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Machine learning in vascular surgery: a systematic review and
critical appraisal
Ben Li 1,2,3, Tiam Feridooni1,2, Cesar Cuen-Ojeda1,2, Teruko Kishibe 4,5, Charles de Mestral1,2,5,6, Muhammad Mamdani3,5,6,7 and
Mohammed Al-Omran1,2,3,5,8,9✉

Machine learning (ML) is a rapidly advancing field with increasing utility in health care. We conducted a systematic review and
critical appraisal of ML applications in vascular surgery. MEDLINE, Embase, and Cochrane CENTRAL were searched from inception to
March 1, 2021. Study screening, data extraction, and quality assessment were performed by two independent reviewers, with a
third author resolving discrepancies. All original studies reporting ML applications in vascular surgery were included. Publication
trends, disease conditions, methodologies, and outcomes were summarized. Critical appraisal was conducted using the PROBAST
risk-of-bias and TRIPOD reporting adherence tools. We included 212 studies from a pool of 2235 unique articles. ML techniques
were used for diagnosis, prognosis, and image segmentation in carotid stenosis, aortic aneurysm/dissection, peripheral artery
disease, diabetic foot ulcer, venous disease, and renal artery stenosis. The number of publications on ML in vascular surgery
increased from 1 (1991–1996) to 118 (2016–2021). Most studies were retrospective and single center, with no randomized
controlled trials. The median area under the receiver operating characteristic curve (AUROC) was 0.88 (range 0.61–1.00), with 79.5%
[62/78] studies reporting AUROC ≥ 0.80. Out of 22 studies comparing ML techniques to existing prediction tools, clinicians, or
traditional regression models, 20 performed better and 2 performed similarly. Overall, 94.8% (201/212) studies had high risk-of-bias
and adherence to reporting standards was poor with a rate of 41.4%. Despite improvements over time, study quality and reporting
remain inadequate. Future studies should consider standardized tools such as PROBAST and TRIPOD to improve study quality and
clinical applicability.
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INTRODUCTION
Machine learning (ML) is a rapidly advancing field of artificial
intelligence (AI) that enables computer technology to learn from
data to identify patterns and make predictions without explicit
programming1. The field has been driven by the explosion of
electronic data combined with increasing computational power2.
ML techniques are increasingly applied to solve health care
problems, with its global market value predicted to grow from
$4.9 billion in 2020 to $45.2 billion by 20263. The value of ML/AI is
that these technologies can automatically and quickly analyze
large amounts of data to augment a clinician’s ability to diagnose
disease and make predictions about outcomes, among other
applications4. Compared to traditional statistical techniques, ML
applies advanced computing technology to more accurately
model complex relationships in large datasets5.
Vascular surgery is highly suitable for ML applications for several

reasons. First, the endovascular revolution has made vascular
surgery a field that is oriented toward technology and medical
imaging, facilitating the application of powerful ML-based image
analysis software6,7. Second, there are objective clinical definitions
for most vascular conditions (e.g., abdominal aortic aneurysm
[AAA] defined as size ≥3 cm8 and peripheral artery disease [PAD]
defined as ankle brachial index <0.99). This allows ML algorithms
to automate diagnosis with little human input10. Third, vascular

surgical procedures are often high-risk and performed on patients
with multiple comorbidities11. Therefore, it is critical to make
accurate predictions about post-operative outcomes using pre-
vious experience, which ML is designed for12. Finally, there is a
growing abundance of data available to facilitate the develop-
ment of ML models through the Vascular Quality Initiative, which
captures patient-level data across 796 centers in North America13.
ML algorithms have been applied to predict AAA growth14,

detect endoleaks15, and identify patients with PAD who have high
mortality risk16. Despite an increasing amount of research interest
in ML techniques, its translation to real-world practice remains
limited. One reason for this could be inadequate quality or
reporting of existing studies, reducing clinical applicability. Several
standardized tools, including the Prediction Model Risk of Bias
Assessment (PROBAST)17 and Transparent Reporting of a Multi-
variable Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD)18, have been developed to assess the risk-of-bias and
adherence to reporting standards for prediction models. Surveys
of physicians demonstrate that significant barriers to the adoption
of AI/ML technologies are lack of knowledge and trust in these
models19,20. The application of standardized quality assessment
tools such as PROBAST and TRIPOD can provide clinicians with
more effective mechanisms to evaluate AI/ML tools and determine
applicability to their practice21,22.
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Given recent advances in ML technology and its potential to
transform clinical practice, it is important to understand its
applications to vascular surgical conditions. Systematic reviews
have been conducted on ML/AI in neurosurgery23, plastic
surgery24, and orthopedic surgery25. However, there has been
no synthesis or evaluation of ML studies in vascular surgery using
standardized tools such as PROBAST and TRIPOD. We conducted a
systematic review and critical appraisal to comprehensively
synthesize and rigorously evaluate the ML literature in vascular
surgery.

RESULTS
Study screening and selection
We identified 3197 articles through our search of MEDLINE (n=
1645), Embase (n= 1463), and Cochrane CENTRAL (n= 89). A total
of 2235 articles remained after duplicates were removed, all of
which underwent title and abstract screening. A total of 1660
records were excluded and 575 underwent full-text review. A total
of 363 were excluded, most commonly because there was no ML
technique (n= 286) or relevant vascular condition (n= 56). Hand-
search of reference lists identified no additional articles. In all,
212 studies were included in the final systematic review and
critical appraisal. Our search results are summarized in the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) study flow diagram (Fig. 1).

Study characteristics
We included 212 studies published between 1991 and 2021. The
number of publications increased significantly from 1 (1991–1996)
to 118 (2016–2021) (Fig. 2). Articles reported on carotid stenosis
(n= 89), aortic aneurysm/dissection (n= 53), PAD (n= 30),
diabetic foot ulcer (n= 24), venous disease (n= 4), renal artery
disease (n= 4), and other vascular conditions (n= 8). The main
goals of the studies were diagnosis (n= 82), prognosis (n= 55),
and image segmentation (n= 75) (Fig. 3a). Most studies were
published in the US (n= 56), China (n= 37), and UK (n= 19).

A summary of included studies is presented in Supplementary
Table 1.

Design, populations, and follow-up
Most studies developed their model using retrospective, single-
center data (n= 120) and many did not report the data source
(n= 28). Only five studies were prospectively tested, and no
randomized controlled trials were conducted (Fig. 3b). Median
sample size was 170 patients (range 1–1,567,636) and 141/212
(66.5%) studies had ≥100 patients. The median event rate was
48.7% (range 0.6–85.6%) and 69/104 (66.3%) of studies had an
event rate >30%. Of note, 44/55 (80%) prognostic studies did not
report the length of follow-up.

Machine learning methods
The most commonly applied ML model was a neural network
(n= 85), particularly convolutional neural network (n= 42). Other
ML models included support vector machine (n= 17), fuzzy
classifier (n= 13), Bayesian model (n= 9), ensemble model (n= 8),

Fig. 1 PRISMA study flow diagram. Summary of number of articles screened and included.

Fig. 2 Publications trends for machine learning studies in
vascular surgery between 1991 and 2021. Each bar represents a
5-year interval.
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decision tree (n= 6), and random forest (n= 6). A significant
proportion of studies applied multiple ML models (n= 47)
(Fig. 3c).
Most studies used imaging/doppler signals as the sole input

feature (n= 150). A total of 41 studies used structured clinical/
demographic/laboratory/genomic data alone, 16 used both
structured and imaging data, 3 used clinical notes alone, and 2
used both structured variables and clinical notes as predictors.
Of the studies that reported a validation method, k-fold cross-

validation was the most common (n= 80) followed by leave-one-
out cross-validation (n= 17), while bootstrapping was less
common (n= 3). External validation was performed in 9/212
(4.2%) studies.

Aortic aneurysm and dissection
Diagnostic studies focused on detection of aortic aneurysm/
dissection, rupture, and endoleak (n= 16). Prognostic studies
included prediction models for aneurysm growth/rupture and
mortality/re-intervention after surgery (n= 16). Input features
were imaging alone (n= 13), structured clinical variables alone (n
= 13), or a combination of structured and imaging data (n= 6).
Image segmentation algorithms were designed to identify aortic
true/false lumens and thrombus on computed tomography (CT)
(n= 13). Sample sizes ranged from 8 to 1,049,160 with a median
of 143 patients. Event rates ranged from 1.5 to 71.4% with a
median of 38.4%. The area under the receiver operating
characteristic curve (AUROC) ranged from 0.61 to 0.99 with a
median of 0.87.

Carotid stenosis
Diagnostic studies were focused on detecting the presence/
degree of carotid stenosis (n= 22) and classification into
symptomatic vs. asymptomatic status (n= 14). Prognostic studies
included prediction of stenosis progression/stroke risk (n= 3),
shunt necessity during endarterectomy (n= 1), and cardiovascular
events following revascularization (n= 2). Input features were
imaging/doppler signals alone (n= 29), structured data alone
(n= 8), and a combination of structured and imaging features
(n= 5). Most image segmentation algorithms were designed to
identify carotid intima/media and plaque on ultrasound (n= 31).
Several magnetic resonance imaging-based studies segmented
carotid plaque to identify high-risk features such as ulceration,
intraplaque hemorrhage, and necrotic core (n= 5). Sample sizes
ranged from 10 to 90,000 with a median of 161 patients. Event
rates ranged from 3.6 to 76.3% with a median of 52.6%. AUROC
ranged from 0.75 to 0.99 with a median of 0.90.

Peripheral artery disease
Diagnostic studies were focused on detecting the presence/
severity of PAD (n= 10) and differentiating ischemic vs. neuro-
genic claudication (n= 2). Several ML models for patients with
lower extremity prostheses were designed to detect falls and
determine terrain type (n= 2). Prognostic studies included
prediction of mortality/complications and health care utilization
in patients with PAD (n= 4), ambulation potential after amputa-
tion (n= 3), and surgical site infection following lower extremity
bypass (n= 1). Input features included imaging/functional data
alone such as CT, ultrasound, and walking motion data (n= 13),
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structured clinical information (n= 9), and a combination of
structured and imaging data (n= 1). Two studies used clinical
notes to identify patients with PAD using natural language
processing. Sample sizes ranged from 1 to 253,125 with a median
of 265 patients. Event rates ranged from 12.3 to 70.0% with a
median of 23.1%. AUROC ranged from 0.61 to 1.00 with a median
of 0.89.

Diabetic foot ulcer
Diagnostic studies were focused on detection of ulceration (n= 1),
infection/ischemia (n= 1), and neuropathy (n= 2) using pictures
and plantar pressures. Prognostic studies predicted risk of
amputation (n= 2), mortality (n= 2), and ulcer healing (n= 1)
based on structured clinical variables and imaging data. Image
segmentation studies localized ulcers based on pictures (n= 6)
and thermograms (n= 2). Two studies more specifically segmen-
ted ulcers into granulation, necrotic, or slough tissue from
pictures. Sample sizes ranged from 5 to 1,567,636 with a median
of 207 patients. Event rates ranged from 0.6 to 85.6% with a
median of 41.2%. AUROC ranged from 0.71 to 1.00 with a median
of 0.84.

Venous disease
ML techniques were applied to venous disease through detection
of venous thromboembolism (n= 1) and prediction of varicose
vein development (n= 1) and venous ulcer development/healing
(n= 2). Two studies used structured clinical data alone as input
features, and two used a combination of structured and imaging
data. Sample sizes ranged from 77 to 493,519 with a median of
325 patients. Event rates ranged from 1.9 to 51.9% with a median
of 50.0%. AUROC ranged from 0.70 to 0.86 with a median of 0.78.

Renal artery stenosis
ML techniques were applied for detection of renal artery stenosis
from completion angiogram (n= 1) and captopril renography
(n= 1). One study applied ML technology to identify relationships
between covariates and outcomes in the Cardiovascular Out-
comes in Renal Atherosclerotic Lesions trial26. Sample sizes ranged
from 29 to 573 with a median of 150 patients. The median event
rate was 21.2%. AUROC ranged from 0.68 to 0.93 with a median
of 0.81.

Other vascular conditions
ML studies on other vascular conditions included detection and
prediction of vascular injury in anterior lumbar spine surgery using
clinical data and operative notes (n= 1), prediction of cardiovas-
cular mortality/re-admission after major vascular surgery (n= 2),
identification of arteriovenous fistula stenosis (n= 1), detection of
lymphedema (n= 1), and endovascular guidewire tracking (n= 2).
Sample sizes ranged from 30 to 246,205 with a median of 78
patients. The event rate ranged from 7.2 to 46.2%, with a median
of 30.3%. AUROC ranged from 0.68 to 0.92, with a median of 0.81.

Outcomes
The main outcome measures to assess the performance of ML
models were AUROC, sensitivity, specificity, and accuracy. The
ranges and proportion of studies with values ≥80% were the
following: AUROC (0.61–1.00; 62/78 [79.5%] studies ≥80%),
sensitivity (30–100%, 62/77 [80.5%] studies ≥80%), specificity
(52–100%, 64/75 [85.3%] studies ≥80%), accuracy (67–100%, 100/
109 [91.7%] studies ≥80%). Median AUROC across included studies
was 0.88 (range 0.61–1.00) and a summary of AUROC’s (medians
and ranges) across each disease condition is presented in Fig. 4.
Twenty-two studies compared the outcomes of their ML model

to clinicians, existing risk prediction tools, or traditional regression
models. Twenty performed better, two performed similarly, and
none performed worse. Specifically, 6 performed better than
traditional regression models such as logistic, linear, and Cox
regression16,27–31, 11 performed better than existing risk predic-
tion tools such as the Glasgow Aneurysm Score, Mangled
Extremity Severity Score (MESS), and Padua Prediction Score32–42,
1 performed better than vascular surgeons in predicting in-
hospital mortality following AAA repair43, and 2 performed better
than radiologists in detecting AAA on CT15,44. One performed
similarly to logistic regression for predicting shunt necessity
during carotid endarterectomy45 and another demonstrated no
difference compared to radiologists in detecting aortic dissection
on CT46. A summary of these findings can be found in the
outcomes column of Supplementary Table 1.

Risk-of-bias assessment
Of the 212 included studies, overall risk-of-bias was high for 201
(94.8%), unclear for 7 (3.3%), and low for 4 (1.9%). High risk in the
analysis domain (179/212 [84.4%] studies) was the main
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contributor to a study being overall high risk. Specifically, many
studies did not report the number of participants with missing
data, perform calibration to assess model performance, or account
for overfitting. In the participants' domain, 96/212 (45.3%) were
high risk mainly because inclusion and exclusion criteria for their
study cohort were not described. Similarly, in the outcomes
domain, 101/212 (47.6%) were high risk because outcomes were
not defined, blinding was not performed, and the time interval
between predictor assessment and outcome determination was
not reported. In the predictors' domain, some studies were high/
unclear risk (82/212 [38.7%]) due to inadequate definition of
predictors and unclear availability of predictor data at the time of
model application. The proportion of low risk-of-bias studies
increased in each domain between publication years 1991–2000
and 2011–2021: participants (40.0% vs. 45.8%), predictors (40.0%
vs. 61.6%), outcomes (20.0% vs. 39.5%), and analysis (0% vs. 3.4%).
Study quality improved over time, with overall low risk-of-bias
studies published only after 2010 (Fig. 5a–d). There were four
studies judged to be at low risk-of-bias: Perkins (2020)40, Ross
(2016)16, Ravaut (2021)47, and Ross (2019)48.

High-quality studies
Perkins (2020) used US registry data to develop a Naïve Bayes
model that predicted the risk of amputation following lower
extremity revascularization and externally validated the algorithm
on a UK registry with an AUROC of 0.9740. The authors
demonstrated that their ML model performed better than the
existing MESS40. Ross (2016) applied decision trees to detect PAD
and predict mortality using a combination of clinical, imaging, and
genomic data with better predictive ability than logistic regres-
sion16. Ravaut (2021) developed an ML model from 1,567,636
patients using over 700 clinical variables from administrative
health data to predict diabetes complications including amputa-
tions with an AUROC of 0.7847. Ross (2019) generated a prediction

model from 7,686 patients using 1000 variables that were readily
available from electronic health records including clinical data and
notes to predict major adverse cardiovascular events in patients
with PAD with an AUROC of 0.8148. These four studies
appropriately defined their study population, predictors, and
outcomes, as well as reported discrimination performance, model
calibration, and supplementary data describing how readers can
apply the models to their own practice.

Adherence to reporting standards
Overall adherence to the TRIPOD reporting checklist was 41.4%,
with 19/31 domains having a rate less than 50% (Fig. 6). Reporting
adherence was above 90% for study rationale, objectives, and
interpretation, but below 10% for blinding of outcomes/predic-
tors, sample size calculation, missing data handling, model
assessment, and identification of risk groups. In particular, less
than 20% of studies adequately defined their study population in
terms of inclusion/exclusion criteria and baseline characteristics.
Furthermore, less than 30% of abstracts reported sufficient
information regarding study methodology and about 50% of
studies did not disclose funding sources. Concerningly, fewer than
one in four studies provided information on how their ML model
could be used by readers. Overall adherence to TRIPOD items
improved over time based on publication year: 1991–2000
(36.8%), 2001–2010 (40.2%), 2011–2021 (43.0%) (Fig. 7).

DISCUSSION
Summary of findings
This systematic review and critical appraisal of 212 studies
published over 30 years provides a comprehensive synthesis
and rigorous evaluation of the ML literature in vascular surgery.
The research interest in ML has grown significantly, with a
substantial increase in the number of publications between 1991
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and 2021. However, some vascular conditions remain under-
studied, such as venous disease and renal artery stenosis, which
account for less than 5% of publications. Convolutional neural
networks were the most commonly applied model, reflecting the
preference for advanced technology49. Current ML algorithms
have excellent predictive ability, with a median AUROC of 0.88.
Disease conditions with more publications had higher median
AUROC’s (carotid stenosis [0.90], aortic aneurysm/dissection [0.87],
PAD [0.89]), while those with fewer publications had lower median
AUROC’s (diabetic foot ulcer [0.84], renal artery stenosis [0.81],
venous disease [0.78]). Several ML models performed better than
existing clinical prediction tools (n= 11), clinicians (n= 3), and
traditional regression models (n= 6). However, overall risk-of-bias
was high in 94.8% of studies and adherence to reporting
standards was suboptimal at 41.8%. Most studies developed ML
models using retrospective, single-center data and did not report
the length of follow-up. External validation was performed in less
than 5% of studies. Despite improvements over time, study quality
and reporting remain poor.

Comparison to the existing literature
One systematic review of AI in AAA was published in 2020,
identifying 34 studies that used AI for image segmentation,
diagnosis, and prognosis50. However, the study did not capture
ML techniques in PAD, carotid stenosis, diabetic foot ulcers,
venous disease, and other vascular conditions. Furthermore,
quality assessment of included studies was not performed. Our
systematic review captured a broader spectrum of vascular
conditions and applied standardized tools (PROBAST and TRIPOD)
to critically evaluate the ML literature in vascular surgery.
The predictive potential of ML has been demonstrated in other

surgical specialities. For example, Senders et al. (2018) conducted
a systematic review of 34 publications on ML models for outcome
prediction in neurosurgery51. The authors demonstrated a median
accuracy and AUROC of 94.5% and 0.83, respectively51. Their ML
algorithms had 15% greater accuracy than logistic regression and
most performed better than existing prognostic indices and
clinicians51. Our study similarly demonstrated excellent predictive

outcomes for ML algorithms in vascular surgery. The median
AUROC of ML models in our studies was 0.88, with 6 performing
better than traditional regression techniques, 11 performing
better than existing risk prediction tools, and 3 performing better
than clinicians. For example, Ross et al. (2016) developed an ML
model with an AUROC that was 0.11 higher than logistic
regression for PAD detection and mortality prediction16. Perkins
et al. (2020) showed that their ML algorithm performed better
than the MESS at predicting outcomes following lower extremity
revascularization for trauma patients (AUROC 0.97 vs. 0.74)40.
Talebi et al. (2020) compared their ML model to generalist
radiologists for the detection of AAA from CT and demonstrated
an accuracy that was 5–25% higher15.
Previous groups have analyzed the risk-of-bias and adherence

to reporting standards for ML studies. Nagendran et al. (2020)
conducted a systematic review evaluating the outcomes of deep
learning prediction models versus clinicians52. They demonstrated
that overall risk-of-bias was high in 58/81 (71.6%) studies based on
PROBAST criteria and there was <50% adherence to 12 TRIPOD
items52. Similarly, Wynants et al. (2020) assessed 169 prediction
models for COVID-19 diagnosis/prognosis and determined that
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overall risk-of bias was high or unclear for all of them53. We also
demonstrated a high risk-of-bias and poor adherence to reporting
standards for ML studies in vascular surgery.

Implications
ML has gained tremendous interest in recent years but remains a
relatively novel field, particularly with respect to health care
applications54. Most studies on ML models in vascular surgery have
been published in the past 5 years. Furthermore, standardized
guidelines on the conduct of ML studies have not been widely
adopted55. These reasons likely explain the suboptimal quality and
reporting of current studies. We demonstrate improvements in study
quality and adherence to reporting standards over time, suggesting
that higher research quality coincides with the development of the
field. Furthermore, our data suggest that model performance
improves with the increasing application of ML techniques to
vascular surgery, particularly in aortic, carotid, and PAD. We also
identified disease conditions that require greater attention including
diabetic foot ulcers, venous disease, and renal artery stenosis.
ML has significant advantages over traditional risk prediction

tools as they can learn from a wide range of data types, including
structured clinical, laboratory, and genetic information along with
unstructured imaging data and clinical notes56. However, few ML
studies in vascular surgery have leveraged this technological
advantage, with many using solely structured or unstructured data
as predictors. Ross et al. (2019) used a combination of
unstructured text data from clinical notes and structured
information from diagnostic/procedural codes, prescriptions, vital
signs, and laboratory investigations to predict major adverse
cardiac and cerebrovascular events in PAD patients48. The authors
performed a sensitivity analysis demonstrating that the removal of
text data decreased model performance from an AUROC of
0.81–0.78 (p= 0.002)48. Following the example set by Ross et al.48,
future studies should consider training ML models on multiple
data types to potentially increase predictive power.
A distinguishing feature of ML models is their ability to learn

continuously to improve performance57. However, most studies did
not describe how the reader could apply their algorithm nor provide
source code. This makes it challenging to test the model in different
clinical settings and build on existing algorithms. To improve clinical
applicability and accelerate the advancement of the field, future
studies should consider publishing their de-identified raw data and
source codes through repositories such as GitHub58.
Given the novelty of the field, most ML studies have been

developed and tested on retrospective data. There are currently
no randomized controlled trials assessing the impact of this
technology on vascular surgical outcomes. Furthermore, few
studies externally validated their algorithm. It will be critical for
future studies to assess the impact of ML models on clinically
relevant outcomes and their ability to function in different clinical
settings. For example, Perkins et al. (2020) developed an ML
algorithm to predict outcomes following lower extremity revascu-
larization in trauma patients using data from the US Joint Trauma
System and externally validated their model on the UK Joint
Theatre Trauma Registry40. The authors demonstrated that their
algorithm maintained excellent performance in their external
validation population, with an AUROC of 0.9740. Perkins et al. then
developed an internationally accessible website for clinicians to
apply their model (https://www.traumamodels.com/). Future work
on ML in vascular surgery should follow this example in
developing generalizable, accessible, and clinically relevant tools.
It is also essential for ML models to consider biases including

gender, racial, and socioeconomic disparities59. Less than 20% of
studies in our systematic review reported inclusion/exclusion
criteria and demographic characteristics for their study population.
This poses a significant risk of prediction tools disadvantaging

minority populations. Future work should ensure that their study
cohort captures an appropriately diverse population.
Perkins (2020)40, Ross (2016)16, Ravaut (2021)47, and Ross

(2019)48 are four studies judged to be at low risk-of-bias with
good potential for broad clinical implementation in vascular
surgery. These papers provided a detailed description of their
study population with inclusion and exclusion criteria, reported
specific definitions for their variables and outcomes of interest,
identified the specific timepoint during a patient’s clinical course
when their algorithm should be applied, and assessed model
performance using various calibration methods16,40,47,48. Future
work should look toward these publications for guidance on study
methodology and consider building on their algorithms.
Developing and implementing successful ML models in vascular

surgery requires a detailed and systematic approach, which has
been described by others60–63. Generally, the first consideration is
devising a specific, clinically relevant question with input from
end-users60. Then, it is critical to build a team of clinicians,
computer scientists, and administrators with expertise in patient
care and model development60. Together, this group can assess
whether there is sufficient quantity and quality of data available to
develop a model that can adequately address the problem of
interest60. Given that overfitting can be a significant problem, it is
recommended to create simple models without an abundance of
extraneous features that do not contribute to predictive
performance61. A multidisciplinary team can provide guidance
on selecting important input variables to inform an accurate
model61. Furthermore, evaluating the generalizability of the
algorithm and its associated biases is essential prior to clinical
implementation62. Importantly, the model’s impact on patient
outcomes and clinician workflow should be prospectively
evaluated, particularly in vascular surgery where patients often
undergo high-risk, urgent interventions62. Finally, post-
implementation evaluation with regular performance monitoring
and system retraining with up-to-date information is important
given the constant evolution of clinical practice and datasets62.

Limitations
This study has several limitations. PROBAST and TRIPOD are
designed to assess prediction models, but have not been
validated specifically for ML applications. However, previous
studies have used PROBAST and TRIPOD to evaluate ML models
as quality assessment criteria for clinical prediction tools and ML
algorithms are similar22,52,53. Currently, work is underway to
develop a TRIPOD-ML tool64. Furthermore, there may be publica-
tion bias, with high-performing ML models being more likely to be
published.

CONCLUSIONS
Our systematic review and critical appraisal of 212 studies
demonstrates that ML models have excellent predictive power
in vascular surgery within the research setting with a median
AUROC of 0.88. Many models performed better than traditional
regression techniques, existing prediction tools, and clinicians. ML
technology can provide powerful augmentation to clinicians for
image analysis, disease diagnosis, and outcome prediction.
However, risk-of-bias and adherence to reporting guidelines are
currently substandard, likely due to the novelty of the field. Given
the need for ML algorithms to be rigorously validated prior to
clinical implementation, future studies should strongly consider
standardized tools such as PROBAST and TRIPOD to guide study
design and reporting.
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METHODS
Protocol and registration
A systematic review was conducted according to the PRISMA
statement guidelines65,66. Our study protocol (CRD42021240310)
was registered with the International Prospective Register of
Systematic Reviews67. Ethics approval was not required for this
study as this was a systematic review of published articles.

Information sources and search strategy
Our search strategy was devised in consultation with an
experienced librarian (TK). MEDLINE, Embase, and the Cochrane
Central Register of Controlled Trials (CENTRAL) were searched
from inception to March 1, 2021, for studies reporting ML
applications in vascular surgery. A combination of Medical Subject
Heading terms, keywords, and synonyms for ML AND vascular
surgery were used to maximize sensitivity. EndNote Version 20
was used to collate references68. We hand-searched the reference
lists of included studies for additional relevant articles. Our search
did not apply language limitations and Google Translate was used
for non-English studies69. The search strategy is detailed in
Supplementary Table 2.

Study selection and data collection
Title and abstract screening, full-text review, data collection, and
assessment of risk-of-bias and reporting adherence were con-
ducted by two independent reviewers (BL and TF), with a third
author resolving discrepancies (CC-O). Covidence was used to
facilitate the systematic review70. We included all original studies
reporting ML applications in vascular surgery, including case
reports, case series, observational studies, and clinical trials.
Reviews, commentaries/editorials/letters, animal studies, and
articles without full text were excluded.
A standardized form was used to collect data for included studies

based on the Critical Appraisal and Data Extraction for Systematic
Reviews of Prediction Modelling Studies Checklist71. Variables
obtained were study authors, publication year, country, data
collection period, disease condition, study objective (i.e., diagnosis/
prognosis/image segmentation), study design, data source, ML model,
input features, prediction outputs, sample size, training/validation/test
sets, validation method, reporting of external validation, follow-up,
and outcomes. Authors were contacted through email for relevant
information not reported in the original publication.

Data analysis and critical appraisal
Publications trends were assessed by plotting the number of
included studies in 5-year intervals between the first and last
published articles (1991–2021). Bar graphs were developed to
summarize the number of papers focused on the different vascular
conditions, main goal (diagnosis/prognosis/segmentation), ML
model applied, and study design. Study outcomes including
AUROC, sensitivity, specificity, and accuracy were summarized as
medians and/or ranges across included articles and percentage of
studies reporting values ≥80%. This threshold represents the
excellent discriminatory ability of a prediction model72.
Critical appraisal was performed by assessing the risk-of-bias and

adherence to reporting standards for individual articles and collating
the results to determine the overall quality of included studies.
Specifically, risk-of-bias was assessed using the PROBAST17. PROBAST
assesses four domains (participants, predictors, outcomes, and
analysis) with 20 study methodology questions to determine overall
risk-of-bias17. Reporting adherence was assessed using the TRIPOD
tool18. TRIPOD is a 31-item checklist that provides reporting standards
for prediction model studies18. Trends over time for included studies
based on PROBAST risk-of-bias and TRIPOD adherence was assessed
in 10-year intervals based on publication year (1991–2000, 2001–2010,
and 2011–2021).

All numerical analyses were conducted using R version 4.0.3 (R
Project for Statistical Computing).

DATA AVAILABILITY
All relevant data are available through the paper and supplement. Additional
information is available from the authors upon reasonable request.
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