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Abstract

Lens transparency depends on the accumulation of massive quantities (600–800 mg/ml) of twelve primary crystallines and
two truncated crystallines in highly elongated ‘‘fiber’’ cells. Despite numerous studies, major unanswered questions are how
this heterogeneous group of proteins becomes organized to bestow the lens with its unique optical properties and how it
changes during cataract formation. Using novel methods based on conical tomography and labeling with antibody/gold
conjugates, we have profiled the 3D-distribution of the aA-crystalline in rat lenses at ,2 nm resolutions and three-
dimensions. Analysis of tomograms calculated from lenses labeled with anti-aA-crystalline and gold particles (,3 nm and
,7 nm diameter) revealed geometric patterns shaped as lines, isosceles triangles and polyhedrons. A Gaussian distribution
centered at ,7.5 nm fitted the distances between the ,3 nm diameter gold conjugates. A Gaussian distribution centered
at ,14 nm fitted the Euclidian distances between the smaller and the larger gold particles and another Gaussian at 21–
24 nm the distances between the larger particles. Independent of their diameters, tethers of 14–17 nm in length connected
files of gold particles to thin filaments or clusters to ,15 nm diameter ‘‘beads.’’ We used the information gathered from
tomograms of labeled lenses to determine the distribution of the aA-crystalline in unlabeled lenses. We found that aA-
crystalline monomers spaced ,7 nm or aA-crystalline dimers spaced ,15 nm center-to-center apart decorated thin
filaments of the lens cytoskeleton. It thus seems likely that lost or gain of long-range order determines the 3D-structure of
the fiber cell and possible also cataract formation.
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Introduction

To attain transparency, the lens underwent a series of

evolutionary adaptations that include the elimination of blood

vessels from its interior and the accumulation of massive quantities

(600–800 mg/ml) of a heterogeneous group of small molecular

weight (20–30 kDa) proteins, called crystallines, in the cytoplasm

of highly elongated fiber cells [1–4]. Human lenses express twelve

primary crystalline gene products and two truncated forms [5–8].

A major unanswered question is how these fourteen soluble

proteins are organized to bestow the lens with its unique optical

properties and the changes induced by cataracts, the principal

cause of blindness worldwide.

A large body of experimental evidence suggests that crystallines

form multi-subunit assemblies that are organized with ‘‘short-

range’’ order of dense solutions in the cytoplasm of fiber cells [9–

12]. Evidence suggesting this organization includes: a) the

‘‘amorphous’’ structure of the cytoplasm of fiber cells observed

in conventional electron microscopy studies [13–16], and b) the

absence of long-range order observed in solutions of purified

crystallines [17–19]. Crystallines organized as dense solutions

predict that cataracts involve non-specific protein aggregation and

the formation of light-scattering particles. Yet, studies of fractions

isolated from chick and later mammalian lenses reveal a unique

type of protein assembly, called the ‘‘beaded’’ filament, which is

difficult to reconcile with the short-range order of dense solutions.

Structurally, ‘‘beaded’’ filaments contain cores decorated with

particles (‘‘beads’’) spaced 21–24 nm center-to-center apart [20–

22]. Most investigators agree that proteins of the ‘‘intermediate’’

filament (IF) family, called cytoskeletal protein 49, (CP49 or

‘‘phakinin’’), and cytoskeletal protein 115 (CP115 or ‘‘filensin’’)

comprise the core of the ‘‘beaded’’ filament [23]. A current

molecular model depicts ‘‘beaded’’ filaments comprised of four

phakinin protofilaments surrounded by filensin/phakinin shells. In

this model, the C-terminal domain of filensin represents the

‘‘bead’’ that repeats alongside the axial direction [24]. A

competing model proposes that the ‘‘bead’’ is an assembly

comprised of multiple subunits of the aA-crystalline evenly spaced

along the filensin/phakinin core [18,19]. Independent of whether

the ‘‘bead’’ represents the C-terminal domain of filensin or a

multi-subunit assembly of the aA-crystalline, the presence of an

ordered structure raises the possibility that lost or gain of long-

range order determines the 3D-structure of the fiber cell and

possible also cataract formation.

Unanswered questions in the lens structure and function are the

protein composition of the repeating ‘‘beads’’ and how their 3D-

organization can be reconciled with the ‘‘amorphous’’ structure of

the cytoplasm of the fiber cell. To answer these questions, we have
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reconstructed rat lenses labeled with anti-aA-crystalline conjugat-

ed to gold particles (,3 nm and ,7 nm diameter) and from

unlabeled lenses. We hypothesized that if ‘‘beads’’ are multi-

subunit assemblies of the aA-crystalline, the smaller gold particles

would form clusters centered on the ,15 nm in diameter particles

but the larger gold particles would be arranged in lines or rows

spaced 21–24 nm center-to-center apart.

Our study strongly supports the hypothesis that in rat lens fiber

cells the aA-crystalline decorates the filensin/phakinin filamentous

core as monomers spaced ,7 nm apart or as dimers spaced

,15 nm apart (the ‘‘aA-crystalline motif’’). These motifs form

highly ordered 3D-matrices that enfold the massive quantities of

crystallines expressed in fiber cells. It thus seems likely that lens

transparency and perhaps also cataract formation depend on

unanticipated high degrees of long-range order in the lens cortex

and nucleus.

Results

The ‘‘projected’’ structure of fiber cells
Our studies focused on ‘‘developed’’ fibers; a group of highly

elongated cells that lack most cytoplasmic organelles, including

nuclei [3]. At low magnification, the developed fibers contain an

‘‘amorphous’’ cytoplasm limited by distinct electron dense bands

at the surface (Fig. 1A). At higher magnification, the bands

appeared as pentalamellar structures 12–15 nm in thickness that

at regions split into ,5 nm in thickness unit membranes (Fig. 1B).

These pentalamellar structures represent regions where the plasma

membranes of neighboring fiber cells form the ‘‘gap junctions,’’

the organelles that function in lens cell-to-cell communication

[25,26]. In contrast, the cytoplasm of these developed fibers

appeared ‘‘amorphous’’ or unstructured with no indication of the

ordered ‘‘beaded’’ filaments identified in fractions isolated from

lens tissues [20,22].

The Method
The flow chart (Fig. 2) of the experimental protocol recapitu-

lates the method used to determine the 3D-distribution of the aA-

crystalline in fiber cells of rat lenses. In essence, the method

compares tomograms calculated from fiber cells labeled with anti-

aA-crystalline and from unlabeled cells. To visualize the anti-aA-

crystalline complex, we used secondary antibodies conjugated to

gold particles seemingly measuring ,2 nm and ,5 nm diameter.

The smaller gold conjugates mirrored the distances and the

geometric patterns of the aA-crystalline subunits within the

‘‘bead’’ assemblies. In contrast, the larger gold conjugates reflected

the distances and geometric patterns of repeating ‘‘beads’’ in

different regions of the cytoplasm. Since the measurements were

performed in conical tomograms, the distances are Euclidian and

hence they are not limited by projection artifact. The information

gathered from the tomograms calculated from labeled cells was

used for determining the 3D-distribution and dimensions of aA-

crystalline subunits in the cytoplasm of unlabeled fiber cells.

The 3D-structure of fiber cells labeled with anti-aA-
crystalline/gold particle conjugates

First, we took advantage of the large amplitude contrast of gold

to split the tomograms calculated from labeled cells into 3D-maps

with only gold particles and 3D-maps with the electron-densities

representing the allegedly ‘‘amorphous’’ cytoplasm of the fiber cell

(the ‘‘reference space’’). In the maps with the gold particles, we

measured the volume of each particle, the peak intensity (8-bits

intensity range 0–255) and the X,Y,Z coordinates of the mass

centers (Table 1; Fig. 3A–B). The diameter of the gold particles

(calculated from the volume) extended from ,2 nm to .7 nm,

instead of the ,2 nm and ,5 nm diameter classes promised by

the vendor. To compute the Euclidian distances, it was thus

necessary to classify the gold particles into ‘‘yellow’’ (diameters

.4 nm OR peak intensity .200; n = 107) and ‘‘blue’’ (diameter

.2 nm OR peak intensity .150; n = 225) classes (Fig. 4A–C;

Table 1). (OR indicates the Boolean operator used for classifica-

tion.) We then computed automatically the distances between the

mass centers of the gold particles of the yellow, the yellow-to-blue

and the blue classes.

The Euclidian distances between the yellow-to-blue and the

yellow-to-yellow gold particles were fitted by two Gaussian

distributions centered at 13.5–14 nm (Half-Width at Half-

Maximum; HWHM = 2.0 nm) and 21–24 nm (HWHM = 3.5 nm)

(red and green curves, Fig. 4B). In contrast, a single Gaussian

distribution centered at 7.5 nm (HWHM = 3.5 nm) fitted the

Euclidian distances between the blue-to-blue gold particles

(Fig. 4C). To visualize the geometric patterns between neighboring

gold particles, we connected the mass centers with color-coded

Figure 1. Projected Structure. Panel A shows a low magnification view of three cortical fiber cells from the equatorial region of a rat lens. The
plasma membranes appear as electron-dense bands. In contrast, the cytoplasm appears unstructured with occasional clusters of electron-dense
particles. At this magnification, the cytoskeleton assemblies referred as ‘‘beaded’’ filaments are not present. Panel B shows a higher magnification
view of a region of plasma membrane surface to demonstrate the characteristic pentalamellar structure of gap junctions. Bar: A = 0.2 mm, B = 40 nm.
doi:10.1371/journal.pone.0023753.g001

Profiling the aA-Crystalline at High Resolution
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lines (Fig. 3B and 4A). This computational step revealed that the

yellow conjugates formed lines or rows and the blue conjugates

occupied the vertices of equilateral triangles, squares, pyramids

and tetrahedrons (Fig. 4A).

Second, we identified the tethers formed by the association of

the primary and the secondary antibodies and followed their paths

to the assemblies containing the aA-crystalline (arrows Figs. 5B–C

& 6C–D). Independent of the gold particle’s diameter, the tethers

measured 1463 nm in length (mean 6SD, n = 17) and terminated

on assemblies shaped as thin filaments or ,15 nm diameter

‘‘beads.’’ When labeling the thin filaments, the blue gold particles

were spaced ,7.5 nm center-to-center apart and the larger

particles classified as yellow were spaced at double or triple this

basic spacing (,14 nm or 21–24 nm; Fig. 3B, brackets, Fig. 6A).

When labeling the ‘‘beads,’’ the smaller blue gold particles formed

clusters shaped as squares, triangles or polyhedrons (inset, Fig. 6A).

In both type of assemblies, the tethers attached to small densities

that were associated with the thin filaments or located in the

Figure 2. Flow Chart of the Experimental Protocol.
doi:10.1371/journal.pone.0023753.g002

Table 1. Labeled Cells.

Gold Conjugates Euclidian Distances

Class Number *Diameter (nm) Type Upper Limit (nm)

#Gaussian
Center (nm) Connection Number

Blue 225 3.060.6 Blue-Blue 10 7.563.5 90

Blue-Yellow 28 13.562 21.063.5 169

Yellow 107 761.5 Yellow-Yellow 32 14.062 24.063.5 45

*Mean 6 SD.
#Gaussian Center 6 HWHM (Half Width at Half Maximum).
doi:10.1371/journal.pone.0023753.t001

Profiling the aA-Crystalline at High Resolution
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interior of the ‘‘beads’’(arrow, Fig. 5C, brackets Fig. 6B). This

observation raised the possibility that the aA-crystalline was a

small electron density particle bound to the cytoskeleton of the

fiber cell.

The 3D-structure of unlabeled fiber cells
To find out whether the aA-crystalline comprised the small

densities associated with the thin filament and the ‘‘bead’’

assembly, we analyzed tomograms calculated from unlabeled fiber

cells. We expected that these small densities would decorate the

thin filaments spaced with the same Euclidian distances and

forming the same geometric patterns present in the tomograms

calculated from labeled cells (Table 1). For the analysis, we

calculated single-pixel slices (,0.8 nm thickness) of entire

tomograms and located smaller regions containing the thin

filaments and the ‘‘beads’’ (square, Fig. 7A). We segmented these

assemblies into a large number of densities exhibiting variable

dimensions and shapes (n = 1,183, Table 2). To identify those

comprised of the aA-crystalline, we classified these densities in

‘‘blue’’ (diameters .2 nm but ,3.5 nm) and yellow (diameters

.3.5 nm but ,7 nm) classes. For each density, we measured the

volume and determine the X,Y,Z coordinates of the mass centres

(Table 2). The densities with diameters .7 nm (n = 265) were

lumped in a separate class called ‘‘aggregates’’ (brown, Fig. 7B–E).

From the volumes (Table 2), we estimated the molecular masses

of ,17 kDa for the blue and ,67 kDa for the yellow density using

a protein density value of 0.0013 nm3/Dalton [27]. From the

X,Y,Z coordinates, we measured the Euclidian distances between

the mass centers of the blue-to-blue, the blue-to-yellow and the

yellow-to-yellow densities (Fig. 7D–E; Table 2). We found that a

single Gaussian distribution centered at 7 nm (HWHM = 2;

n = 248) fitted the Euclidian distances between the densities

classified as blue. In contrast, two Gaussian distributions centered

at 15.5 nm (HWHM = 5.0; n = 935) and 24 nm (HWHM = 6;

n = 265) fitted the Euclidian distances between yellow-to-blue

and yellow-to-yellow densities (Table 2). These data raised the

possibility that the small evenly spaced densities labeled by

the antibody/gold conjugate likely represented aA-crystalline

monomers or dimers bound to the thin filaments of the

cytoskeleton of fiber cells.

Figure 4. Measurement of the Euclidean Distances between
Conjugates. Panel A shows a small region of a tomogram with six
yellow (,7 nm diameter) and nineteen blue (,3 nm diameter)
conjugates. The color-coded lines represent the Euclidian distances
between yellow (red), yellow-to-blue (green) and blue (brown)
conjugates. Note that independent of their diameters, the conjugates
occupy the vertices of isosceles triangles. Panels B&C show
histograms of the Euclidian distances between 107 yellow and 225
blue conjugates. Panel B shows that two Gaussian distributions
centered at ,14 nm and 21–24 nm fit the Euclidian distances between
yellow (red) and yellow-to-blue conjugates (green). Panel C shows that
the single Gaussian distribution centered at ,7.5 nm fits the Euclidian
distances between blue conjugates. In B and C, the x-axis plots distance
in nm and the y-axis percentage.
doi:10.1371/journal.pone.0023753.g004

Figure 3. Distribution and Classification of Gold Conjugates. Panel A is a Z-projection of a tomogram computed at maximum intensity and
presented in reverse contrast to highlight the distribution of gold conjugates in the tomogram. Depending on their diameters and peak intensities,
the conjugates were classified as yellow (.4 nm diameter OR peak intensity .200) or blue (.2 nm in diameter OR peak intensity .150). Panel B
shows the gold conjugates contained in the volume. The color-coded lines represent the Euclidean distances connecting yellow (red lines), yellow-to-
blue (green lines) and blue conjugates (brown). Bar A–B: 0.1 mm.
doi:10.1371/journal.pone.0023753.g003

Profiling the aA-Crystalline at High Resolution
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Finally, we studied the larger densities lumped in the class called

‘‘aggregates’’ (brown, Fig. 7C). Since the only constraint used in

the classification was for the diameter of these densities to measure

.7 nm, we expected random arrays of densities comprising the

‘‘aggregates.’’ To our surprise, they were arranged in cobblestone-

like patterns associate along straight edges (Fig. 8E). This ordered

distribution suggested that long-range order might also extend to

other soluble proteins in the cytoplasm of lens fiber cells.

Discussion

Our study provides evidence that monomers and dimers of the

aA-crystalline are evenly spaced along thin filaments of the

cytoskeleton in fiber cells of rat lenses (the ‘‘aA-crystalline motif’’).

Evidence supporting long-range order includes measurement of

the Euclidian distances and the geometric patterns adopted by the

aA-crystalline in tomograms calculated from labeled and unla-

beled fiber cells (Tables 1&2). For example, the single line pattern

reflects the monomers or the dimers of the aA-crystalline repeating

alongside intermediate filaments. The isosceles triangles and

polyhedrons (tetrahedrons and pyramids) patterns reflect the

distribution of the aA-crystalline at regions where the intermediate

filaments intersect to form 3D-matrices in the cytoplasm of these

cells. It thus seems likely that the ‘‘bead’’ assembly is a cluster of

monomers or dimers of the aA-crystalline bound to intermediate

comprised of filaments filensin/phakining proteins instead of the

C-terminal domains of the filensin protein hypothesized in

previous models [24,28].

To highlight the structures adopted by the cytoskeleton, we

constructed models where the motifs self-assemble constrained

only by the diameter of the filament and the spacing of the aA-

crystalline monomer or dimer (Fig. 8, left panels). The patterns

formed by the association of two motifs depend on whether the

aA-crystalline associates with each filament as monomer or dimer

(Fig. 8A–B). Monomers are spaced ,7 nm center-to-center apart

and often occupy the vertices of isosceles triangles or squares. In

contrast, the dimers of the aA-crystalline skip one or two sites thus

doubling or tripling the basic repeat period (Fig. 8A–B). Since the

aA-crystalline determines the position of the ‘‘bead,’’ we propose

that the dimers would assemble ‘‘expanded’’ matrices in the cortex

and monomers the more ‘‘compacted’’ matrices in the lens

nucleus.

Adding a third motif transforms the squares into pyramids and

the equilateral triangles into tetrahedrons (Fig. 8C). A fourth aA-

crystalline motif transforms pyramids into octahedrons (not shown)

but leaves tetrahedrons unchanged because all four vertices are

already occupied with aA-crystalline monomers (Figs. 7A & 8D).

Further association of these polyhedrons form larger ‘‘aggregates’’

that despite of exhibiting substantial long-range order in three-

dimensions appear as ‘‘amorphous’’ regions in projection (Fig. 1A).

It thus seems likely that a filensin/phakinin filament decorated

with monomers or dimers of the aA-crystalline is a key scaffold

determining the 3D-structure of the cytoplasm of fiber cells.

The possibility of long-range order in the lens fiber cells has

been foreshadowed in mass spectrometry studies of newborn

human lenses [8]. These studies revealed an integral relationship

Figure 5. Tethers. Panel A is a low magnification view of a fiber cell labeled with anti-aA-crystalline/gold complexes (white discs). At this
magnification, the larger conjugates (,7 nm diameter) appear randomly scattered in the volume and the tethers that connect them to protein
assemblies are not visible. To identify these tethers, small volumes (square, 128 128 47 pixels) around a central gold conjugate were cut and
segmented using the watershed transform (see Methods). Panel B is a view of the square in A. It was rotated to find out the direction that visualized
these tethers. Three tethers (blue) connected the gold conjugate (green) to protein assemblies shaped as thin filaments and spherical particles (red).
Panel C is a higher magnification view of the thin filament colored red in B. The arrow indicates place where the tether (blue) joins the thin filament.
Bar: A = 70 nm; B = 12 nm; C = 5 nm.
doi:10.1371/journal.pone.0023753.g005

Figure 6. Thin Filament and ‘‘Bead’’ Assemblies. Panel A shows
a thin filament decorated with three small gold conjugates (brackets)
and a larger gold conjugate labels a single spherical particle (the
‘‘bead’’). The inset shows a ‘‘bead’’ assembly labeled with four small
conjugates at the vertices of a square. Panel B shows a single-pixels
slice of a ‘‘bead’’ assembly connected to a large gold conjugate. The
brackets indicate evenly spaced particles in the ‘‘bead.’’ Panel C shows
a view of a rendered volume showing a single small gold conjugate
tethered to a ‘‘bead’’ assembly. Panel D shows a large and a small gold
conjugate tethered to a single ‘‘bead’’ assembly. The arrow points to
the region where a tether joins the ‘‘bead.’’ To visualize these tethers,
the image was computed at high intensity. Bar: A–C = 10 nm.
doi:10.1371/journal.pone.0023753.g006

Profiling the aA-Crystalline at High Resolution
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between the normalized molar percentages of the 14 crystallines

expressed in human lenses. The simplest explanation of this

striking relationship is that crystallines exhibit a precise three-

dimensional organization in the cytoplasm of fiber cells [8]. While

our study strongly supports this conclusion for the aA-crystalline,

additional studies will be required to characterize the polyhedral

organization of the remaining crystallines in the lens.

Finally, via the association of the filensin protein with the

water channel aquaporin-0 [29], the aA-crystalline motif might

participate also in linking the cytoskeleton to the fiber cell

plasma membrane. The motif could perform this linkage

directly via filensin or other still unidentified proteins. In either

case, the attachment sites are pre-determined by the Euclidian

distances separating the aA-crystalline dimers (,14 nm or

Figure 7. Analysis of Unlabeled Cells. Panel A is a single-pixel slice showing matrices comprised of filaments (green) and ,15 nm diameter
particles, referred as ‘‘bead’’ assemblies (red). The region inside the square (256 256 47 pixels) was segmented to reveal the repeating particles that
decorate the filaments and comprise the ‘‘beads.’’ Bars A = 45 nm. Panels B–E show selected steps of the analysis. Panel B shows the volume in the
square before segmentation. Panel C shows small (blue) and large (yellow) protein particles generated by segmentation. The irregular regions
colored brown represent ‘‘aggregates comprised of particles .7 nm diameter. Panel D shows the same volume after removing the ‘‘aggregates.’’
Panel E shows the map after measuring the Euclidian distances between blue and yellow protein particles. Lines color-coded according to the
dimensions of the particles connected the centers of mass of blue-to-blue, yellow-to-blue and yellow-to-yellow particles (see Table 2). Bar: 60 nm.
doi:10.1371/journal.pone.0023753.g007

Profiling the aA-Crystalline at High Resolution
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,21 nm) in the cortex or the aA-crystalline monomers (,7 nm)

in the compact matrices of the lens nucleus. In either situation,

the spacing of the aA-crystalline in the filamentous core insures

that the cytoskeleton associates with the plasma membrane

alongside the entire length of the fiber cell in the lens cortex and

nucleus.

It thus seems likely that to attain transparency the fiber cells

assemble complex three-dimensional matrices exhibiting an

unexpected high degree of long-range order. The matrices

subdivide the cytoplasm into small cavities that accommodate

the soluble crystallines that provide the lens with its unique optical

properties. In Nature, this simple yet elegant solution occurs on

Table 2. Unlabeled Cells.

aA-crystalline Particles Euclidean Distances

Class Number *Volume (nm3) *Diameter (nm) Type
Upper Limit
(nm)

#Gaussian
Center (nm) Connection Number

Blue 339 22610 3.060.4 Blue-Blue 10 7.062.0 248

Blue-Yellow 24 15.565.0 935

Yellow 116 78620 4.060.3 Yellow-Yellow 32 24.066 265

*Mean 6 SD.
#Gaussian Center 6 HWHM (Half Width at Half Maximum).
doi:10.1371/journal.pone.0023753.t002

Figure 8. Model. Panel A underscores the fact that the dimers of the aA-crystalline particles (yellow) skip a position in the filament and become
spaced at twice the distance (,14 nm instead of ,7 nm). At the right side, a kinked file of ‘‘real’’ yellow conjugates reflects this condition. Panel B
shows two neighboring filaments decorated with monomers of aA-crystalline. In addition of being spaced at ,7 nm apart, the aA-crystalline
monomers occupy the vertices of isosceles triangles. At the right side, distributions of ‘‘real’’ blue conjugates reflect this condition. Panel C shows
how the association of three filaments decorated with monomers at the minimum distance form tetrahedrons or pyramids. At the right side, blue and
the yellow conjugates reflect this condition. Panel D shows a larger tetrahedron (the ‘‘bead’’) formed by the assembly of smaller aA-crystalline
particles. At the right side, a ‘‘real’’ particle reflects this condition. Panel E shows a region where these ‘‘beads’’ associate to form the larger
‘‘aggregates.’’ The right side panel shows a view of this type of ‘‘aggregate’’ where the ‘‘beads’’ adopt cobblestone patterns in the interior.
doi:10.1371/journal.pone.0023753.g008

Profiling the aA-Crystalline at High Resolution

PLoS ONE | www.plosone.org 7 August 2011 | Volume 6 | Issue 8 | e23753



many occasions. For example, bees use it when constructing their

hives.

Finally, using a novel method based on computational and

statistical analyses of conical tomograms, we have profiled the aA-

crystalline, a lens-specific chaperone, in fiber cells at ,2 nm

resolutions and three-dimensions. Our study reveals a recurrent

motif comprised of a thin (2–3 nm) filamentous core decorated

with evenly spaced monomers or dimers of the aA-crystalline. By

self-association this aA-crystalline motif constructs 3D-matrices

that can adopt a myriad of geometric patterns. These matrices

enfold the massive quantities of crystallines in fiber cells of the lens

cortex and nucleus. It thus seems likely that to attain transparency

the lens combines the long-range order of the cytoskeleton with the

short-range order of dense soluble protein solutions.

Methods

Ethics Statement
Lenses of adult rats aged 12–14 weeks were used in strict

accordance with regulations established by the Animal Care and

Use Committee, known as the Chancellor’s Animal Research

Committee (ARC), at UCLA. The animals were anesthetized by

halothane inhalation or Nembutal injection and sacrificed by

decapitation (ARC # 1994-244-52).

1. Preparation of Specimens
Puncturing the capsules of lenses from three adult rats allowed

harvesting fragmented fiber cells used in the experiments

(,200 mg total protein). The cell fragments were suspended in

50 ml of 10 mM HEPES pH 7.2 and centrifuged at low speed.

The pellet was divided in four aliquots and suspended in: a) 200 ml

of buffer, b) 190 ml of buffer plus 10 ml of 1 mg/ml solution of anti-

aA-crystalline (9 mg/ml), c) 150 ml of buffer plus 50 ml of anti-aA-

crystalline and d) 150 ml of buffer, 50 ml of antibody solution. They

were incubated for 30 min at 4uC. A fourth aliquot (d) was

suspended in 100 ml of secondary antibody conjugated to 5 nm

diameter gold particles for 30 min at 4uC and washed by

centrifugation. This fraction was then suspended in 100 ml of

secondary antibody conjugated to 2 nm gold particles and

incubated at 4uC for 30 min, washed in the same buffer. For

thin sectioning electron microscopy, pellets were fixed in 3%

glutaraldheyde in 0.1 M Na-Cacodylate buffer (pH 7.4) for

2 hours at room temperature. The post-fixation, dehydration,

embedding, sectioning and staining steps were performed as

described [22,30–32].

2. Conical Tomography
We used the Gatan 650 Single Tilt Rotating Holder in a FEI

Tecnai 12 Electron Microscope operated at 120 KV and a 2 k 2 k

CCD Gatan camera. The thin sections were tilted first at a fixed

angle (55u) and rotated by 5u steps through a complete 360u turn.

Searching was done at 2,700 magnification and the regions of

interest imaged by focusing ,1.5 mm away from the region.

Preliminary alignment of the series used the ImageJ software

package [33]. A gold particle was selected as the centre of the

conical series. The coordinates of 5–8 gold particles provided the

orientation parameters (Euler angles and origin position) for

computing a preliminary reconstruction using the weighted back-

projection algorithm. This preliminary reconstruction was refined

using strategies based on projection matching [34–36].

3. Gold Particle Maps
The large amplitude contrast and absence of ‘‘butterfly’’

artifacts allowed creation of 3D-maps comprised of only gold

conjugates. To create these maps, we first calculated Z-projections

with maximum intensity and measured the radii of the gold

particles using ImageJ and the Analyze Particle utility. This type of

analysis indicated that the radii extended through a continuum

with not sharp boundaries between gold conjugates that should

have measured 2 nm and 5 nm diameter. To circumvent this

problem, we threshold the entire tomogram and used peak

intensities to segment the gold particles using the watershed

transform [37]. For each segmented particle, we computed the

volume, the X,Y,Z coordinates of mass centers and the maximum

intensity (0–255).

Based on the diameters (calculated from the volume) and peak

intensities, the gold conjugates were classified into ‘‘yellow’’ and

‘‘blue’’ classes. Conjugates .4 nm diameter OR (Boolean

operator) intensities .200 comprised the yellow class. Conjugates

.2 nm in diameter OR intensities .150 comprised the blue

class. Using the coordinates of the mass centers, each conjugate

was compared to its near neighbor. A connection was assigned

when the Euclidean distances measured less than 32 nm for

yellow-yellow (red lines), 28 nm for yellow-blue (green lines) and

10 nm for blue-blue (brown lines). To fit Gaussian distributions to

histograms of these three distances we used the program fityk

[38].

4. Reference Space
To determine the structure of the assemblies containing the

protein, small (128 128 50 pixels) volumes with a gold conjugate at

its center were removed from the original reconstruction. Using

the Amira software package, rotating the volume identified the

tethers that connected the gold conjugate to neighboring protein

assemblies. Once identified, the tethers were studied by: a)

sectioning the volume into single-pixel slices along the X-Y, X-Z

and Y-Z planes, b) calculating Z-projections, c) automatic and

manual density segmentation, and d) calculating surface and

volume rendering.

5. Analysis of Unlabeled Cells
The absence of gold conjugates prevents using Z-projections

to identify the distribution of the aA-crystalline. Instead, we

analyzed tomograms of unlabeled cells using the watershed

transform by dividing the densities into particles of measurable

volume. The approach was similar to the one used to study

tomograms from cells labelled with antibody/gold conjugates

after adjusting the thresholds for both volume and intensity. The

adjustments were necessary because: a) the peak intensity of the

particles was lower than that of gold conjugates and, b) the

volume was variable, and c) large aggregates were not

segmented into smaller particles by the transform. The particles

were then classified as blue with diameters .2 nm but ,3.5 nm

and yellow with diameters .3.5 nm but ,5 nm. Despite

heterogeneity, it was possible to estimate an average volume of

blue and yellow particles. The coordinates of the mass centres

measured the Euclidean distances between blue and yellow

particles and to characterize the molecular mass of the aA-

crystalline particle.

Particles larger than 7 nm were lump together and referred to

as ‘‘aggregates.’’ Two different strategies were used to exclude

these ‘‘aggregates’’ from the analysis. One strategy involved a

simple geometric constraint of aggregates occupying one corner of

the extracted volume. The other strategy took advantage of the

observation that the number of connections within aggregates was

larger than among other groups of particles. We thus excluded

particles linked to others with large number of connections.
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