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Abstract: Background: Type 1 Diabetes Mellitus (T1D) is an autoimmune disease that can cause
serious complications that can be avoided by preventing the glycemic levels from exceeding the
physiological range. Straightforwardly, many data-driven models were developed to forecast future
glycemic levels and to allow patients to avoid adverse events. Most models are tuned on data
of adult patients, whereas the prediction of glycemic levels of pediatric patients has been rarely
investigated, as they represent the most challenging T1D population. Methods: A Convolutional
Neural Network (CNN) and a Long Short-Term Memory (LSTM) Recurrent Neural Network were
optimized on glucose, insulin, and meal data of 10 virtual pediatric patients. The trained models
were then implemented on two edge-computing boards to evaluate the feasibility of an edge system
for glucose forecasting in terms of prediction accuracy and inference time. Results: The LSTM model
achieved the best numeric and clinical accuracy when tested in the .tflite format, whereas the CNN
achieved the best clinical accuracy in uint8. The inference time for each prediction was far under
the limit represented by the sampling period. Conclusion: Both models effectively predict glucose
in pediatric patients in terms of numerical and clinical accuracy. The edge implementation did not
show a significant performance decrease, and the inference time was largely adequate for a real-time
application.

Keywords: diabetes; time-series forecasting; glucose prediction; pediatrics; edge computing; neural
network; decision support system; precision medicine; artificial intelligence

1. Introduction

Type 1 Diabetes Mellitus (T1D) is a chronic disease in which the pancreas produces
little or no insulin. If not treated properly, it can lead to both short- and long-term compli-
cations, including micro- and macro-vascular diseases that can damage kidneys, eyes, liver,
and the circulatory system [1]. Although T1D has no cure, it can be managed through daily
insulin administrations to keep the glycemic level in the euglycemic range, i.e., between 70
and 180 mg/dL. In recent years, the utilization of Continuous Glucose Monitoring (CGM)
devices increased consistently because they allow patients to keep track of their glycemic
trend 24 h a day.

The quality of life of people suffering from T1D improves considerably by prevent-
ing the blood glucose levels from exceeding the euglycemic range [2]. Albeit CGM de-
vices have greatly enhanced the management of the disease [3], frequent hyperglycemic
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(CGM > 180 mg/dL), and hypoglycemic events (CGM < 70 mg/dL) are reported in clini-
cal data. For this reason, in the last decade, many mathematical models have been devel-
oped to predict future glucose levels [4]. Indeed, an accurate forecast of the future glycemic
level allows patients to adjust their therapy to prevent undesirable events. In particular,
after having fixed a prediction horizon (PH), i.e., how forward in time the prediction is
made, such models exploit the recent trends of CGM and other features such as the injected
insulin to predict, through the medium of a regression task, what the glycemic level will be
after PH minutes.

Although many physiological-based mathematical models exist to predict future
glycemic levels, [5,6] the vast majority of recent research moved toward the implemen-
tation of data-driven models. In the latter case, whether machine learning and neural
network/deep learning models have been implemented, the networks generally achieve
better results [7]. In addition, some models capable of updating their training to catch more
recent variations of the glycemic trend have been proposed [8]. The most widely used
performance evaluation metric for blood glucose levels forecasting is the Root Mean Square
Error (RMSE) which will be defined formally in Section 2.2. Briefly, the smaller the value,
the better the performance.

In the frame of machine learning techniques, Bunescu et al. [9] use a three-compartmental
physiological model of blood glucose dynamics to generate features for a Support Vector
Regression (SVR) that is trained on patient-specific data. The model is validated on data
of 5 T1D patients from a private dataset. The blood glucose levels forecasts with a 30-
and 60-min PH attain RMSE values equal to 22.6 mg/dL and 35.8 mg/dL, respectively.
Georga et al. [10] present a Random Forest regression technique for the personalized predic-
tion of the glucose concentration in T1D patients. This multivariate model takes input CGM
data, physiological features, and lifestyle information. High-accuracy forecasts are derived
for a 15-min PH if all the available features are used (RMSE = 6.6 ± 1.3 mg/dL), whereas
the performance considerably deteriorates when exploiting CGM data alone as input fea-
ture (RMSE = 11.3 ± 2.2 mg/dL). Sparacino et al. [11] propose a first-order AR model with
time-varying parameters estimated at each timestamp using recursive least squares. They
test several values of the forgetting factor with 30- and 45-min prediction horizons. The
model is tuned on CGM data of 28 T1D patients from a private dataset. Results are accurate
enough to potentially avoid or mitigate critical adverse events (RMSE = 18.3 ± 11.8 and
34.9 ± 21.3 mg/dL).

In the frame of neural networks and deep learning techniques, several well-established
models have been applied to the task of glycemic prediction, achieving the best performance
in the literature, and some brand new models have been proposed from scratch for this
specific task [12,13]. Mosquera-Lopez et al. [14] present a Long Short-Term Memory (LSTM)
recurrent neural network with a correction module to predict glycemic levels with a PH
of 30 min, tuning the model on data of more than 4000 patients from a private dataset
and testing it on data of further 10 patients, achieving an average RMSE 7.6 ± 2.2 mg/dL.
Li et al. [15] propose a recurrent Convolutional Neural Network (CNN) to predict glycemic
levels on simulated patients from the UVA/Padova simulator [16] and on 10 patients from
private dataset with a PH of 30 and 60 min. They achieved better results for the simulated
dataset (average RMSE = 9.4 ± 0.7 mg/dL and 18.9 ± 2.5 mg/dL) whereas performance
degrades when testing on real data (RMSE = 21.1± 2.4 mg/dL for 30 min, 33.3± 4.8 mg/dL
for 60 min).

Despite the large number of studies presented to forecast future glycemic levels and
the noteworthy results they achieve, all the aforementioned papers focus on predicting the
glycemic levels of adult subjects. Indeed, few works in the literature aim to predict blood
glucose levels, specifically in pediatric patients. Children represent the most challenging
diabetic population because pediatric patients go through a period of rapid growth, phys-
iological and hormonal changes along with complex individualization and socialization
processes. This often results in a significant decline in the quality of disease management,
treatment adherence, and glycemic control [17,18]. Among the most remarkable studies,
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Mougiakakou et al. [19] test 2 different neural network models on real data of 4 T1D pedi-
atric patients after pre-processing features with a glucose-insulin metabolism model. They
achieve the best results (average RMSE = 22.2 ± 13.4 mg/dL) using a feedforward neural
network. Dassau et al. [20] propose a hypoglycemia prediction algorithm that combines 5
different predictors to assess the risk of incoming hypoglycemia in the following 35 min in
children with T1D, validating the system on 22 subjects. The decisions of the five models
are combined through a majority vote, and the ensemble model identifies with sufficient ad-
vance 91% of the hypoglycemic events. Finally, De Bois et al. [21] test 6 different data-driven
models on data of 10 virtual T1D children generated using the UVA/Padova simulator [16].
They generated for each patient 29 single days with a 3-meal daily scenario, exploiting the
simulator’s built-in bolus calculator and treating each day as a standalone set of data. For a
PH of 30 min, they achieve the best numerical performance using a Gaussian Process with
a dot-product kernel (average RMSE = 5.2 ± 2.0 mg/dL). Conversely, the LSTM model
results in the one with the greatest clinical accuracy, as 97.46% of its predictions fall into
zones A and B of the Clarke Error Grid [22]) corresponding to accurate predictions.

Normally, machine learning techniques are validated in a laboratory setup, and when
they are applied in practice, they are performed directly on servers or centralized processing
units. The task of future glycemic levels prediction makes no exception, as most systems
that perform real-time prediction exchange data between an edge device only used to gather
information, and the cloud, where the actual glucose level forecasting is performed [23,24].
This is mainly due to the memory limits of edge-computing devices. Nonetheless, the
drawback of such systems is that they constantly require an internet connection to work;
this is not arguable with regards to medical devices because an interruption in the signal
may result in missing decision support to the user. However, the increasing development
of new, more powerful, and dedicated hardware, combined with the widespread use of
IoT (Internet of Things) tools, enables the emergence of a branch of artificial intelligence
known as inference at the edge [25,26]. This involves the machine learning models being
run directly from a proximity device using data collected from associated sensors. Taking
into account also the increasingly telemedicine-oriented approach [27,28], it is clear that
the possibilities given by inference at the edge can be exploited to create predictive models
that work in real-time with patient data to both improve the quality of life of patients and
increase the ability of the physicians to extract useful information from the sensor data.
Compared to systems that run on the cloud, edge computing can provide more reliable
real-time service with low latency, and they are not limited by internet connectivity. For this
reason, a recent study by Zhu et al. [29] proposed an Embedded Edge Evidential Neural
Network to predict future glycemic levels of adult T1D patients in real-time exploiting CGM
sensor readings and an edge-computing device. Due to limitations in the computational
capacity, they converted their TensorFlow model to C and achieved an RMSE of 18.9 mg/dL
with a PH of 30 min on both a public and a private dataset.

In the light of what is present in the literature, the contribution of this work is twofold.
On the one hand, we implement two stat-of-the-art models for the prediction of glycemic
levels and apply them to the specific task of the prediction in pediatric patients; such models
improve the performance of the models currently studied in this field. On the other hand,
we implement these models on an edge computing system, thus laying the foundations
for the future creation of embedded devices capable of forecasting blood glucose levels to
improve patients’ quality of life and aid medical diagnosis; we evaluate the feasibility of
such prediction-at-the-edge system on two different boards in terms of prediction accuracy
and execution time. To the best of our knowledge, this is the first attempt to implement a
pediatric-specific glucose prediction model on an edge-computing system.

2. Materials and Methods

In this section, we present the generated dataset utilized to tune the predictive models,
the description of the hardware that we used as an edge system for tests, and the exper-
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imental setup adopted with regard to the optimization of the neural network models as
well as their implementation on the edge system.

2.1. Dataset

Data were produced for 10 pediatric patients by running several simulations in the
UVA/Padova simulator [16]. Such a tool allows one to generate different scenarios for
in silico patients by only providing a meal schedule. For each day of the simulation, we
considered a baseline 5-meal schedule including 45, 20, 70, 20, and 80 g of carbohydrates
ingested at times 8:00, 10:30, 13:00, 17:00, and 20:00, respectively. To make the simulation
more realistic, each mealtime was shifted by an amount of time randomly chosen from
a uniform distribution of ±60 min, whereas each amount of ingested carbohydrates was
randomly modified by a number of grams taken from a uniform distribution of ±20 g.
The simulator can determine the optimal insulin boluses to be injected for each meal of a
specific patient and can thus provide the glycemic evolution for each subject for a pre-set
number of days. However, the tool allows the user to modify the insulin bolus value and to
include a sensor error in the CGM readings. Data are generated with a 1-min sampling.

Two different datasets were generated on a scenario consisting of 30 days of simulation
with 5 meals per day. The first scenario has no errors in sensor reading and insulin
administration, as automatically computed by the simulator, and thus corresponds to
ideal T1D management. Differently, we created the second scenario using the same meal
schedule as the first scenario, but by including CGM sensor errors and by forcing the
presence of hyperglycemic and hypoglycemic events. We achieved such a goal by first
allowing the UVA/Padova simulator to simulate with its own optimal bolus control; then,
we extracted the vector of injected boluses and added random noise taken from a uniform
distribution. In particular, each bolus consisting of I insulin units was modified according
to the following:

Î = I + z (1)

where z is a random value taken in the interval [−3, 3]. In practice, each bolus was increased
or decreased by no more than 3 units of insulin from its optimal value. The modified bolus
vector was given as an effective bolus vector to the UVA/Padova to run the simulations for
this scenario. This makes such a scenario more realistic because, in real life, the increase or
decrease in blood sugar levels occurs mainly due to an inaccurate estimate of the amount
of carbohydrates ingested or to deviations in correction dosing [30]: we added noise on
insulin boluses to simulate the human error.

The datasets consist of information on blood glucose levels and data on insulin (bolus,
basal, and injection were added together and considered as a one) and finally, carbohydrate
intake. Specifically, the final datasets consider Insulin-On-Board (IOB) as an insulin feature
manually generated by exploiting a mathematical model [31]. IOB is a quantity that refers
to the amount of rapid-acting insulin still active in the patient’s body after a bolus injection
and thus provides deeper information on the recent history of insulin injections compared
to the punctual insulin values themselves. The range of time for considering insulin still
active is roughly between 2 and 8 h [32]. IOB is estimated differently among the main
insulin pump companies, but in all cases, its calculation is based on insulin action plots
which forecast the percentage of residual insulin as a function of time. For the Insulet
pump, which is the one we selected when using the simulator, the active insulin time is
equal to 3 h and the shape of the insulin action plot is linear [31]. Thus, the value of IOB for
each timestamp t was computed as

IOB(t) =
179

∑
i=0

α(i)u(t − i) (2)

where u(t − i) represents the insulin injection at timestamp t − i, and α(i) = 1 − i/180
is the coefficient corresponding to the insulin decay curve. It is worth noting that only
past insulin values (i.e., corresponding to timestamps ≤ t) are used to compute the IOB.
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Specifically, 100% of the latest insulin injection value contributes to IOB(t), whereas the
contribution linearly decreases to 0 for older values in the previous 3 h. Straightforwardly,
the first 3 h of data of each patient were not used to train the predictive models, as they
were used to initialize the IOB values. A graphical example of 5 days of data concerning
the CGM sensor reading, the ingested carbohydrates, and the IOB of a sample patient
generated with a 1-min sampling using the simulator and the pre-processing are reported
in Figure 1.

Figure 1. Graphical example of 5 days of data generated for patient child#007. Many hyperglycemic
(G > 180 mg/dL) values can be observed due to the modification of the optimal bolus values.

2.2. Optimization of Network Models

A Precision Medicine approach was used to tune the predictive models, which involves
choosing the hyper-parameters optimally and individually for each different subject. In
this work, we implemented and optimized a CNN and an LSTM recurrent neural network
because such models achieve the most promising performance in the literature [33]. Both
networks were trained using a subset of the available data and then tested on subsequent
data of the same in silico patient without being updated again. The networks have a
sequence-to-label architecture, as the expected output is a single value corresponding to
the expected blood glucose value in 30 min. After splitting the data into Training (70%),
Validation (20%), and Test set (10%), the models were built.

The proposed CNN is a 1D-CNN with a one-dimensional kernel consisting of two
convolutional layers with a ReLU activation function, each followed by a MaxPooling that
cuts the parameters in half by taking, in pairs, only the largest value. To complete the model,
the convolutional layers are followed by a dense layer with a ReLU activation function
and an output neuron that provides the final regression. A schematic representation of the
proposed CNN model is reported in Figure 2. The choice of hyper-parameters was made
by performing a grid search on the validation set based on a range of parameters, including
values identified through preliminary tests and parameters reported in the literature [33].
The optimization was done with respect to the kernel size and the number of feature maps.
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Figure 2. Schematic representation of the proposed Convolutional Neural Network.

The proposed LSTM model consists of a first LSTM layer, a dense layer with a ReLU
activation function, and an output layer that returns the predicted CGM value. Moreover,
in this case, the model was optimized in terms of the number of neurons in the first LSTM
layer and the dense layer by investigating both parameters identified in preliminary tests
and parameters reported in the literature [33]. A schematic representation of the proposed
LSTM model is reported in Figure 3.

Figure 3. Schematic representation of the proposed LSTM Recurrent Neural Network.

Both models take as input a (3 × 30) matrix of values, corresponding to the last 30 min
of the 3 feature values. Such parameter was identified in preliminary tests, as it provides
the models with enough information to capture the recent trend of the features. We found
empirically that using longer monitoring periods did not improve performance. With
regards to the strategy chosen to train both networks, the Stochastic Gradient Descent
(SGD) optimizer is adopted, which requires a learning rate (0.0001), a momentum (0.9),
and a clip Value (0.5), which is a necessary parameter to prevent the gradient explosion
phenomenon in deep neural networks, improving the prediction quality. The training
of both models was performed by splitting the data into mini-batches of 1400 samples
(i.e., approximately one day of data) and setting the maximum number of epochs to
200. Finally, the early stopping strategy was adopted to prevent overfitting, which stops
training if the performance on the validation set does not improve within a fixed number
of consecutive epochs.

Two different evaluation metrics are used to thoroughly evaluate the performance of
the models. Root Mean Square Error (RMSE)is utilized to assess numerical accuracy, as it
provides a numerical estimate of how close the predicted values are to the real ones. Let
us consider a prediction performed at timestamp t. Defined P(t + PH) as the prediction
performed at time t regarding the future glucose value CGM(t + PH), and considering a
time series with a total of T timestamps to be predicted, the RMSE is defined as:

RMSE =

√√√√T−PH

∑
t=1

(CGM(t + PH)− P(t + PH))2

T − PH
(3)

where PH is the considered prediction horizon. The smaller the RMSE value, the better the
performance. In addition, we considered the Clarke Error Grid (CEG) analysis as a measure
of the clinical accuracy of the predictions produced. The CEG consists of a grid that is
divided into 5 zones, from A to E, which plots the actual and the predicted CGM values on
the horizontal and the vertical plot axis, respectively. Values in zones A and B represent
good or acceptable glucose predictions; values in zone C represent mistaken predictions
that may lead to unnecessary treatment; values in zone D represent a dangerous failure to
predict; finally, values in zone E represent a completely wrong prediction that would lead
to erroneous treatment [22].
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2.3. Edge System Description

To test the feasibility of the predictive models of being implemented and utilized on
an edge system, we needed to identify the target hardware. Our choice fell on two different
devices: a Raspberry Pi4, chosen for its low cost and high computational capability, and
a Coral DevBoard, a developer kit containing a Tensor Processing Unit (TPU) processor,
which is useful for accelerating the execution of machine learning models. The Raspberry
Pi4 has a Broadcom BCM2711 quad-core Arm Cortex A72 of 1.5 GHz processor, with 4 GB
of memory. Furthermore, to carry out the tests, we used Raspbian OS (a Debian-derived
ISO) as the operating system. Python and the Mendel Development Tool (MDT) were also
installed. The former is necessary to perform tests directly on the Raspberry; the latter is
used to give commands to the Coral DevBoard, which allows its set-up and use. The Coral
Devboard has a quad Cortex-A53, Cortex-M4F CPU, with 1 GB LPDDR4 RAM, and it has
a 4 TOPS (8 bit) TPU accelerator for machine learning processes. The operating system
running on the DevBoard is Mendel Linux. We installed and utilized all the dependencies
necessary to run the model on the board using the Py CoralAPI.

2.4. Edge System Implementation

Both datasets were provided as input, as sequences of the last 30 min of values, for two
models compared: CNN and LSTM. The models were implemented and trained on Google
Colab through the use of the open-source libraries of Keras and TensorFlow. Through this
API, the networks were trained and the hyperparameters optimized.

Although the single models were trained on two different datasets, topologically the
trained networks do not differ, in terms of hyperparameters. Therefore, the number of
algebraic operations performed by a single network is invariant with respect to the dataset.
Having made this consideration, we decided to implement on the edge device only the
models trained on the dataset, including more hypo/hyperglycemic events, as it is more
similar to a real use case.

For the implementation of the models on edge computing architectures, it is necessary
to perform a quantization step that differs depending on the architecture on which inference
is going to be performed. To perform regression tasks on the Rasperry, we used the
quantization in .tflite format, which transforms the model keeping output variables in
float32 format. This optimization, namely dynamic range quantization, provides latency
close to fully fixed-point inference. However, the outputs are still stored using floating-
point so that the speedup with dynamic-range operations is less than a full fixed-point
computation, as reported on the official TensorFlow web page [34]. From now on, we will
refer to the model obtained with this quantization as .tflite.

For the implementation on the Dev Board, it was necessary to transform the models in
their 8-bit representation to execute them, exploiting the full potential provided by Coral’s
TPU. In this case, the quantization method is known as full integer quantization. Applying
this approach requires one to provide a representative dataset to calibrate variable tensors
such as model input, activation functions, outputs of intermediate layers, and model output.
As a representative dataset, it would theoretically be sufficient to provide a set of 100–500
sample data taken between the training and validation set. In our case, a dependence of the
goodness of the quantization on the subset of data passed to the model as a representative
dataset was noted. In fact, it was not sufficient to use data taken randomly from the training
or validation set but it was necessary to use ordered data, given the time series forecasting
nature of the task. At the end of this quantization procedure, all input and output values
are taken to uint8. From now on, we will refer to the model obtained with this quantization
as uint8.

Due to the 8-bit nature of the quantization required to exploit the capabilities of the
Coral Devboard TPU processor, a problem arose for our regression task. The range of values
of the dataset varies between 10 and 600 mg/dL, whereas the values that can be represented
with 8 bits are 256. Consequently, we pursued two approaches. The first consists of avoiding
any pre-processing of the input data and then reconstructing the possible overflow cases
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obtained in the output through post-processing of the data, maintaining the granularity
of the prediction at 1 mg/dL. The reconstruction was done following the procedure set
out in the Algorithm 1. It assumes that a decrease of glucose concentration of more than
50 mg/dL in a single minute is very unlikely or impossible. In this case, we post-process
the prediction and sum 255 to the predicted value.

Algorithm 1 Output reconstruction algorithm

1: reconstructed_pred = [] . initialization of variables
2: overflow = False
3: deltaY = 50
4: For i,x in enumerate (tflite_uint8_model_prediction): . Start of the for loop
5: if x >= 240 then
6: if overflow and (x - tflite_uint8_model_prediction[i-1]) >= deltaY: then
7: overflow = False
8: else if not overflow and (x - tflite_uint8_model_prediction[i+1]) >= deltaY: then
9: overflow = True

10: delta = 255 if overflow else 0
11: reconstructed_pred.append(x + delta) . End of the for loop

The second approach consists of the application of a normalization step in the pre-
processing phase, remapping the data values between 0 and 255. Such an approach avoids
problems related to overflow, but it takes the granularity of the prediction to approximately
2.33 mg/dL. Then, we de-normalized the predicted values to compute the evaluation
metrics. This could introduce inaccuracy in the predictions.

The Raspberry and DevBoard were used for the calculation of inference times to be
compared with the performance limits that our application requires (less than the sampling
period of the sensor, i.e., 1 min). At each timestamp, the edge system takes as input the
30 most recent values of the features (i.e., the data of the in silico patient produced by the
simulator), computes the latest value of the IOB, and performs a prediction of the future
blood glucose level. A representative schematic of the experimental system can be seen in
Figure 4.

Figure 4. Schematic representation of the experimental setup during the test phase with edge systems.

3. Results and Discussion

As a result of the grid search performed on the Discovery set, the optimal configuration
of the CNN comprises a number of filters equal to 26 for the first convolutional layer,
20 filters for the second convolutional layer, and a Kernel size equal to 1 × 5 on both. Note
that, due to the shape chosen for the filters and the structure of the input matrix, in the first
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CNN layer, the convolutions are performed on different timestamps of the same feature.
With regards to the LSTM model, the optimal configuration resulted in 64 neurons for both
the LSTM and the fully-connected layer. Once the models were optimized, predictions
were performed on the Test set, and the RMSE and the CEG were computed. With regards
to the CEG values, only those from the second dataset were evaluated, as they present
more hypo- and hyperglycemic values and are thus more similar to a real-life scenario.

Table 1 reports the average values and their standard deviation of the tests performed
using the different versions of the models. As expected, the results achieved by the
baseline model on the standard dataset are better than those achieved on the dataset with
outliers. The LSTM model outperforms the CNN on both datasets, both in terms of average
RMSE and CEG results. In particular, with regards to the realistic dataset, the LSTM
achieves an RMSE of 16.3 ± 4.7 mg/dL, which is noteworthy if compared to other studies
presented in the literature concerning the prediction of pediatric T1D patients. Also, 99.0%
of its predictions fall in zones A and B of the CEG and thus represent clinically accurate
or acceptable predictions, whereas 1.0% of predictions fall in zone D. The latter mainly
correspond to failures in predicting hypoglycemia. No predictions fall in zones C and E.

A comparison with the results achieved in the literature can be only partial because, as
explained in the Introduction, there are a limited number of studies addressing the predic-
tion task on pediatric patients, and only one of them exploits the UVA/Padova simulator.
The model tested on data from 4 real pediatric patients by Mougiakakou et al. [19] that
achieves an average 22.1 mg/dL RMSE is outperformed by both the proposed models;
however, it is known that forecasting glycemia of real patients is though compared to the
virtual patient, because some unpredictable events might be present. De Bois et al. [21]
tested the same 10 virtual children of the UVA/Padova simulator we utilized; they achieved
an average RMSE of 5.2 mg/dL, which outperforms both the proposed models in all con-
figurations in terms of numerical accuracy; nonetheless, the clinical accuracy of their best
model (zones A + B) is 97.5% and it is outperformed by our models, which both achieve
accuracy above 99.0% in their best configuration. However, it must be considered that
the two datasets have been generated with a different meal and bolus schedules, so this
comparison is just qualitative.

Table 1. Results of the tests performed with the proposed models CNN and LSTM. In this test, the
normalization step was not performed in the pre-processing phase. The results refer to the RMSE
[mg/dL] achieved on both the ideal (no-error) and the realistic (hypo-hyper) dataset. Such results
are reported in terms of average RMSE ± standard deviation. The CEG results are referred only
to the realistic dataset, and its results are reported as percentage on the total dataset. For each
neural network, we reported the results for the model implemented on Google Colab, for the model
implemented on Raspberry (.tflite float32 format), and for the model implemented on the Dev Board
(.tflite uint8).

Model RMSE (No-Error) RMSE (Hypo-Hyper) CEG (A; B; C; D; E)

CNN 22.2 ± 2.5 23.2 ± 2.3 87.0; 12.0; 0.0; 1.0; 0.0
LSTM 13.5 ± 3.4 16.3 ± 4.7 93.8; 5.2; 0.0; 1.0; 0.0

CNN .tflite / 23.6 ± 2.0 85.7; 13.6; 0.0; 0.7; 0.0
LSTM .tflite / 16.3 ± 4.7 93.7; 5.2; 0.0; 1.1; 0.0
CNN uint8 / 40.1 ± 11.1 75.4; 20.8; 0.0; 1.2; 2.5
LSTM uint8 / 35.0 ± 13.3 82.4; 12.5; 0.0; 1.5; 3.6

Edge System Results and Discussions

The results reported in Table 1 refer to the models trained without having carried out
the normalization of the input values. The expected increase in the RMSE values of the
models implemented on the edge devices can be observed; however, this variation differs
between the two quantized representations of the networks. With regards to models quan-
tized using dynamic range quantization for implementation on the Raspberry, the RMSE
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values increase by a maximum of 0.4 mg/dL for the CNN, whereas there is no difference for
the LSTM. Again, the LSTM model outperforms the CNN in terms of numerical accuracy,
achieving an RMSE of 16 ± 4.7 mg/dL, and 98.9% of its predictions fall in zones A and
B of the CEG. This result is of particular interest because it is similar to the performance
achieved on datasets composed of data of adult T1D patients, and it is achieved on the edge
device without resorting to cloud computing. A graphical example of the predictions is
reported in Figure 5, where we report as an example data of two patients for whom the best
and the worst performance is achieved in terms of RMSE. The LSTM prediction is closer to
the true CGM value compared to the CNN, which produces more oscillatory predictions;
however, the LSTM tends to overestimate both hyperglycemic and hypoglycemic peaks.

Figure 5. Graphical examples of the best and worst predictions performed by the CNN (left) and
LSTM (right) using different edge devices. We computed the confidence interval for the predicted
values, which are 2.01 for the worst .tflite, 2.14 for the worst uint8, and 1.09 for either the best .tflite
and uint8, respectively. Nonetheless, we do not report such an interval in the figure because its values
are too small to be observed in the graphics. The glycemic index values shown in the figure are
normalized between 0 and 255; thus, to obtain the real glycemic values, we need to multiply by 2.33.

Nonetheless, it is worth noting that only 0.7% of predictions of the CNN model fall
outside the A and B zones of the CEG, compared to 1.1% of the LSTM; conversely, the LSTM
produces more predictions that fall in zone A (93.7% against 85.7% of the CNN). This may
be explained considering that the LSTM is more capable of performing accurate predictions
in the euglycemic range, which translates into better RMSE and a larger percentage of
predictions in zone A, whereas it may miss some hypoglycemic events; on the contrary,
the CNN has a larger RMSE and a larger amount of predictions in zone B of the CEG,
corresponding to errors in the euglycemic range, whereas it is more capable of predicting
hypoglycemia. Examples of the CEG are shown in Figure 6, where we report as an example
data of two patients for whom the best and the worst performance is achieved in terms of
CEG percentage in zone A. In conclusion, the CNN may be more appropriate to predict
critical hypoglycemic events when implemented in .tflite, although its average numeric
accuracy is worse than that of LSTM. However, it should be taken into account that results
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achieved on virtual patients are, in general, slightly better than those obtained on real
patients; thus, performance may deteriorate when testing on a real dataset.

Figure 6. Clarke Error Grids resulted by the best and worst predictions of the CNN (left) and LSTM
(right) using different edge devices. Predictions falling in the safe zones A and B are plotted in green;
predictions in zone C are plotted in yellow; predictions falling in the dangerous zones D and E are
plotted in red.

A different analysis applies to the models on which the full integer quantization was
performed for implementation on the Coral DevBoard. Indeed, this quantization technique,
which casts the values from float32 to uint8, significantly affects the goodness of prediction.
In particular, the overflow that is observed when glycemic values are above 255 mg/dL
considerably increases the RMSE scores and generates some predictions that fall in the
dangerous E zone of the CEG. For this reason, as explained in Section 2.4, two different
approaches were chosen. The second one, which involved an initial pre-processing of the
data, gave considerably better results than the first one, and they are reported in Table 2.

In particular, the results obtained for the models in Google Colab do not differ substan-
tially from those achieved without the normalization; conversely, the uint8 implementation
of such models achieves considerably better performance than those obtained with the
first approach. It must be considered that the granularity of the prediction increases from
1 mg/dL to 2.3 mg/dL. Despite this drawback, we can still consider this approach better
than the first one because the increase in granularity obtained is not critical from a clinical
point of view. It is worth noting that, although the LSTM model outperforms the CNN
in terms of RMSE (21.2 ± 8.6 and 24.7 ± 5.5 mg/dL, respectively), 5% of the predictions
produced by the LSTM fall in the D zone of the CEG, corresponding to a failure of pre-
dicting dangerous events. This situation shows that the LSTM model is weaker than the
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uint8 representation, which brings it a greater drop in accuracy. This is probably due to the
narrowness of the model, which has only one LSTM plane. Given the limited number of
mathematical operations required to achieve an output, the conversion step of the model to
uint8 fails to optimize the weights with the new integer values. On the contrary, only 0.9%
of the predictions produced by the CNN fall in the D zone, proving that this latter model is
more clinically accurate and reliable when implementing the models in uint8, despite the
better numerical accuracy achieved by the LSTM model.

Table 2. Results of the tests performed with the proposed models CNN and LSTM, on which was
carried the normalization step in the pre-processing phase. The results refer to the RMSE [mg/dL]
achieved on the realistic (hypo-hyper) dataset. Such results are reported in terms of average RMSE
± standard deviation. The CEG results are referred only to the realistic dataset, and its results are
reported as percentage on the total dataset. For each neural network, we reported the results for
the model implemented on Google Colab, and for the model implemented on the Dev Board (.tflite
uint8 format).

Model RMSE (Hypo-Hyper) CEG (A; B; C; D; E)

CNN 21.8 ± 2.3 87.8; 10.9; 0.0; 1.1; 0.0
LSTM 16.0 ± 3.4 93.7; 5.5; 0.0; 0.8; 0.0

CNN uint8-normalized 24.7 ± 5.5 87.6; 9.8; 0.0; 0.9; 0.0
LSTM uint8-normalized 21.2 ± 8.6 87.4; 7.5; 0.0; 5.1; 0.0

A further comparison between the different implementations concerns the actual
inference times obtained, which returned largely satisfying results. We reported in Table 3
the worst-case results for each model and hardware to show compliance with the time
constraints posed by the application. The inference times for both models in all three
representations are far below the limit imposed by the application, i.e., 1 min. However,
the total times in the case of a real application should also consider the times necessary
for: signal collection by the sensors, pre-processing of the raw data, and displaying the
results on an appropriate Graphic User Interface (GUI). Nonetheless, the time for a single
inference operation to be summed is, in the worst case, the ones of the CNN performed in
the .tflite format by the Raspberry, corresponding to 101.56 ms. We can therefore assert that
inference times, covering at most 0.17% of the total time limit imposed by the application,
are not one of the parameters to be optimized in the case of a real implementation of the
system. Furthermore, looking at Table 3 and comparing the data obtained in the tests of
the two Edge systems, a consistent acceleration can be observed with the use of the Coral
DevBoard when compared to the Raspberry’s performance, although it does not reach the
performance of Google Colab TPU. This result is in line with Google’s own claims [35].

Table 3. Maximum inference time obtained in the test phase in milliseconds. The inference times are
reported for each model, CNN and LSTM. They were calculated: for the models saved in TensorFlow
saved model format over the Colab online TPU, for the .tflite model format over the Raspberry and
for the .tflite format quantizated in uint8 over the Coral DevBoard.

Model Colab TPU (TF Saved Model) Raspberry (.tflite) Coral DevBoard (.tflite uint8)

CNN 0.085 101.56 18
LSTM 0.086 70.3 12

4. Conclusions

In this manuscript, we implemented a CNN and an LSTM neural network for the
prediction of blood glucose concentration in pediatric T1D patients. The UVA/Padova sim-
ulator was exploited to generate data of 10 virtual children, and 2 datasets were generated
which differ in the amount of hypoglycemic and hyperglycemic events. We determined the
optimal parameters of the models through the medium of a grid search on the Discovery set
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and evaluated performance by the predictions on the Test set using Google Colab, a Rasp-
berry, and a Coral DevBoard. To the best of our knowledge, this is the first attempt to im-
plement an edge-computing system for the prediction of glucose concentration in children.

With regards to the prediction of glucose levels, the models achieved numerical
accuracy comparable to those reported in the literature for adult patients. However, we
acknowledge that, since the results are achieved on virtual patients, they may not be fully
representative of the actual predictive capabilities of the models. On the one hand, the
LSTM model achieved the best numerical accuracy and the largest percentage of predictions
in zone A of the CEG for all the tests performed without model quantization. On the other
hand, the CNN model produced a smaller percentage of predictions in the dangerous zones
of the CEG with respect to all the implementations on edge devices, proving to be more
effective in predicting critical events. In conclusion, both proposed models are promising
for possible real implementation in pediatric patients.

With regards to edge computing, we arrived at a double result. On the one hand,
the loss of information and prediction quality was tested with respect to two different
quantizations of the networks. Both approaches achieved results comparable to those
achieved using Google Colab. The .tflite implementation achieved the best results, although
the uint8 showed smaller inference times. On the other hand, the tests on inference times
showed us that the IoT devices currently on the market have sufficient computational
capabilities to be used in applications that require time constraints such as the one imposed
by our specific case study, i.e., 1 min. In conclusion, the .tflite implementation seems more
promising because it achieves the best results and there is no particular concern about the
inference time.

Several future developments may follow this work. First, it would be interesting
to validate the proposed neural networks on data of real patients to confirm the good
performance achieved on virtual patients. Second, a mobile application could be developed
to provide the patient with real-time information about their future glycemic value and
generate an alarm in case of dangerous conditions by directly interacting with the edge
device. Such application may also collect a history of the patient’s data to allow the
physicians to adjust the therapy. Finally, it would be interesting to develop a complete
proof of concept, including also the acquisition system, to exploit its actual limits and
potential.
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F.J. Real-time hypoglycemia prediction suite using continuous glucose monitoring: A safety net for the artificial pancreas. Diabetes
Care 2010, 33, 1249–1254. [CrossRef]

21. De Bois, M.; El Yacoubi, M.A.; Ammi, M. Study of short-term personalized glucose predictive models on type-1 diabetic children.
In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019;
pp. 1–8. [CrossRef]

22. Clarke, W.L. The original Clarke error grid analysis (EGA). Diabetes Technol. Ther. 2005, 7, 776–779. [CrossRef]
23. Nasser, A.R.; Hasan, A.M.; Humaidi, A.J.; Alkhayyat, A.; Alzubaidi, L.; Fadhel, M.A.; Santamaría, J.; Duan, Y. IoT and Cloud

Computing in Health-Care: A New Wearable Device and Cloud-Based Deep Learning Algorithm for Monitoring of Diabetes.
Electronics 2021, 10, 2719. [CrossRef]

http://doi.org/10.1111/dme.14570
http://www.ncbi.nlm.nih.gov/pubmed/33780027
http://dx.doi.org/10.2337/dc17-0133
http://dx.doi.org/10.2337/dc21-1373
http://www.ncbi.nlm.nih.gov/pubmed/34635503
http://dx.doi.org/10.2196/11030
http://www.ncbi.nlm.nih.gov/pubmed/31042157
http://dx.doi.org/10.1111/aor.12980
http://dx.doi.org/10.1109/ACC.2002.1024561
http://dx.doi.org/10.1002/cnm.2833
http://dx.doi.org/10.3390/bioengineering8060072
http://dx.doi.org/10.1109/ICMLA.2013.30
http://dx.doi.org/10.1109/EMBC.2012.6346567
http://dx.doi.org/10.1109/TBME.2006.889774
http://dx.doi.org/10.1016/j.knosys.2020.106134
http://dx.doi.org/10.1109/JBHI.2019.2931842
http://dx.doi.org/10.1109/JBHI.2019.2911701
http://www.ncbi.nlm.nih.gov/pubmed/30998484
http://dx.doi.org/10.1109/JBHI.2019.2908488
http://www.ncbi.nlm.nih.gov/pubmed/30946685
http://dx.doi.org/10.1177/1932296818757747
http://www.ncbi.nlm.nih.gov/pubmed/29451021
http://dx.doi.org/10.1007/s00125-008-1072-2
http://dx.doi.org/10.1111/pedi.13029
http://dx.doi.org/10.1109/IEMBS.2006.260640
http://dx.doi.org/10.2337/dc09-1487
http://dx.doi.org/10.1109/IJCNN.2019.8852399
http://dx.doi.org/10.1089/dia.2005.7.776
http://dx.doi.org/10.3390/electronics10212719


Bioengineering 2022, 9, 183 15 of 15

24. Bhat, G.M.; Bhat, N.G. A novel IoT based framework for blood glucose examination. In Proceedings of the 2017 International
Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India,
15–16 December 2017; pp. 205–207. [CrossRef]

25. Li, E.; Zeng, L.; Zhou, Z.; Chen, X. Edge AI: On-Demand Accelerating Deep Neural Network Inference via Edge Computing.
IEEE Trans. Wirel. Commun. 2020, 19, 447–457. [CrossRef]

26. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge
Computing. Proc. IEEE 2019, 107, 1738–1762. [CrossRef]

27. Hersh, W.R.; Helfand, M.; Wallace, J.; Kraemer, D.; Patterson, P.; Shapiro, S.; Greenlick, M. Clinical outcomes resulting from
telemedicine interventions: A systematic review. BMC Med. Informatics Decis. Mak. 2001, 1, 1–8. [CrossRef] [PubMed]

28. Scott Kruse, C.; Karem, P.; Shifflett, K.; Vegi, L.; Ravi, K.; Brooks, M. Evaluating barriers to adopting telemedicine worldwide: A
systematic review. J. Telemed. Telecare 2018, 24, 4–12. [CrossRef] [PubMed]

29. Zhu, T.; Kuang, L.; Daniels, J.; Herrero, P.; Li, K.; Georgiou, P. IoMT-Enabled Real-time Blood Glucose Prediction with Deep
Learning and Edge Computing. IEEE Internet Things J. 2022. [CrossRef]

30. Dungan, K.M.; Sagrilla, C.; Abdel-Rasoul, M.; Osei, K. Prandial insulin dosing using the carbohydrate counting technique in
hospitalized patients with type 2 diabetes. Diabetes Care 2013, 36, 3476–3482. [CrossRef] [PubMed]

31. Zisser, H.; Robinson, L.; Bevier, W.; Dassau, E.; Ellingsen, C.; Doyle III, F.J.; Jovanovic, L. Bolus calculator: A review of four
“smart” insulin pumps. Diabetes Technol. Ther. 2008, 10, 441–444. [CrossRef] [PubMed]

32. Toffanin, C.; Zisser, H.; Doyle III, F.J.; Dassau, E. Dynamic insulin on board: Incorporation of circadian insulin sensitivity variation.
J. Diabetes Sci. Technol. 2013, 7, 928–940. [CrossRef]

33. Idrissi, T.E.; Idri, A. Deep Learning for Blood Glucose Prediction: CNN vs. LSTM. In International Conference on Computational
Science and Its Applications; Springer: Berlin, Germany, 2020; pp. 379–393. [CrossRef]

34. TensorFlow. Post-Training Quantization. 2022. Available online: https://www.tensorflow.org/lite/performance/post_training_
quantization (accessed on 4 December 2021).

35. Google. Frequently Asked Questions. 2022. Available online: https://coral.ai/docs/edgetpu/faq/#how-is-the-edge-tpu-
different-from-cloud-tpus (accessed on 15 December 2021).

http://dx.doi.org/10.1109/ICEECCOT.2017.8284666
http://dx.doi.org/10.1109/TWC.2019.2946140
http://dx.doi.org/10.1109/JPROC.2019.2918951
http://dx.doi.org/10.1186/1472-6947-1-5
http://www.ncbi.nlm.nih.gov/pubmed/11737882
http://dx.doi.org/10.1177/1357633X16674087
http://www.ncbi.nlm.nih.gov/pubmed/29320966
http://dx.doi.org/10.1109/JIOT.2022.3143375
http://dx.doi.org/10.2337/dc13-0121
http://www.ncbi.nlm.nih.gov/pubmed/24062326
http://dx.doi.org/10.1089/dia.2007.0284
http://www.ncbi.nlm.nih.gov/pubmed/19049372
http://dx.doi.org/10.1177/193229681300700415
http://dx.doi.org/10.1007/978-3-030-58802-1_28
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/performance/post_training_quantization
https://coral.ai/docs/edgetpu/faq/#how-is-the-edge-tpu-different-from-cloud-tpus
https://coral.ai/docs/edgetpu/faq/#how-is-the-edge-tpu-different-from-cloud-tpus

	Introduction
	Materials and Methods
	Dataset
	Optimization of Network Models
	Edge System Description
	Edge System Implementation

	Results and Discussion
	Conclusions
	References

