75 20.73 16.69 20.09 13.90
� = −2 .50 36.13 34.50 34.13 43.67 34.89 34.06 15.54 44.03 19.05
� = .693 .80 26.97 25.00 24.17 35.53 22.87 23.68 25.20 29.74 13.35

.95 15.73 14.73 14.40 22.57 9.55 11.27 14.24 14.27 6.06

.05 6.70 6.30 26.30 5.43 4.41 4.51 3.03 5.01 3.14
M4 .20 15.53 12.30 25.27 21.60 11.14 10.87 9.61 20.08 7.03
� = −4 .50 19.00 16.97 21.60 37.97 16.49 15.85 15.54 35.49 10.19
� = 1.099 .80 14.23 13.17 13.77 24.20 13.00 12.94 13.34 14.68 7.82

.95 6.07 7.03 5.73 10.03 5.18 5.96 5.81 5.41 3.21

.05 25.97 25.53 30.83 22.07 15.31 22.18 3.09 5.01 2.50

.20 23.04 30.87 29.90 20.80 16.59 21.61 10.99 20.13 10.00
M5 .50 29.83 31.90 30.43 45.10 26.38 28.77 24.24 37.34 25.00

.80 22.47 18.70 16.20 23.07 20.16 15.77 12.76 13.38 10.00

.95 8.23 5.13 4.33 5.70 5.92 4.84 3.87 3.62 2.50
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Abedin (2021), we check the performance of estimators of � only but not � and � 
that Wu and Abedin (2021) didn’t introduce.

Specifically, we examine the behavior of the four estimators, 𝜆̂MELE , 𝜆̂MHDE , 𝜆̂ and 
𝜆̂L when data are contaminated by a single outlying observation. Presence of several 
outliers will be similar and thus omitted here. Note that the outlying observation can 
be in either the first sample from f(x) or the second sample from the mixture h(x). We 
report results for the latter case and similar results are observed for the former case. 
We look at the change in estimate before and after data contamination. For this pur-
pose, the �-influence function ( �-IF) given in Beran (1977) is an appropriate measure 
of the change in estimate. However its application in mixture context is very difficult, 
as discussed in Karlis and Xekalaki (1998). Therefore, we employ an adaptive version 
of the �-IF as in Lu et al. (2003) which uses the change in estimate, before and after 
outlying observations are included, divided by contamination rate. Taking model M1 
as an example, after drawing two independent samples with one from N(0, 1) and the 
other from (1 − �)N(0, 1) + �N(1, 1) , we replace the last observation generated from 
the mixture with a single outlier, an integer from the interval [−30, 20] . Then the �-IF 
is given by

averaged over 100 replications, where the total sample size N = 60 or 200 and W 
is an estimator of � . In our study, W is either 𝜆̂MELE , 𝜆̂MHDE , 𝜆̂ or 𝜆̂L . The results are 

IF(x) =
W((Xi)

m
i=1

, (x, Yi)
n−1
i=1

) −W((Xi)
m
i=1

, (Yi)
n
i=1

)

1∕N
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Fig. 1   The �-IFs of 𝜆̂MELE (dashed), 𝜆̂MHDE (solid), 𝜆̂ (dotted) and 𝜆̂
L
 (dot-dashed) for model M1: 

a � = .15 and m = n = 30 ; b � = .15 and m = n = 100 ; c � = .55 and m = n = 30 ; d � = .55 and 
m = n = 100
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presented in Figs. 1, 2 and 3. Figure 1 is for M1 with � = .15 and .55, Figure 2 for 
M2 with � = .25 and .75, and Fig. 3 for M3 with � = .25 and .75. The results for 
other models and � values are very similar and thus omitted to save space.

From Figs.  1, 2 and 3 we observe that no matter for which model and what 
sample size, 𝜆̂MHDE always performs the best and 𝜆̂MELE performs the worst. The �
-IF of 𝜆̂MELE is generally unbounded while that of 𝜆̂MHDE , 𝜆̂ and 𝜆̂L seems bounded 
when the outlying observation increases in both directions for mixture of normals 
and in the right direction for mixture of Poissons. This indicates that 𝜆̂MELE is gen-
erally not resistant to outliers whereas 𝜆̂MHDE , 𝜆̂ and 𝜆̂L are. The bad performance 
of 𝜆̂MELE is mostly for when the outlying observation is bigger than 10. When 
the outlying observation is less than 10, the performance of 𝜆̂MELE is generally 
reasonable and is similar to that of other three estimators. The �-IFs of 𝜆̂MHDE , 𝜆̂ 
and 𝜆̂L are almost constants for outliers beyond the range [−10, 5] for mixture of 
normals and [0, 5] for mixture of Poissons, though the constants are of different 
magnitude, and they fluctuate within the respective ranges. When 𝜆̂MHDE , 𝜆̂ and 𝜆̂L 
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Fig. 2   The �-IFs of 𝜆̂MELE (dashed), 𝜆̂MHDE (solid), 𝜆̂ (dotted) and 𝜆̂
L
 (dot-dashed) for model M2: 

a � = .25 and m = n = 30 ; b � = .25 and m = n = 100 ; c � = .75 and m = n = 30 ; d � = .75 and 
m = n = 100



	 J. Wu et al.

1 3

are compared, 𝜆̂L behaves the worst in terms of having largest �-IF for mixture of 
normals and 𝜆̂ behaves the worst for mixture of Poisson distributions.

6.3 � Test of model

In this part, we examine the performance of the K–S tests we proposed in Sect. 5 
for testing the validity of model (3). We consider model (3) with r(x) = (x, x2)⊤ as 
the collection of all possible models under consideration. Then we test whether 
the reduced model (3) with r(x) = x is the actual true model or not. For dem-
onstration purpose, we consider mixture of normals H(x) = (1 − �)F(x) + �G(x) 
with F ∼ N(0, 1) and G ∼ N(�, �2) . Then f(x) and h(x) are related by

where � = −
1

2

(
log �2 +

�2

�2

)
 , � =

�

�2
 and � =

1

2

(
1 −

1

�2

)
 . Note that (24) is a special 

case of (3) when r(x) = (x, x2)⊤ . If � = 1 , then � = 0 and thus model (3) holds with 
r(x) = x . So testing the validity of model (3) with r(x) = x is equivalent to testing the 
null hypothesis H0 ∶ � = 0 under model (24). We consider � = 0 , −.9 and −1.5 , 
� = .35 and .65, and sample sizes m = n = 30 and m = n = 100 . For simplicity, we 
just fix � = 1 and as a result � = 1 , .6 and .5 for � = 0 , −.9 and −1.5 , respectively. 
For each � , � and sample size considered, we use 500 total number of replications 
for our calculation. Within each replication, we use totally 1000 bootstrapping 

(24)h�(x) =∶ h(x) =
(
1 − � + �e�+�x+�x

2
)
f (x),
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Fig. 3   The �-IFs of 𝜆̂MELE (dashed), 𝜆̂MHDE (solid), 𝜆̂ (dotted) and 𝜆̂
L
 (dot-dashed) for model M3: 

a � = .25 and m = n = 30 ; b � = .25 and m = n = 100 ; c � = .75 and m = n = 30 ; d � = .75 and 
m = n = 100
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samples to estimate the distribution and critical values of the test statistics KSMELE 
and KSMHDE . We choose different levels of significance a = .10 , .05 and .01. The 
simulation results are presented in Table 8. Note that � = 0 means model (3) with 
r(x) = x is correct and thus the correspondingly calculated values in Table 8 are the 
estimated significance levels. When � ≠ 0 , model (3) with r(x) = x is not correct and 
thus the correspondingly calculated values in Table 8 are the estimated powers at 
that value of �.

From Table  8 we can see that the two test statistics KSMELE and KSMHDE 
are quite competitive in terms of achieved significance level and power. The 
achieved levels of significance are quite close to the true levels for most of the 
cases except for the case of KSMHDE with � = 0.65 and m = n = 30 . The power 
of KSMHDE becomes larger when � is away from 0 except for the case of � = 0.65 
and m = n = 30 . Surprisingly, the power of KSMELE becomes smaller when � is 
away from 0 except for the case of � = 0.65 and m = n = 100 . Note that KSMELE 
and KSMHDE use respectively the MELE and MHDE of � , which have been shown 
in Sect.  6.1 to have large bias and MSE when sample sizes are small. Conse-
quently, the results for m = n = 30 have some abnormals while the results for 
m = n = 100 are much better and more reliable. As expected, when the signifi-
cance level a decreases, both the observed significance level and power decrease. 

Table 8   Estimated significance 
level and power of KSMELE and 
KSMHDE

m = n = 30 m = n = 100

� � Sig-
nificance 
level

KSMELE KSMHDE KSMELE KSMHDE

0.35 .10 .040 .104 .156 .186
0 .05 .030 .014 .122 .084

.01 .002 .000 .002 .002

.10 .950 .860 .956 .870
−.9 .05 .904 .802 .910 .710

.01 .734 .410 .578 .184

.10 .948 .966 .958 .998
−1.5 .05 .898 .912 .910 .984

.01 .716 .580 .536 .846
0.65 .10 .036 .388 .096 .136

0 .05 .030 .170 .122 .056
.01 .008 .010 .002 .006
.10 .970 .910 .894 .928

−.9 .05 .888 .818 .708 .758
.01 .464 .282 .158 .120
.10 .956 .876 .990 .990

−1.5 .05 .858 .762 .908 .944
.01 .424 .302 .174 .396
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For both KSMELE and KSMHDE , the powers are generally high for significance lev-
els a = 0.10 and 0.05.

7 � Real data examples

In this section we consider two real-life data examples and demonstrate the appli-
cations of our proposed methods.

Example 1: Grain data.
Smith and Vounatsou (1997) analyzed a data to determine the proportion � of 

cells in the test sample with size n = 94 that were exposed to radioactive materi-
als. The cells in control group with size m = 94 were not exposed to radioactivity. 
The number of grains shown in autoradiograph of cells can measure the amount of 
radioactive material, however grains can appear in autoradiograph due to radioactive 
material or due to background fogging. This dataset and more details of the data are 
available in Smith and Vounatsou (1997), and Wu and Abedin (2021) showed that 
the dominance constraint F ≥ G is valid for this dataset. We apply the two proposed 
estimators to this data and compare them with the estimators in Wu and Abedin 
(2021), Smith and Vounatsou (1997) and Smith et al. (1986). The results are given 
in Table 9, in which bootstrap method with 1000 repetitions are used to calculate the 
confidence intervals of �.

From Table 9 we can see that our two proposed methods produce similar point esti-
mates of � to most other methods available in literature except for the two-by-two table 

Table 9   Estimation of � for the grain data

Method Estimate 95% confidence interval

𝜆̂MELE
.75 .61–.88 (.60–.89)

𝜆̂MHDE
.76 .64–.92(.65–.88)

𝜆̂ (Wu and Abedin, 2021) .78 .68–.87

𝜆̂
L
 (Wu and Abedin, 2021) .79 .58–.88

Poisson mixture (Smith et al., 1986) .77 .00–.91
Two-by-two table (Smith and Vounatsou, 1997) .20 .00–1.00
Logistic power (Smith and Vounatsou, 1997) .61 .58–.64
Monotone logistic (Smith and Vounatsou, 1997) .74 .61–1.00
Latent class (Smith and Vounatsou, 1997) .73 .63–.83

Table 10   Estimation of � for the 
malaria data

Method Wet Season Dry Season

𝜆̂MELE
.461 (.093) .330 (.191)

𝜆̂
L

.435 (.083) .349 (.102)

Bayesian .444 (.054) .305 (.118)
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and Logistic power methods. When interval estimation is concerned, the two proposed 
estimators produce confidence intervals with width similar to those of 𝜆̂ , 𝜆̂L and the 
latent class method but much smaller than those of Poisson mixture, two-by-two table 
and monotone logistic methods. In Table 9, the confidence intervals in the parentheses 
for 𝜆̂MELE and 𝜆̂MHDE are calculated using the asymptotic covariance matrices given in 
Theorems 2 and 6, respectively. From the results we see that bootstrap approximation 
is quite accurate. So when making inferences about � , computationally intensive boot-
strap is not necessary for 𝜆̂MELE and 𝜆̂MHDE while it is necessary for all other methods 
due to the unavailability of results on their asymptotic distribution. This is another great 
benefit of using 𝜆̂MELE and 𝜆̂MHDE over other methods.

Example 2: Malaria data.
We also examine a clinical malaria dataset first described by Kitua et al. (1996) and 

further studied by Vounatsou et  al. (1998). Parasite densities in children with fever 
can be modelled as a two-component mixture, where one component represents the 
parasite densities in children without clinical malaria (F) while the other with clinical 
malaria (G), and � is the proportion of children whose fever is attributable to malaria. 
In this dataset, level of parasitaemia were observed on children between 6 and 9 months 
in a village in Tanzania for both the wet season ( m = 94 , n = 251 ) and the dry sea-
son ( m = 122 , n = 245 ). Wu and Abedin (2021) showed that the dominance constraint 
F ≥ G is valid for both wet and dry seasons.

We apply the proposed 𝜆̂MELE to both seasons and compare the results with 𝜆̂L in Wu 
and Abedin (2021) and the Bayesian approach in Vounatsou et al. (1998). Note that this 
is a discretized data (parasitaemia levels were grouped into 10 categories), so kernel 
smoothing and hence 𝜆̂MHDE and 𝜆̂ are not applicable for this data. Table 10 presents 
the estimation results where the numbers in parentheses are estimated standard errors 
based on 500 bootstrapping samples. From this table we observe that 𝜆̂MELE , 𝜆̂L and 
Bayesian approach produce similar estimates.

8 � Concluding remarks

In this work, we proposed a two-component semiparametric mixture model (4) to 
accommodate the stochastic dominance constraint. We not only proposed and stud-
ied two estimators, the MELE and the MHDE, but also proposed K–S statistics to 
test the validity of the model (4). For both estimators, we proved theoretically their 
consistency and asymptotic normality. The finite-sample performance, in terms of 
both efficiency and robustness, of the proposed estimators and tests of the semipara-
metric model were examined through simulation studies and real data analysis.

The introduction of the two-component semiparametric mixture model (4) has 
several advantages over the fully nonparametric mixture model (1). First, the sem-
iparametric model automatically solves the unidentifiability issue that the fully 
nonparametric model generally has. Second, the semiparametric model easily 
accommodates the stochastic dominance constraint with an equivalent and natural 
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positivity constraint on the parameter � , while the dominance constraint in the origi-
nal nonparametric model is imposed on two functions which is much harder to han-
dle and assess directly. Third, the semiparametric model has much better interpreta-
tion than the nonparametric model. The � value quantifies the difference between 
the two components, and the higher the � value the larger the difference. Fourth, 
for the semiparametric model we proposed two estimators with proved asymptotic 
normality and derived asymptotic covariance matrices, and these asymptotic results 
are in lack in literature for the nonparametric model. As a result, we can easily con-
duct statistical inferences for the mixing proportion � (and � ) based on these derived 
asymptotics for the semiparametric model, while for the nonparametric model some 
computationally intensive method, such as bootstrap, is necessary in order to make 
inferences about � , due to the unavailability of asymptotic properties of available 
estimators. Of course, using the semiparametric model instead of the fully nonpara-
metric model will lose some flexibility which we think will not be significant given 
the fact that many commonly used population families satisfy the exponential tilt 
relationship (3). This loss is worth, considering the aforementioned advantages of 
introducing the semiparametric model.

When the two proposed estimators for the semiparametric mixture model (4) are 
compared, we observe the following preference from our numerical studies. When 
the estimation of the mixing proportion � or classification is our interest, MELE and 
MHDE perform equivalently well, in terms of bias and MSE or misclassification 
rate, and no one is dominantly better than the other. When the estimation accuracy 
of � is our focus, MHDE is highly preferred over MELE when � is moderate or large 
while MELE is preferred when � is small. When the presence of outliers is our con-
cern, MHDE is much more robust and thus is highly preferred over MELE.

Since the proposed model and methods were motivated by the example in 
case-control genetic studies based on test statistic values (one dimension), this 
paper only focused on univariate case. Nevertheless, we can see that the proposed 
MELE and MHDE methods can be easily extended to multidimensional case. On 
the other side, the kernel estimations used in MHDE method may not be able to 
handle high dimensionality well.

For future work, we may consider to use minimum profile Hellinger distance 
estimation (MPHDE) for the semiparametric mixture model (4). Wu and Karuna-
muni (2015) first introduced the profile Hellinger distance particularly for sem-
iparametric models and investigated the MPHDE for semiparametric model of 
general form. Wu and Karunamuni (2015) proved that the MPHDE is as robust 
as MHDE and achieves full efficiency at the true model. Xiang et al. (2014) used 
the MPHDE for a two-component semiparametric mixture model where one com-
ponent is known up to some unknown parameters while the other component is 
unspecified. Wu et al. (2017) and Wu and Zhou (2018) applied the MPHDE for 
semiparametric location-shifted mixture models. Another direction to approach 
the estimation problem of model (4) could be Bayesian method. Vounatsou et al. 
(1998) applied Gibbs sampling approach to estimate the unknown mixing propor-
tion in a two-component mixture model with discretized data.
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Appendix: Conditions in Theorems 3–6

We decompose the parameter vector � into two parts 𝜃 =
(
𝜆, 𝜃⊤

r

)⊤ , where 
𝜃r = (𝛼, 𝛽)⊤ represents the regression coefficient parameters in (4). Note that 
g�r (x) = e�+�xf (x) is essentially the g in (3). Parallelly for each t ∈ � we write 
t =

(
t1, t

⊤
r

)⊤ with tr = (t2, t3)
⊤ and gtr (x) = et2+t3xf (x) . 

	(D1)	 There exists an �-neighbourhood B(�r, �) of �r for some � ≥ 0 such that gtr − g�r 
is bounded by an integrable function for any tr ∈ B(�r, �).

	(D2)	 f and K0 in (4) and (16) respectively have compact supports.
	(D3)	 f in (4) has infinite support, K0 in (16) is a bounded symmetric density with 

support [−a0, a0] for some 0 < a0 < ∞ , the second derivative of f exists and 
there exists a sequence �m of positive numbers such that as m → ∞ , �m → ∞ 
and 

 where f (k) denotes that kth derivative of f.
Condition (D3) is satisfied by probability families such as normal and exponen-
tial. When f is a normal or an exponential population, (25)–(28) hold with any 
sequence �m such that �m = o(log[mbm]).

Let 
{
�N

}
 be a sequence of positive numbers such that �N → ∞ as N → ∞ . 

	(C0)	 f has infinite support (−∞,∞).
	(C1)	 The second derivative of f exists.
	(C2)	 n

N
→ � ∈ (0, 1) as N → ∞.

	(C3)	 K0 and K1 in (16) and (17) respectively are bounded symmetric densities with 
support [−a0, a0] and [−a1, a1] respectively, where 0 < a0, a1 < ∞.

	(C4)	 All the elements in both �(�) and 𝛥(𝜃) are finite, where �(�) is defined in (19) 
and 𝛥(𝜃) = ∫ (

𝜕w1(x)

𝜕𝜃

)(
𝜕w1(x)

𝜕𝜃

)⊤

f (x)dx.
	(C5)	 The second derivative of f exists and satisfies for i = 1, 2, 3 that as N → ∞ , 

(25)sup
𝜃∈𝛩 ∫ I{|x|>𝛼m}h𝜃(x)dx ⟶ 0,

(26)b2
m
sup
𝜃∈𝛩 � I{|x|>𝛼m}h𝜃(x) sup|t|≤a0

|f (2)(x + tbm)|
f (x)

dx ⟶ 0,

(27)m−1b−1
m

sup
�∈� � I{|x|≤�m}h�(x) sup|t|≤a0

f (x + tbm)

f 2(x)
dx ⟶ 0,

(28)b4
m
sup
�∈� � I{|x|≤�m}h�(x) sup|t|≤a0

[
f (2)(x + tbm)

f (x)

]2
dx ⟶ 0,



	 J. Wu et al.

1 3

 where 𝜖N(x) =
𝜕w1(x)

𝜕𝜃
I{|x|>𝛼N}.

	(C6)	 As N → ∞ , 

	(C7)	 The second derivatives of f exists and satisfies, as N → ∞ , 

 where �N(x) =
�w1(x)

��
I{|x|≤�N}.

	(C8)	 The second derivatives of f exists and satisfies, as N → ∞ , 

	(C9)	 As N → ∞ , 

	(C10)	As N → ∞ , 

	(C11)	The second derivative of f exists and satisfies, as N → ∞ , 

Conditions (C4)–(C11) hold for probability families such as normal and expo-
nential. When f is a normal population, (C4)–(C11) hold with bm, bn ≍ N−r , 
1∕4 < r < 1∕2 , and any sequence �N such that �N = o(Nr logN) and logN = o(�2

N
) . 

When f is an exponential distribution f (x) = ce−cx with some c > 0 and 2𝛽 − c < 0 , 

b2
m � �2

Ni
(x)

f

w1

(x) sup
|t|≤a0

f (2)(x + tbm)

f (x)
dx = O(1),

N ⋅ P(|X1| > 𝛼N − a0bm) ⟶ 0,

N ⋅ P(|Y1| > 𝛼N − a1bn) ⟶ 0.

N−1∕2b−1
n

∫ |�N(x)|w−1
1
(x) sup|t|≤a1

h� (x+tbn)

h�(x)
dx ⟶ 0,

N1∕2b4
n
∫ |�N(x)|f (x) sup|t|≤a1

[
h
(2)

�
(x+tbn)

h� (x)

]2
dx ⟶ 0,

N−1∕2b−1
m

∫ |�N(x)| sup|t|≤a0 f (x+tbm)

f (x)
dx ⟶ 0,

N1∕2b4
m
∫ |�N(x)|f (x) sup|t|≤a0

[
f (2)(x+tbm)

f (x)

]2
dx ⟶ 0,

N1∕2b2
n
∫ |�N(x)|f (x) sup|t|≤a1

|h(2)
�
(x+tbn)|
h� (x)

dx ⟶ 0,

N1∕2b2
m
∫ |�N(x)|f (x) sup|t|≤a0 |f (2)(x+tbm)|

f (x)
dx ⟶ 0.

sup|x|≤�N sup|t|≤a1
h� (x+tbn)

h�(x)
= O(1),

sup|x|≤�N sup|t|≤a0
f (x+tbm)

f (x)
= O(1).

b2
n � I{|x|≤�N}h�(x) sup|t|≤a1

[
�2 logw1(y)

���y
|y=x+tbn

]2
dx ⟶ 0,

b2
m � I{|X|≤�N}f (x) sup|t|≤a0

[
�2w1(y)

���y
|y=x+tbm

]2
dx ⟶ 0.

N1∕2b2
m � |�N(x)|f (x) sup|t|≤a0

|f (2)(x + tbm)|
f (x)

dx ⟶ 0.
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(C4)–(C11) hold with bm, bn ≍ N−r , 1∕4 < r < 1∕2 , and any sequence �N such that 
�N = o(Nr logN) and logN = o(�N).
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